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1. ABSTRACT

ALK+ anaplastic large cell lymphoma (ALCL). 
frequently carries the t(2;5).(p23;q35). resulting in 
expression of NPM-ALK oncogenic kinase, which is 
capable of activating multiple oncogenic pathways. ALK+ 
ALCL is also characterized by overexpression of CD30 
receptor, a member of the tumor necrosis factor (TNF). 
receptor superfamily, which has been targeted for therapy 
using conjugated anti-CD30 antibodies with clinical 
success. Also, the tumor suppressor p53 is frequently 
non-mutated in ALK+ ALCL allowing for therapeutic 
modulation of p53 reactivation in this lymphoma type. 
Therefore, this review is focused on the role of CD30 
receptor and p53 as novel targets for therapy in ALK+ 
ALCL, and also provides an update on their potential 
involvement in ALK+ ALCL pathogenesis.

2. INTRODUCTION

Anaplastic lymphoma kinase (ALK) + anaplastic 
large cell lymphoma (ALCL). is a distinct type of CD30+ 
T-cell non-Hodgkin lymphoma (1). which frequently 
carries the t(2;5).(p23;q35). resulting in aberrant 
expression and activation of NPM-ALK chimeric 
oncoprotein (2). The latter directly activates multiple 
oncogenic pathways including Ras, PLC-gamma, Jak/
STAT, PI3K/AKT/mTOR, JNK/Jun and others (3). ALCL is 
also characterized by overexpression of CD30 receptor, 
a member of the tumor necrosis factor (TNF). receptor 
superfamily. Recent evidence has uncovered the 
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mechanisms underlying CD30 overexpression in ALCL 
and other CD30+ lymphomas suggesting that CD30 may 
have a role ALCL oncogenesis.

3. THE CD30 RECEPTOR AND ITS LIGAND

CD30 is a member of the nerve growth 
factor (NGF) /tumor necrosis factor (TNF). receptor 
superfamily (4,5). The extracellular domain of CD30 has 
6 of the characteristic for the TNFR superfamily cysteine 
repeats, which mediate the formation of disulfide bonds 
and are probably important for the ligand (CD30L). 
binding. There appear to be two separate extracellular 
areas of the receptor, which are closely related: the 
distal to membrane CD30a and the proximal CD30b. As 
a type  I glycoprotein, CD30 has also a transmembrane 
and an intracellular domain. The intracellular domain 
does not have any enzymatic activity nor does contain 
a death domain (DD). like the TNFR-I and the Fas, 
so by itself is unable to transmit a signal or to bind to 
death domain adaptor proteins such as TRADD and 
FADD. In order to mediate the signal, the CD30 has to 
associate with members of the TNFR Associated Factors 
(TRAFs). which bind to specific areas of the cytoplasmic 
domain of CD30  (6). CD30 molecules can also form 
heteromultimers with other TNFR members, which have 
been proposed to play a role in apoptosis through the 
death domains of these TNFR members. The CD30 
ligand (CD30L or CD153) is a membrane protein with 
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an extracellular C-terminal domain and a cytoplasmic 
domain (7). In human lymphomas, CD30L is expressed 
by the Hodgkin and Reed Sternberg cells (HRS). of 
classical Hodgkin lymphoma (HL) which co-expresses 
CD30 as well as by inflammatory cells of the tumor cell 
microenvironment. CD30 is a lymphocyte activation 
marker and it is normally expressed in the parafollicular 
areas of the lymph nodes as well in the spleen and in 
areas of thymus surrounding the Hassal’s corpuscles. 
Peripheral activated lymphocytes also express CD30 
and Th2 lymphocytes constitutively express CD30 (8).

3.1. CD30 is linked to AP-1 transcription factors 
in lymphomas

CD30 seems to be involved in the pathogenesis 
of ALK+ ALCL (,). However, the underlined mechanisms 
are still under investigation. Earlier studies have 
demonstrated that increased activator protein-1 (AP-1). 
activity and overexpression of two of the members of AP-1 
family, namely c-Jun and JunB, are found in CD30+ but not 
in CD30- lymphoma and leukemia cell lines and tumors 
including ALCL and classical HL (9-11). The mechanism 
underlying this strong association has been investigated 
in several studies. JunB, one of the AP-1 transcription 
factors, interacts with the CD30 gene promoter leading to 
increased transcription of CD30 gene. More specifically, 
Watanabe et al, in his first study on HRS cells of classical 
HL, showed, that JunB protein binds to the AP-1 binding 
sites of the microsatellite sequences (MS). of the CD30 
gene promoter, thus releasing the inhibitory effect of 
the MS on the core CD30 promoter. As a result, CD30 
transcription is induced leading to overexpression of the 
CD30 protein (12,13). Furthermore, CpG islands of the 
CD30 promoter are frequently unmethylated in ALCL and 
classical HL allowing for CD30 expression (14). Previous 
studies have shown that JunB, along with another 
member of the AP-1 family of transcription factors, c-Jun, 
are overexpressed in ALCL and classical HL, and more 
importantly, their expression is restricted only to CD30+ 
lymphomas (10,11).

The AP-1 transcription factors are involved in cell 
proliferation, growth control, oncogenic transformation 
and apoptosis (15). Data from knock-out mouse models 
have shown that certain AP-1 genes (c-Fos, FosB, and 
JunD). are dispensable to embryogenesis while others 
including c-Jun and JunB are essential (15). JunB, a 
member of the Jun family, which also includes c-Jun 
and JunD, is mapped at 19p13 and encodes a 39kDa 
protein. Earlier studies have shown that JunB represses 
the transactivation and transformation capacity of c-Jun 
by forming inactive heterodimers with c-Jun (16). Thus, 
JunB initially was considered to function as a tumor 
suppressor (17,18). However, accumulating evidence 
suggests differential functions of JunB protein. For 
instance, JunB can substitute for c-Jun loss in mouse 
development and cell proliferation (19). Also, JunB 
transcriptionally regulates cyclin A, suggesting a cell cycle 

promoting function (20). Although transgenic expression 
of JunB inhibited proliferation and transformation in 
B (but not in T). lymphocytes, transformed B-cells 
eventually escaped from these inhibitory effects (21). As 
mentioned above, a casual association between AP-1 
transcription factors and CD30 expression has been 
established, and therefore, the biologic activities of AP-1 
transcription factors may be mediated, in part, through 
CD30 signaling in ALCL as described below. However, 
CD30-independent activities of AP-1 transcription 
factors do exist and seem to significantly contribute 
to uncontrolled cell cycle progression and tumor cell 
proliferation in ALK+ ALCL. For instance, cJun has been 
shown to be highly phosphorylated/activated in NPM-
ALK+ ALCL because NPM-ALK physically binds to 
and phosphorylates/activates JNK kinase that, in turn, 
phosphorylates c-Jun (22). Phosphorylated (activated). 
cJun protein further increases its own gene transcription 
through increased DNA binding affinity to AP-1 sites of 
the c-Jun gene promoter, thus establishing a positive 
feedback loop. As a result, highly activated c-Jun leads 
to uncontrolled cell cycle progression mainly through 
repression of its transcriptional target, the cyclin-
dependent kinase (CDK). inhibitor p21, but also through 
regulation of other cell cycle –associated proteins (22).

3.2. The JunB/CD30 axis in ALK+ ALCL
A line of evidence suggests that an active JunB/

CD30 axis, partly controlled by the NPM-ALK oncogenic 
kinase, operates in ALK+ ALCL. Staber et al (23). has 
shown that JunB expression is regulated via ERK1/2 at 
the transcriptional level and this is thought to be NPM-
ALK  -  dependent in ALCL. Furthermore, in a recent 
study, Watanabe and colleagues identified Ets1 as the 
transcriptional factor that mediates ERK1/2-dependent 
regulation of JunB in ALK+ ALCL (24). In addition, 
NPM-(.).ALK upregulates JunB at the translational level 
through the mTOR pathway (23), which is highly activated 
in ALK+ ALCL (25). Of note, JunB gene amplification or 
gains of its chromosomal locus have been also reported 
in a subset of CD30+ cutaneous lymphomas (26). and 
classical Hodgkin lymphoma using comparative genomic 
hybridization methods (27). Therefore, it seems that 
multiple mechanisms at the genetic, transcriptional and 
translational level orchestrate JunB overexpression in 
ALK+ ALCL. The function of these multiple mechanisms 
resulting in JunB overexpression explains why JunB 
protein is constitutively expressed in all ALK+ ALCL 
tumors (10).

The biologic effects of JunB have been 
investigated in NPM-ALK+ ALCL. Based on JunB gene 
silencing experiments, our recently published data 
show that JunB contributed to uncontrolled cell cycle 
progression at G1-S and G2 through upregulation of 
cyclins A, D2 and D3 and downregulation of cyclin-
dependent kinase (CDK). inhibitors p14 and p21 but not 
p27 (Figure 1). Interestingly, knocking down both JunB 
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and c-Jun simultaneously resulted in significantly lower 
colony formation than that observed after silencing of 
either JunB, or c-Jun gene alone suggesting that both 
AP-1 family members contribute to cell growth and 
proliferation of ALK+ ALCL cells. Therefore, it seems that 
JunB plays an oncogenic role, parallel of c-Jun in NPM-
ALK+ ALCL. Furthermore, JunB overexpression seems 
to confer resistance to chemotherapy in NPM-ALK+ 
ALCL cells (28).

3.3. CD30 contributes to cell cycle deregulation 
in ALK+ ALCL

Although the transcriptional control of JunB on 
CD30 gene expression has been well established,(12,13). 
the potential role of CD30 protein in mediating oncogenic 
functions in NPM-ALK+ ALCL has been studied only 
recently (28). Knocking down CD30 gene resulted in a 
substantial decrease in cell growth associated with G1-S 
and, at a lesser degree, with G2-M cell cycle arrest. As 
for JunB, the effects on cell cycle were associated with 
upregulation of the same CDK inhibitors, p14 and p21, 
but not p27. Notably, AP-1 activity also was impaired 

following CD30 gene silencing (28). Interestingly, 
treatment with a neutralizing, non-conjugated anti-CD30 
antibody (SGN-30), resulted in a concentration-dependent 
upregulation of CDK inhibitors p14 and p21 but not p27 
associated with a significant decrease in S-phase of 
cell cycle. In addition to cell cycle changes, treatment of 
ALK+ ALCL cells with anti-CD30 antibodies resulted in 
apoptosis, as shown by several studies (28,29).

Based on its transcriptional activities, the 
oncogenic functions of JunB can be either CD30-
dependent, as supported by the recently published data 
study showing common mediators of cell cycle regulation 
(p14, p21) (28), or CD30-independent (i.e. cyclins). Either 
way, the JunB/CD30 axis substantially contributes to cell 
cycle deregulation in ALK+ ALCL.

3.4. The CD30 receptor as a therapeutic target
As CD30 expression is restricted to distinct 

types of lymphomas, such as ALCL and classical HL, 
CD30 receptor has been a very attractive target for new 
therapeutic approaches in these neoplasms through 

Figure 1. Based on several studies (see text), JunB seems to operate as an oncogene in the context of ALK+ ALCL and possibly other CD30+ lymphomas. 
JunB overexpression in ALK+ ALCL may be the result of gene amplification and NPM-ALK - associated mechanisms such as regulation of its transcription 
via ERK1-2/Ets1 or translation through PI3K/AKT/mTOR. JunB, in turn, interacts with the CD30 gene promoter leading to CD30 receptor upregulation. 
Activation of CD30 signaling may contribute to cell proliferation through cell cycle deregulation (not shown). In addition, JunB, as an AP-1 transcription 
factor might directly regulate cyclins, and CDK inhibitors also resulting in uncontrolled cell cycle progression. Therefore, an active JunB/CD30 axis seems 
to exist in ALK+ ALCL that may contribute to tumor cell proliferation and oncogenesis. Brentuximab vedotin (SGN-35) that targets the CD30 receptor is an 
cAC10 monoclonal antibody, which is conjugated with MMAE via a specific linker. Following binding of SGN-35 with the CD30 receptor, is internalization 
into the cytoplasm is mediated with clathrin-coated cytoplasmic vesicles. The lysosomal proteolytic enzymes release the active agent MMAE. As a result, 
MMAE is free to act by binding to mictotubules during mitosis, thus preventing duplication of the neoplastic cell. In addition, free MMAE is released to 
the tumor cell microenvironment thus expanding the cytotoxicity to inflammatory cells such as reactive B and T lymphocytes, antigen presenting cells 
(APC) and macrophages.



CD30 and p53 in ALCL

	 64� © 1996-2016

development of anti-CD30 antibodies during the last 
decade. The rationale behind the use of anti-CD30 
antibodies initially was that specific binding of an 
anti-CD30 antibody to CD30 receptor would lead to 
TRAF2 degradation, thus avoiding activation of NFκB. 
However, it is now evident that the therapeutic results 
of the CD30-targeted approaches largely depend on the 
specific regimens tested. For instance, targeting CD30 
receptor with the naked anti-CD30 antibody SGN‑30 
(Seattle Genetics, Bothell, WA). did not result in good 
clinical responses in relapsing ALCL and classical HL 
or other CD30+ lymphomas, besides the promising 
results in preclinical studies (29-33). By contrast, the 
development of the ADC (Antibody-Drug Conjugate). 
brentuximab vedotin (SGN-35), which also targets the 
CD30 receptor but it’s conjugated with a therapeutic 
agent showed significant tumor regression in up to 
86% of patients with relapsed or refractory classical HL 
and ALCL lymphomas in the initial phase 1 trial (34). 
The mechanism of action of the clinically successful 
brentuximab vedotin is rather simple (35). (Figure  1). 
The SGN-35 is an cAC10 monoclonal antibody (IgG1), 
which is chemically conjugated through the sulfhydryl 
groups in cysteine residues with the therapeutic agent 
microtubule polymerization monomethylauristatin E 
(MMAE, 2-8 molecules of the drug) via a specific linker. 
Following specific binding of SGN-35 to the CD30 
receptor, the antibody/receptor complex is internalized 
by clathrin-mediated endocytosis. Following clathrin 
release that is recirculated to the cell surface, the 
uncoated pits containing the internalized ADC are joined 
to the lysosomes where cathepsin cleaves the citroulin-
valine dipeptides of the specific linker, thus releasing 
the active agent MMAE. As a result, MMAE is free to 
act by binding to tubulin during mitosis, thus preventing 
its polymerization and ultimately blocking duplication of 
the neoplastic cell. In addition, free MMAE is released 
to the tumor cell microenvironment thus expanding the 
cytotoxicity to inflammatory cells such as reactive B 
and T lymphocytes, antigen presenting cells (APC) and 
macrophages (Figure 1) (35).

A number of previous clinical trials have 
shown good response rates for brentuximab vedotin in 
classical HL, either as a single agent or in combination 
with standard chemotherapeutic agents, such as 
ABVD. In addition, brentuximab vedotin is safe and 
effective, not only after failure of an autologous stem cell 
transplantation, but, more importantly, after allogeneic 
stem cell transplantation, or as a bridge to an allogeneic 
stem cell transplantation (34,36-39). Several clinical 
trials of brentuximab vedotin included a sizable subset 
of patients with ALCL (34,40-43). In one of the largest 
studies of 58 patients with relapsed, or refractory ALCL 
treated with brentuximab vedotin, 50  patients (86%). 
achieved an objective response and 33 patients (57%). 
achieved a complete remission (CR). The median 
durations of overall response and CR were 12.6. and 

13.2. months, respectively (41). Similar or even better 
responses were observed in the group of elderly ALCL 
patients (>60  years). treated with brentuximab vedotin 
in another study (42). Brentuximab vedotin, either 
as a single agent, or in combination with standard 
chemotherapy has been recently tested in CD30+ 
peripheral T-cell lymphomas (PTCL).(44,45), other than 
ALCL. Moreover, ongoing clinical trials are currently 
investigating the efficacy of CD30-targeted therapy in 
other CD30+ hematologic malignancies, such as CD30+ 
diffuse large B-cell lymphomas (DLBCL), and the results 
are expected to be published soon.

4. THE P53 TUMOR SUPPRESSOR PATHWAY

The central role of p53 in cancer development 
reflects the importance of cellular functions regulated by 
p53 (46). p53 is a transcription factor. Upon stimulation 
by a variety of cellular stress conditions including 
DNA damage, inappropriate growth promoting signals 
regulated by oncogenes, hypoxia and various metabolic 
alterations, p53 is tetramerized, and, mainly through its 
transcriptional activities, orchestrates a wide spectrum of 
cellular responses including activation of DNA repairing 
mechanisms, modifications of cellular metabolism, cell 
cycle arrest, autophagy and cellular senescence, or 
apoptosis induction (46).

An especially important transcriptional target 
of p53 for influencing the cell cycle is p21  (46). Also, 
p21 upregulation is usually, but not always, observed 
during cellular senescence. However, the executive 
components of cellular senescence pathways are not fully 
understood (47). p53-induced apoptosis can be mediated 
by transcriptional mechanisms involving upregulation of 
the pro-apoptotic mitochondrial protein Bax, members 
of the pro-apoptotic BH3-only protein family, including 
Puma and Noxa, or upregulation of death receptors of 
the extrinsic apoptotic pathway including FAS (CD95). 
and Death receptor 5 (DR5, known also as TRAIL-R2 
or KILLER), as well as by mechanisms independent of 
transcription involving translocation of p53 protein to the 
mitochondria (48).

p53 can also affect the metabolism (49). 
The Warburg phenomenon, the preferential extraction 
of energy by cancer cells through glycolysis, was 
recently partially attributed to the inactivation of p53 
and downregulation of its downstream transcriptional 
target SCO2 (synthesis of cytochrome c oxidase 2) (50). 
Also, non-cell autonomous functions of p53 involving 
angiogenesis through transcriptional regulation of 
hypoxia-inducible factor (HIF). seem to be important for 
cancer biology (51).

4.1. Regulation of p53
The half life of p53 protein is less than half 

an hour and its stability is determined mainly by the 
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rate of degradation (Figure 2) (46). The degradation of 
p53 is mainly regulated by the murine double minute 2 
product (MDM2). that acts as an E3 p53-specific ubiquitin 
ligase targeting p53 protein for proteosome-mediated 
degradation (46,52). MDM2, in addition of its ubiquitin 
ligase activity, blocks the transactivation activity of p53 
by binding the p53 transactivation domain and facilitates, 
through its nuclear export signal, the export of p53 to 

the cytoplasm towards proteosome degradation (46,52). 
MDM2 is, also, a transcriptional target of p53, establishing 
in this way an autoregulatory loop (46,52). Also, MDMX 
(or MDM4). is a potent inhibitor of p53 transactivation 
activity by blocking the p53 transactivation domain, 
without affecting p53 protein levels (46,52). In addition 
to ubiquitylation, a number of protein modifications 
including acetylation, sumoylation, neddylation, and 
phorphorylation are involved in p53 regulation (53). 
These phosphorylations were shown in vitro to stabilize 
and increase the activity of p53 protein inhibiting its 
interaction with MDM2 (53).

4.2. Targeted activation of p53: the 
development of nutlins

In accordance with the importance of p53 
inactivation in human cancer, intensive efforts and a 
multitude of strategies have been employed for restoring 
p53 function in cancer cells (54). Downregulation of 
MDM2 by MDM2-specific antisense oligonuclotides, or 
rescuing the function of mutated p53 proteins though 
small molecules including PRIMA-1 or ellipticine 
represent alternative strategies (54).

Another strategy focuses on disrupting the 
MDM2-p53 protein interaction for restoring the function 
of wt p53  (55). Biochemical and genetic studies 
enabled the identification and construction of small 
molecules for specifically disrupting MDM2-p53 protein 
interaction (56). Among the more promising of these 
agents are the imidazoline derivatives called nutlins 
discovered by Vassilev and colleagues in a Roche 
research facility located at the Nutley town (Figure 2) (56). 
Nutlins penetrate freely the cell membrane and their 
potency against MDM2-p53 binding is in the range 
between 100-300 nM, with nutlin-3a being the more 
potent (56). Both, in vitro and in vivo studies showed 
that nutlins can activate the p53 pathway and inhibit 
wt-p53 cancer cell growth inducing cell cycle arrest and 
apoptosis with potency in the range of 1-3 μM (56).

In contrast, normal cells respond to nutlin-3a 
treatment mostly with reversible cell cycle arrest induced 
by activation of p53 pathway but without evidence of 
cell death (56,57). However, nutlin-3a-induced cellular 
senescence mediated by p53 activation is a recent 
finding meriting further investigation (57).

4.3. The p53 pathway in ALK+ anaplastic large 
cell lymphoma

Already from the era before the discovery of 
ALK kinase, combined immunohistochemical and genetic 
studies showed that p53 is frequently expressed, but 
rarely mutated in anaplastic large cell lymphoma (ALCL). 
tumors, a phenomenon observed, also, in classical 
Hodgkin lymphoma tumors (58,59). Later studies 
confirmed that, although almost 2/3 of ALK+ ALCL tumors 
express p53 protein by immunohistochemistry at a level 

Figure  2. A) Outline of p53 regulation: Two of the most important 
regulators of p53 are the MDM2 and MDMX. MDM2 regulates the levels 
of p53 protein acting as E3 ubiquin ligase and facilitating the degradation 
of p53 from the proteosome. It also blocks p53 transactivation activity. 
In addition, MDM2 facilitates its own degradation and is a transcriptional 
target of p53. MDMX blocks the transactivation activity of p53 but does 
not seem to affect p53 protein levels. The reports about the influence of 
MDM2 on MDMX and vice versa are contradictory and it is not clear yet, 
if these effects are mediated directly, or indirectly. In addition, a variety of 
signals can modify the p53 protein influencing in this way its stability and 
activity. Only one of these signals, induced by DNA double strand brakes, 
is depicted. It involves the activation of kinases of the DNA damage 
response pathway, ATM and CHK2, and results in phosphorylation of 
serine amino acid residues at the N-terminal of the p53 protein enhancing 
p53 activation. The negative regulator of MDM2, p14/ARF, is also 
illustrated on the top. B) Mode of action of nutlin-3a: Nutlin-3a binds the 
p53-binding pocket of MDM2, blocking its interaction with the p53 protein. 
As a result, p53 is stabilized and its transactivation activity increases 
orchestrating the transcription of a large number of genes, including 
MDM2 and inducing a variety of biologic effects, mediated specifically by 
the downstream p53 pathway.
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of 10% of the tumor cells or above only 7% of the tumors 
harbor mutated (mt) p53 gene (60). Similar results were 
obtained from a more recent study employing high 
through-output genetic techniques, showing that only 
approximately 9% of ALK+, ALCL tumors and a larger 
percentage, approximately 45% of ALK-, ALCL are 
characterized by genetic alterations of p53 gene (61). 
Immunohistochemical analysis of ALK+, ALCL tumors 
provided first evidence that non-mutated p53 may retain 
some activity in ALK+ ALCL cells, since it was shown that 
higher p53 expression levels correlate with higher intrinsic 
apoptotic rate and higher expression levels of Mdm2, and 
p21, known transcriptional targets of p53 (60). However, 
definite proof that the p53 tumor suppressor pathway 
in wild type (wt).-p53 ALK+ ALCL cells is potentially 
functional was provided by a recent study employing 
nutlin-3a that disrupts the p53–Mdm2 interaction 
resulting in p53 stabilization and activation. It was shown 
that nutlin-3a-mediated activation of p53 resulted in cell-
cycle arrest and apoptosis of ALK+ ALCL cells carrying 
wild type (wt), or mutated, but partially functional (mt-pf). 
p53 (62). G1, and/or G2 cell-cycle arrest was associated 
with upregulation of the cyclin-dependent kinase 
inhibitor p21. Nutlin-3a-induced apoptotic cell death 
was accompanied by upregulation of the proapoptotic 
regulators Bax and Puma, transcriptional targets of 
p53, downregulation of the antiapoptotic regulators of 
the intrinsic apoptotic pathway Bcl-xl and survivin, and 
caspase-3 cleavage. In addition, nutlin-3a-mediated 
p53 activation targeted the extrinsic apoptotic pathway, 
resulting in upregulation of the death receptor DR-5, 
downregulation of the apoptotic inhibitor c-FlipS/L and 
synergistic cell death induction after combined treatment 
with nutlin-3a and TRAIL, or the FAS-activating antibody 
CH11 (62). Also, nutlin-3a synergized with the BH3-only 
mimetic YC-137, targeting the intrinsic apoptotic pathway, 
resulting in increased cell death of wt-p53 ALK+, ALCL 
cells (unpublished data). Nutlin-3a-induced cell death of 
ALK+, ALCL cells was depended on p53 transactivation 
activity, as well as, non transcriptional mechanisms, 
involving direct targeting of mitochondria by p53 
protein (62). Furthermore, nongenotoxic activation of p53 
induced by nutlin-3a treatment combined with genotoxic 
activation of p53 induced by classical chemotherapeutic 
agents, like doxorubicin, resulted in enhanced cytotoxicity 
against ALK+ ALCL cells harbouring wt-, mt-pf-, or 
mt-p53, and this was associated with upregulation of 
the p53 homologue, p73  (62). Collectively, these data 
showed that targeted activation of the p53 pathway 
may overcome the oncogenic signals originating from 
the NPM-ALK initiating oncogenic event, resulting in 
collapse of wt-p53 ALK+, ALCL cells. Therefore, it is 
obvious that sustained inhibition of the tumor suppressor 
pathway p53 is essential for the oncogenic phenotype of 
ALK+, ALCL cells. Indeed, in vitro mechanistic studies in 
murine embryonic fibroblastic cells (MEF). transfected 
with npm-alk and in vivo studies of lymphomagenesis 
in npm-alk transgenic mice suggest that overcoming 

cellular senescence mediated, in part by p53 activity, is 
an essential, although not adequate step towards npm-
alk-induced lymphoma development (63,64). But how is 
suppression of the p53 pathway accomplished in ALK+ 
ALCL cells? Studies of other types of tumors show that 
additional genetic alterations involving the p53 pathway, 
including MDM2, or MDMX amplification may contribute 
to fuctional inactivation of p53  (52). Such genetic 
alterations have not been studied in detail in ALK+ ALCL 
tumors. However, recent studies suggest that NPM-ALK 
may, indirectly, induce p53 activity suppression through 
MDM2 stabilization, JNK and PI3K activation, or through 
mechanisms involving the p16/Retinoblastoma pathway, 
although the exact mechanism remains elusive (63-65).

Taken together, these preclinical studies suggest 
that targeted activation of the p53 tumor suppression 
pathway seems a reasonable therapeutic strategy for 
patients with ALK+ ALCL. Clinical trials of p53 targeting 
agents are already in development for various types of 
malignancies, including lymphomas (66). It is probable 
that agents like nutlin-3a that disrupt the p53–mdm2 
interaction may become part of more effective and less 
toxic combination therapies including other biologic, 
or classical chemotherapeutic agents for ALK+ ALCL 
patients.
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