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1. ABSTRACT

Probiotics are unique bacteria that offer 
several therapeutic benefits to human beings when 
administered in optimum amounts. Probiotics are 
able to produce antimicrobial substances, which 
stimulate the body’s immune responses. Here, we 
review in detail the anti-infective peptides derived from 
probiotics and their potential immunomodulatory and 
anti-inflammatory activities, including a major role in 
cross-talk between probiotics and gut microbiota under 
adverse conditions. Insights from the engineered cell 
surface of probiotics may provide novel anti-infective 
therapy by heterologous expression of receptor 
peptides of bacterial toxins. It may be possible to 
use antigenic peptides from viral pathogens as live 
vaccines. Another possibility is to generate antiviral 
peptides that bind directly to virus particles, while some 
peptides exert anti-inflammatory and anticancer effects. 
Some extracellular polymeric substances might serve 
as anti-infective peptides. These avenues of treatment 
have remained largely unexplored to date, despite their 
potential in generating powerful anti-inflammatory and 
anti-infective products.

2. INTRODUCTION

It is universally accepted that some antimicrobial 
peptides, such as bacteriocins, which are derived 
from lactic acid bacteria (LAB), may be a potential 
food preservative as they inhibit target organisms. 
The application of bacteriocins and their effectiveness 
has been described in detail in several review articles, 
and their synthesis and mode of action are also well 
described (1-4). The application of antimicrobial/
anti-infective peptides depends upon the chemical 
composition of peptides and types of host (5).
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Dynamic applications of probiotics has been 
extensively explored in conferring several health 
benefits, such as maintaining gut homeostasis, reducing 
inflammation, improving immunity, as well as antibacterial, 
antiviral and anticancer properties. Indeed, it has been 
noted that extracellular peptides produced by probiotics 
are important in controlling a number of acute or chronic 
infections.

The perception of peptide promiscuity, where 
multiple functions are associated with a single peptide, is 
currently gaining ground (6). For example, endogenous 
anti-infective peptides, derived from potential probiotics, 
have also been reported to serve as immunomodulators 
of the cellular immune response. Strategies like 
re-engineering of the probiotic cell surface with 
heterologous expression of new sugars and proteins are 
necessary to increase the viability and stability of anti-
infective peptides derived from probiotics in the gut.

Furthermore, self-assembling strategies are 
important phenomena that may stabilize the peptide 
molecules in harsh conditions like high salt and acidic 
environment. In the self-assembling strategy, several 
weak interactions between molecules or atoms 
forming a complex supramolecular architecture may 
play a fundamental role (7). This binding has a strong 
dependency on balancing the forces of attraction and 
repulsion between the molecular building blocks that 
form supramolecular structures (8,9). These non-
covalent bonds, including Van der Waals, electrostatic 
and hydrophobic interactions, as well as hydrogen and 
coordinate bonds, are formed between the assembled 
molecules and the substrate surface, and also between 
the molecules in the adjacent layers.
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With the advances in peptide research, novel 
strategies may thus evolve to make them stable for 
longer periods. Attempts have also been made to design 
and develop potential receptors for bacterial exotoxin(s), 
such as cholera toxin and shigella toxin, among many 
others (10). Instead of binding to the target region of 
epithelial cells, exotoxin(s) with the respective receptor 
peptide(s) may be captured. Thus, probiotics are very 
promising in therapeutic applications with re-engineered 
anti-infective peptides.

3. GUT HOMEOSTASIS

The human gastro-intestinal tract (GIT) consists 
of a complex community of microorganisms with highest 
density of natural bacterial population among other body 
parts. Bacterial density in the colon ranges from 1011 ml-1 
to 1012 ml-1 content (11). The predominant gut bacterial 
phylotypes belong to two divisions — the Bacteroidetes 
(48%) and the Firmicutes (51%). The residual 
phylotypes are distributed among the Proteobacteria, 
Verrucomicrobia, Fusobacteria, Cyanobacteria, and 
Spirochaetes (12). Interestingly, the balance between the 
two major phylotypes, Bacteroidetes and Firmicutes, in 
the gut bacterial community, influences host health. Shifts 
or imbalance in the composition of the two are associated 
with multiple pathogeneses, including diabetes, obesity, 
bowel diseases, chronic inflammation and gastrointestinal 
cancer, as well as stress and autism. Such imbalances 
are often brought about by diet or usage of antimicrobials.

Gut bacteria may also afford an efficient 
protective barrier against different pathogens, through 
a phenomenon known as colonization resistance (13). 
Fulfillment of very important physiological functions 
like the development of the digestive system, immune 
system maturation and antigen tolerance are dependent 
on the interactions between commensal bacterial 
species and the host (14). Recognition of commensal 
microflora by toll-like receptors is required for intestinal 
homeostasis (15). In the GIT, certain antimicrobial 
peptides (AMPs) have been identified as essential 
molecules for the maintenance of intestinal barrier and 
immune homeostasis. Most of the human defensin 
peptides (including cathelicidin, LL-37) are expressed 
in gut mucosa, such peptides are also known to be 
expressed in the paneth cells in the small intestine or 
epithelia of gastrointestinal tissues, stomach, small 
intestine and colon (16). Some defensin molecules are 
also released upon proteolytic degradation by enzymes 
like trypsin, chymotrypsin etc.  (18). In addition to these 
AMPs of human origin found in the GIT, another class of 
AMPs has been identified as derived from gut microflora. 
The molecular mechanisms by which the inhabitant 
microbial community inhibits the development of invading 
microbes remain obscure, but there is increasing 
evidence that direct microbe-microbe interactions could 
play a critical role in this specific process (19).

Gut microbiota have several beneficial aspects 
to health in different ways but the imbalances in this 
community, dysbiosis can poses a threat to host health. 
In this context, probiotics can restore the balance once 
again. They are produced by bacteria for the fulfillment 
of the defense mechanism. The common beneficial 
features of antibacterial peptides include being nontoxic 
to humans and the possession of specific antibacterial 
activity. These peptides have recently been extensively 
used as food preservatives, especially those produced 
by LABs (18). However, LABs are not the only species of 
probiotics that produce antimicrobial peptides. There are 
some other species of Bacillus and Bifidobacteria that are 
endowed with the same ability to produce AMPs, but two 
genera, Lactobacillus and Bifidobacteria, constitute the 
majority of the probiotics (20). Antimicrobial peptides are 
produced exclusively by probiotics, and so their impact 
on gut homeostasis is essential in restricting pathogen 
numbers in the GIT.

4. EVIDENCE OF EFFECTIVENESS

Antibacterial peptides, probiotic characteristics 
and biopreservative efficacy of Bacillus species have 
been studied for several years. The antibacterial 
compounds from B. subtilis and B. licheniformis strains 
exhibited the highest inhibitory activity against M. luteus 
ATCC 9341. Peptides whose isolation or synthesis is pH 
dependent but stable in a wide pH range (4.0.–10.0.) 
have found applicability in controlling spoilage of diverse 
acidic or alkaline fermented foods. An example of the 
commercial use of such peptides is nisin, a bacteriocin 
that acts in acidic conditions and is practically insoluble at 
pH 8.0. Since there have been claims that many Bacillus 
species are probiotic in nature, it is vital to characterize 
these organisms for their gastrointestinal persistence 
before they are prescribed as probiotic. To be finally 
prescribed as a potential probiotic, the bacterial culture 
must pass the test of tolerance to both acid and bile, 
which would permit survival and growth in the adverse 
conditions encountered in the gut, before conferring a 
beneficial health effect (21). A few Bacillus strains have 
shown tolerance to a high acidic condition at pH  3.0. 
Among the strains capable of producing bacteriocins 
that would have application as a bio-preservative, there 
are some B. subtilis strains and the Ec1 and lactic acid 
bacterial (LAB) strains (22).

The majority of bacteriocins have been 
discovered so far and summarized in the Bactibase 
database, a few of the representative structures are 
shown in Figure  1. The antimicrobial activities of 
bacteriocins E 50–52 and B 602 against antibiotic-
resistant strains involved in nosocomial infections 
were studied in detail  (23). The bacteriocin-producing 
strain, Enterococcus faecium, was isolated from the 
cecum of a Russian broiler chicken. Synthesis of the 
matching bacteriocin E 50–52 was accomplished by 
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growing the isolate in Brucella broth at pH 6.8.–7.2. The 
other bacteriocin, B 602, produced by Paenibacillus 
polymyxa B 602, was also isolated from a Russian broiler 
chicken’s cecum. Based on multiple sequence alignment 
analyses, these peptides were assigned as pediocin-like 
bacteriocins or class IIa bacteriocins.

Bacteriocins E50–52 and B 602 were 
shown to possess a wider activity spectrum against 
both Gram-positive (S. aureus) and Gram-negative 
bacteria (Acinetobacter baumannii, Citrobacter freundii, 
Escherichia coli, Klebsiella pneumoniae, Pseudomonas 
aeruginosa, and Proteus spp.), compared to the previously 
characterized class  IIa bacteriocins. Additionally, the 
potency of these peptides was tested against 10 MRSA 
isolates with the MDR phenotype (resistant to several 
classes of antibiotics, such as beta-lactams (oxacillin), 
aminoglycosides (gentamicin), fluoroquinolones 
(ciprofloxacin), tetracyclines (doxycycline), erythromycin, 
clindamycin, chloramphenicol, and rifampicin). The 
MRSA isolates were found to be very sensitive to both B 
602 (MIC<0.0.2.5. μg/ml) and E 50–52 (MIC ranged from 
0.0.5. to 0.2. μg/ml) bacteriocins. The non-fermenting 
Gram-negative rods, A. baumannii and P. aeruginosa, 
were also found to be sensitive to B 602 (MIC: 0.0.2.5. 
µg/ml for A. baumannii; MIC range: 0.1. to 1.6. μg/ml 
for P. aeruginosa) bacteriocin. The said bacteriocins, 
B 602 and E 50-52, were also found to be effective 
against several members of Enterobacteriaceae (E. coli, 
K. pneumoniae, C. freundii, and Proteus spp.).

In another study, isolated peptides from 
L. rhamnosus were found capable of inhibiting 

the growth of a wide range of bacterial pathogens 
comprising E. coli, E. aerogenes, S. typhi, Shigella 
sp., P. vulgaris, P. aeruginosa, Serratia marcescens, S. 
aureus, K. pneumoniae, H. pylori, Campylobacter jejuni, 
Micrococcus luteus and Listeria monocytogenes (24). 
Growths of the clinical strains of Candida albicans and 
S. aureus were found to be inhibited by lectins produced by 
the probiotic strains of Lactobacillus and Bifidobacterium. 
It was reported that lectins were effective against nystatin-
resistant C. albicans strains of clinical origin. It has been 
envisaged that the presence of probiotic bacterial lectins 
results not only in preventing fungal growth in the earlier 
stage of infection (primary anti-fungal effect) but also in 
the relatively late stages of biofilm formation and colony 
lysis phase (secondary or prolonged antifungal effects). 
Acidic Bifidobacterial lectins were also shown to have 
antifungal effect at sub-cyto-agglutinating concentrations 
(from 0.0.1.–0.0.8. μg mL-1) (25).

5. STRATEGIES FOR RE-ENGINEERING 
PROBIOTIC SURFACE FOR ANTI-INFECTIVE 
THERAPY

Re-engineering the bacterial cell surface 
via recombinant technology is an acceptable 
molecular method to re-make far more potent tools for 
biotechnological or biomedical applications (Figure  2). 
The plausible cell surface-expressed proteins may have 
potential application in biotech-based industry, such 
as immobilized enzyme(s), biocatalysts, biosensors, 
and biosorptive materials; and in the biomedical sector 
they can be a good candidate for vaccine development 
or anti-cancer agents (26). In the process of vaccine 
development, the pathogen-associated antigenic part is 
required to develop the adaptive immune response in 
the cell. Hence, the expression of a pathogen-associated 
antigen on the cell surface of probiotics, with the aid of 
recombinant DNA technology, is important to improve 
immunogenicity. It is known that surface expression of 
proteins produces a multivalent display of antigens and 
so can be easily cross-linked to B-cell receptors (27). 
Surface-engineered probiotic cells open up a novel 
opportunity for delivery along with inactivated bacterium 
in different food grades or as a live bacterial vector. 
Recombinant live probiotics expressing a pathogen-
associated antigen may lead to the generation of antigens 
at the mucosal level, which will in turn greatly influence 
delivery to the APC (28).

Moreover, several probiotics are also capable of 
producing antiviral peptides. For example, the bacteriocin 
subtilosin, the antimicrobial peptide produced by Bacillus 
amyloliquefaciens, has shown remarkable activity against 
Herpes simplex virus type  1 (HSV-1) (29). There are 
several possibilities for probiotics to act as antiviral agents 
through different modes of action. Generally, probiotic 
bacteria inhibit virus attachment by directly binding to 
the host cell receptors. When probiotics adhere to the 

Figure 1. The representative structure of some anti-infective peptides from 
Lactobacillus probiotics. Subtilosin, an antimicrobial peptide including 
antiviral activity produced by Bacillus amyloliquefaciens (a); antibacterial 
peptide Curvacin A from Lactobacillus acidophilus (b); Lactococcin-G β 
from Lactococcus lactis (c) and Sakacin P from Lactobacillus sakei (d). 
The pdb files of NMR solved structures were downloaded from Bactibase 
(A database dedicated to bacteriocin). 
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epithelial surface blocking the viral attachment, they may 
also induce intestinal production of mucins. Mucins in 
turn interfere with the viral adherence to epithelial cells 
by neutralizing the viruses. All these cellular phenomena 
may finally activate CD8+ T lymphocytes to destroy 
virus-infected cells. Thus, the use of probiotics in antiviral 
therapy would be of intense interest.

Probiotics are gaining high-priority status and 
importance due to their tremendous beneficial effects 
on health and disease management. The claims are 
substantiated by various scientific reports resulting from 
clinical trials since 1999  (30). Antimicrobial peptides 

derived from probiotics in the GIT can diffuse through the 
mucus layer that finally triggers the immune cells. It was 
found that Bifidobacterium in the colon has the properties 
to mitigate inflammatory bowel disease, rheumatoid 
arthritis or lupus, irritable bowel syndrome, and infections 
by enteropathogens (31,32). The molecular signals 
generated from probiotics have the ability to activate 
several genetic cascades which modulate the expression 
level and make necessary physiological changes. These 
signals are relayed to the nucleus receptor through 
different pathways by means of mitogen-activated protein 
kinases (MAPKs), phosphatidylinositol 3-kinase (PI-3K), 
and glycogen synthase kinase-3 (GSK-3) (33).

The mining of information with respect to cellular 
receptors, which are responsible for the recognition of 
antimicrobial peptides derived from probiotic bacteria, 
is still inadequate. It can be imagined that AMPs may 
be acquainted with the Toll-like receptors (34,35) 
because TLR-2 is responsible for recognizing different 
lipoproteins (36); presumably, peptides derived from 
probiotics would also follow a similar recognition process. 
This speculation has been strengthened by a recent 
report which mentioned the possibility of the C-type lectin 
receptor (CLR) of dendritic cells (DCs) and macrophages 
recognizing several compounds of probiotic bacteria (37). 
However, future studies are indispensable to shed more 
exact light on the correct pathway for the involvement of 
other receptors specific to AMP.

Probiotics have proved their successful use in 
the treatment of inflammatory bowel disease and acute 
diarrhea. GIT associated diseases, such as inflammatory 
bowel disease (IBD) and chronic relapsing inflammatory 
disorders occur from the convergence of several 
reasons, including genetic, immunological, microbial, 
and environmental factors. The definite role of the gut 
microbiome in the etiopathogenesis of such diseases 
has been elucidated from data emanating from a number 
of clinical and genetic experiments. While all humans 
host many species of microorganisms, each human host 
has a unique make-up of these microorganisms. As a 
result of this diversity, different humans may respond 
differently to diseases and treatments. Since every 
individual has his or her unique background, designing a 
treatment contingent with probiotics may require different 
permutations of strains of probiotics, nutrients and 
nutritional supplements or a combination of the above 
with other medications or treatments, such as antibiotics 
or chemotherapy.

Novel opportunities, leading to finding effector 
molecules capable of eliciting definite responses in the 
human intestine, have been provided in the post-genomic 
era. With such advances it would be possible in the near 
future to define causes of IBD conditions and improve 
therapy by personalized intervention to restore the 
proper gut microbiome. Bacteria from the infected gut of 

Figure 2. Schematic cell surface architecture of Probiotics. The cell 
wall of lactobacilli is composed of different macromolecules together 
with techniques for the heterologous expression of cell surface proteins. 
The abbreviations are as CWP: Cell wall associated protein; PG: 
Peptidoglycan; PM: Plasma membrane; FSP: Fusion to S-layer protein; 
FMP: Fusion to membrane protein; EPS: Exopolysaccharides; TA: 
Techoic acid; AIP: Anti-infective peptides/proteins.

Figure 3. Versatile applications of anti-infective peptides derived from 
probiotics.
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Source Compound Activity Ref.

Lactobacillus sakei Sakacin G Anti‑listerial 39

Lactobacillus rhamnosus Lactocin 160 Gardnerella vaginalis 40

Streptococcus salivarius K 12 Salivaricin A and salivaricin B Infections of the human oral cavity 41

Enterococcus faecium Bacteriocin E 50–52 and 
bacteriocin B 602

Multi‑drug resistant nosocomial infections 42

Lactobacillus johnsonii Peptide extract Helicobacter pylori 43

Lactobacillus casei Peptide extract Helicobacter pylori 44

Lactobacillus gasseri Peptide extract Helicobacter pylori 45

Lactobacillus acidophilus Peptide extract Helicobacter pylori 46

Lactobacillus amylovorus Peptide extract Helicobacter pylori 47

Bifidobacterium longum subsp. longum Serpin (AAN23973) Inhibition of pancreatic and neutrophil elastases 48

B. longum subsp. infantis CHWPR peptide Anti‑inflammatory and decreases the colonic 
permeability in IL‑10‑deficient mice

49

B. breve  Unidentified proteins Prolonged survival and maturation of DCs; 
increased IL‑10 and IL‑12 production by DCs

50

L. rhamnosus GG NPSRQERR and PDENK Antimicrobial activity 51

L. acidophilus PZ 1138, L. fermentum PZ 1162 Unidentified secreted proteins Induction of hBD2 production in epithelial cells 49

L. plantarum, L. acidophilus, L. casei and 
L. delbrueckii subsp. bulgaricus

Unidentified secreted proteins Induction of mucin secretion 47

L. rhamnosus GG Unidentified secreted proteins Increase of the production of HSP25 and HSP72 
in YAMC cells

52

L. acidophilus and L. rhamnosus Unidentified secreted proteins Increase of the chloride/hydroxyl exchange activity 
in Caco‑2 cells

53

L. rhamnosus GG p40 (homologous to gi|116493594) Growth promotion 54

L. rhamnosus GG p75 (homologous to gi|116493849) Reduction of the injuries caused by TNF‑α; 
attenuation of the TER decrease induced by 
hydrogen peroxide

55

L. rhamnosus GG Supernatant containing P40 and p75 Decrease of IL‑8 production in epithelial cells 54

L. acidophilus NCFM SlpA (YP_193101.1.) Induction of IL‑10 production in DCs; 
DC immunomodulation

54

Lactococcus Lactis Pediocin PA‑1 and Lactococcin A Antimicrobial/antifungal 55

Lactobacillus plantarum Unknown Rotaviral Infection/induces endotoxin tolerance 
capacity

56

L.acidophilus, B. adolescentis, B. bifidum Acidic and basic lectins Candida albicans and Staphylococcus aureus 57

Bifidobacterium sp. Peptides Helicobacter pylori 58

L. rhamnosus Peptides Escherichia coli, Enterobacter aerogenes, 
Salmonella typhi, Shigella sp., Proteus vulgaris, 
Pseudomonas aeruginosa, Serratia marcescens, 
Staphylococcus aureus, Klebsiella pneumoniae, 
Helicobacter pylori, Campylobacter jejuni, 
Micrococcus luteus and Listeria monocytogenes

54

Lactococcus lactis subsp. cremoris Nisin L. monocytogenes and S. aureus 59

Lactococcus lactis GI3 Lactocin GI3 L. monocytogenes and S. aureus 60

Table 1. Probiotic‑derived anti‑infective peptides

(Contd..)
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an individual can be cultured and enriched with bacteria 
constituting a healthy microbiome (38). Such an enriched 
culture used for therapy may be more effective than 
probiotics administered according to the one-size-fits-
all concept. Hence, in the context of recent knowledge, 
management of the gut microbiome by probiotics or a 
mixed culture of useful bacteria is becoming a pragmatic 
strategy in therapeutics and prophylactics to counter 
many infectious and inflammatory diseases within the 
gut.

6. CONCLUSION

Owing to the colonizing nature of probiotics in 
the GIT, they can be an effective tool in biotechnological 
applications. Antimicrobial peptides originating from 
different sources have been well studied on the basis 
of their structure-function relationship. Probiotics are 
the most important flora in the human gut, and several 
beneficial aspects have been tested, ranging from in vitro 
studies to clinical trials. However, the enumeration of 
the total molecules of probiotics has not been presented 
yet, particularly for anti-infective peptides derived from 
probiotics with multifunctional activities (Figure  3). 
Molecular information from synthesis to heterologous 
expression is inadequate. The signaling mechanisms and 
physiological changes induced by antimicrobial peptides 
in host cells are not well described. In the light of this 
discussion, a combined and urgent drive is required from 
researchers in diverse disciplines to design protocols 
to use probiotics successfully for sustainable health. 
Moreover, chemically and genetically re-engineered 
probiotics will serve as a novel tool in modern biomedical 
technology.
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