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1. ABSTRACT

Genetic variations in cancer cells are the 
underpinning for the development of resistance and failure 
of the treatment by current anticancer drugs. Thus, an ideal 
drug must overcome failure of treatment and prevents 
development of drug resistance. There are a wide variety of 
emerging, easy to prepare and cost effective group of drugs 
that are collectively called peptoids or peptidomimetics. 
These new set of drugs exhibit distinct features including 
protease resistance, are non-immunogenic, do not 
hinder functionality and backbone polarity, and can adopt 
different conformations. These drugs have shown promise 
as diagnostic and therapeutic tools in a wide variety of 
diseases. Here, we discuss the recent advancement in the 
design and synthesis of peptoids and use of these drugs in 
the diganosis and treatment of a wide number of cancers 
of the lung, prostate, and breast.

2. INTRODUCTION

Peptoids are protease resistant, achiral, and 
non-immunogenic, and without hindering functionality and 
backbone polarity, can adopt different conformations (1,2). 
Peptoids have emerged as versatile molecular tools in 
the field of biochemistry and biophysics and have been 
used in diagnosis and treatment of cancer.

Cancer is a heterogeneous disease, that 
exhibits disparate response to drugs, and substantial 
variations in long-term patient survival. Current chemo- and 
radiotherapies target the growth of neoplastic cells. A “perfect 
anti-cancer chemotherapeutic agent” still does not exist and 
certain drugs are ineffective in a large number of patients 
with cancer. Conventional chemotherapeutics exhibit limited 
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efficacy, mainly due to a variety of side effects. Therefore, 
new drugs are required that can target cancer cells without 
any off-target effect. Recently, peptoids have received 
increased attention as novel anti-cancer drugs. Peptoids 
are peptidomimetics or peptide-like molecules, which have 
shown promising effects in cancer treatment. Peptoids were 
first synthesized in the early 1990s (3,4) and have shown 
to be advantageous over traditional treatments using 
antibodies, peptides and nanoparticles because of better 
bio-distribution, tumor affinity, tumor penetration, clearance 
from the body and lower in vivo degradation. Peptoids may 
also reduce the toxic side effects of anti-cancer drugs, and 
likely can reduce the cost of cancer treatment. Peptoids (up 
to ~50 amino acids in length) contain controlled sequence 
composition and diverse side chains, and usually have 
a peptide-based backbone and N-substituted glycines 
(Figure 1). Like the alpha carbon of peptides, the side chain 
of peptoids are placed on the nitrogen atom of the amide 
group. Peptoids like PMC (2,2,5,7,8-pentamethylchroman-
6-sulphonyl) have protected guanidinopropyl amine 
monomer. These were first described by the Zuckermann 
group, and further modified by Annelise Barron  et al., to 
generate PMC, a mixed guanido/amino linear peptoid (5,6). 
However, their poor solubility resulted in low coupling 
efficiency and the extended cleavage time essential for 
the PMC group led to acid-induced degradation of the 
mixed peptoids. Sub-monomer peptoid synthesis uses 
conventional solid-phase approach (on resin beads)
(Figure  2). Introduction of both lysine-type and arginine-
type monomers within the same sequence has modeled a 
new strategy for synthesis of effective peptoids (7). Also by 
using the protocol developed by Jonathan Rothbard et al, 
new polyarginine-type peptoids have been synthesized and 
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to improve bio-molecular recognition of targets, an organic 
moiety is added to the backbone structure (8). Furthermore, 
new polymeric peptoids that spontaneously attain distinct 
supramolecular structures are effectively being used for the 
synthesis of designer drugs for the treatment of different 
diseases including cancer.

3. RECENT ADVANCEMENTS IN PEPTOID 
DESIGN AND SYNTHESIS

Variations in the secondary, tertiary, and 
random structures of peptide-like oligomers were 

designed by several groups for generating different 
landscapes of peptoid structure. These modifications 
conferred disease-specificity to the peptoids. 
Additionally, the creation of effective peptoids have 
inspired and guided protein expression, protein-protein 
interaction, and protein folding. Recently, Robertson 
et al, have successfully designed peptoid nanosheets 
which can target specific proteins and serve distinct 
functionalities (9). Computational tools have aided 
in the generation of efficient non-biological synthetic 
heteropolymeric peptoids (10,11). Every design 
utilizes the accurate force fields to understand the 

Figure 1. Chemical composition and strcutrue of various peptodids.
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complex peptoid architectures. Properly designed 
peptoids are efficiently synthesized using a solid-
phase and solution-phase approach. In solid-phase 
method, synthesis of polypeptoids up to ~50 units in 
length has shown excellent yield, and has allowed for 
incorporation of various side chains with controlled 
sequence composition (4,12). This method is further 
improved by successful incorporation of amine 
derivatives of heterocycles such as histamine, pyridine, 
and tryptamine (13). On the other hand, in solution-
phase synthesis, bromoacetylbromide is used for 
acylation reaction with the N-terminus of the peptoid 
chain. In most cases, several cycles of filtration, 
evaporation, and chromatography have been applied 
to produce reasonably large quantities of peptoids (14). 
Advancement of solution-phase synthesis method is 
achieved by “Ugi four components reaction (4-CR)” in 
which a primary amine, a carboxylic acid, an isocyanide, 
and an oxo compound react to form a dipeptoid 
backbone (15). This process generates macrocyclically 

diversified peptoid polymers of stable secondary 
structures to mimic native protein. As a result, complex 
structures consisting of long chains within a single type 
of polymer have been successfully developed to create 
helix bundles comprising of hydrophobic cores (16). 
Binding of high affinity zinc into the peptoid two-helix 
bundles has also been introduced for improvement in 
peptoidal mimicry of biological proteins (17). Therefore, 
innovative methods, computational designs, and 
synthetic approaches, have revolutionized the peptoid 
chemistry and have led to the development of more 
complicated protein-like structures targeting specific 
proteins.

4. BIOLOGICAL APPLICATIONS OF 
PEPTOIDS IN CANCER

4.1. Application of peptoids in cancer diagnosis
Peptoids have been used as a tool in 

cancer imaging and diagnosis. For example, (MRI) 

Figure 2. Schematic diagram of solid phase and solution phase peptoid synthesis.
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Figure 3. Use of peptoids in cancer diagnosis. Figure represents one of the possible usage of MRI dye tagged anti-VEGFR2 peptoids for breast cancer 
diagnosis.

Figure 4. Different biological applications of anti-cancer peptoids.

[Gd(III)-DOTA)8 dendron] added to the VEGFR2 
binding peptoid has been used in Magnetic Resonance 
Imaging of breast cancer (Figure  3) (18). Cai et al., 
2011, reported the use of a peptoid-based PET imaging 

of VEGFR overexpression in cancer diagnosis (19). 
In another study, a peptoid-based positron emission 
tomography (PET) tracer was used for imaging of 
VEGFR expression in prostate cancer (19,20). Passos 
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et al, described the synthesis of fluorophore labeled 
peptoids using the Ugi multicomponent reaction 
and demonstrated internalization and localization of 
fluorescent peptoids in breast cancer cells (4-CR) (21). 
Because caspase-3 is increased in cancer, in situ 
monitoring of caspase-3 activity has been proposed 
as a means for cancer diagnosis (22). For detection 
and quantification of caspase-3 activity, Pérez-López 
et al desribed the use of FRET-based fluorogenic 
substrates against caspase-3 conjugated to the cell 
permeable cationic peptoids (23). Together, such 
studies establish the role of fluorescent peptoids and 
fluorescent molecule tagged peptoids as a prominent 
and promising approach in cancer diagnosis.

4.2. Application of peptoids in cancer treatment
Peptoids exhibit high bioactivity as protein 

mimics, which, in turn, can reduce the dose of anti-
oncogenic antibodies required in the treatment of 
cancer. Additionally, peptoids can also replace the use 
of small molecules developed for cancer treatment 
(Figures  4  and  5). Moreover, generation of large 
combinatorial libraries of such peptoids provide the 
options of high throughput screening and effective 
selection of the anti-oncogenic peptoids. Peptoid libraries 
are usually generated by the “split-pool” approach, which 
direct the development of ‘one-bead one compound’ 
libraries with huge diversity (24-27). Thomas Kodadek 
et al showed that cells are permeable to most peptoids. 

Figure 5. Use of peptoids in cancer therapy. A. Peptoid mediated inhibition of protein–protein interaction such as binding of peptoid with HDM2 results in 
inhibition of HDM2-p53 interaction that plays a crucial role in cancer progression. B. Peptoid mediated inhibition of ligand and receptor interaction such 
as targeting VEGF signaling by anti-VEGFR2 peptoid to halt tumor progression. C. Binding of peptoid to a nucleotide sequence including RNAs such as 
precursor of miR-21, to prevent tumor progression.
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In their work, the group applied peptoids to the biological 
systems and proved their therapeutic efficacy (28).

Many  peptoids  have been found to be 
effective, even at low doses, in the treatment of a 
broad range of cancer cell lines and multidrug resistant 
cancer cells. Cationic, amphipathic peptoids were 
shown to have a significant inhibitory effect on tumor 
growth in a human breast  cancer xenotransplantation 
model (29). In addition to these studies, homodimers, 
homotrimers, and heterodimers of peptoids have been 
shown to interact with biological targets present on 
the surface of the lung  cancer cells (30). Lee et  al, 
used a peptide-peptoid hybrid in the treatment of 
prostate  cancer  cells (31). Peptide–peptoid hybrid 
PPS1D1 has been shown to have anti-lung cancer 
activity (32). Desai et al, showed that the peptoid, 
PPS1D1, enhanced the efficacy of docetaxel in mice 
bearing H460 lung cancer xenografts (33).

Among the cell cycle regulatory proteins, the 
loss of action of the tumor suppressor protein, p53, is 
involved in oncogenic progression. Loss of regulatory 
function is largely due to mutations and the inactivation 
of the cell cycle check points controlled by wild type 
p53  (34,35). Also, in cancer cells, overexpressed 
Human Double Minute 2 (HDM2) factor binds to p53 
protein and inactivates its function leading to tumor 
aggressiveness and drug resistance. Therefore, 
Toshiaki Hara et al have used for targeting p53 
signaling network with peptoid as a treatment strategy 
by designing and optimizing oligomeric peptoids 
that target HDM2-p53 interaction (36). AKT is one of 
the most commonly activated signaling pathways in 
various types of human cancer (37). AKT is a Ser/Thr 
kinase which transduces signals from growth factors to 
downstream targets that control tumor development. 
Peptoids have been shown to be highly selective due to 
their extensive interactions with the specific substrate 
binding site (38). Peptoids have been also used for 
inhibition of angiogenesis by targeting VEGF receptor-2 
(VEGFR2) which causes reduced angiogenesis and 
hence tumor development (39). Peptoid-based cap 
groups (Cal27 CisR) that inhibit HDAC6 activity have 
shown enhanced chemosensitizing properties and led 
to reversion of the  cisplatin resistance in squamous 
carcinoma cells (40).

Targeting RNA with peptoids is a novel strategy 
in cancer treatment (41). Some of such peptoids have 
been identified by high-throughput screening of peptoid 
library. Peptoid scaffolds with RNA binding moieties have 
been used in microarrays, to screen, profile, and quantify 
their interactions with RNA-binding molecules (42,43). 
For example,  peptoid microarrays are used to identify 
specific ligand for the RNA hairpin precursor of miR-21, 
a microRNA, which is up-regulated in different forms of 
solid tumors (44).
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