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1. ABSTRACT

Cardiac allograft vasculopathy (CAV) is 
one of the most common long-term complications in 
patients following heart transplantation. Because of its 
irreversible nature, early detection is essential to impact 
progression. Thus, imaging techniques play a crucial 
role in the diagnosis and subsequent treatment. Major 
advancements in imaging and analysis are required 
to overcome the limitations of current techniques. 
Coronary angiography which is the standard method, 
presents low sensitivity in detection, especially at an 
early stage. Intravascular ultrasonography is a more 
reliable alternative but is limited to the epicardial 
vessels. Novel non-invasive techniques, such as stress 
echocardiography and nuclear imaging, have been 
introduced but not without limitations. Here, we review 
various imaging methods and associated analyses 
to improve diagnostic predictions. We discuss recent 
advances in the diagnosis of coronary artery disease 
and their potential translation in the diagnosis of CAV. 
Additionally, we present potential biomarkers that have 
been identified for CAV. Finally, we provide a discussion 
on microvessels with novel anticoagulant properties that 
are mostly identified in patients with severe CAV.

2. INTRODUCTION

Currently, over 4,500 transplants are performed 
in the World each year, with more than 2,500 being 
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conducted in the U.S. alone (1,2). The heart transplant 
procedure is the most durable therapy for patients 
suffering from end-stage heart failure (3). Unfortunately, 
the number of transplants is limited by the number of 
organs available. As a result, on average there are 
more than 4,000 patients waiting for a heart transplant 
in the U.S. at any given time (4). Overall, 112,521 heart 
transplants were reported to the International Society for 
Heart and Lung Transplantation (ISHLT) between 1982 
and June 2013. Over that period, 1-year and 5-year 
survival rates were 82% and 69%, respectively. For 
patients who had received a transplant over 2009-2013, 
the 1-year survival rate was over 86%, which suggested 
an improvement in heart transplant outcome.

Post-operative complications are still observed 
in a large number of patients (1). Cardiac allograft 
vasculopathy (CAV) is one of such complications. It 
is characterized by thickening of the intimal layer of 
coronary blood vessels in the transplanted heart. It can 
target coronary arteries, capillaries, and occasionally 
veins. CAV is found in 7.8% of the patients by the end of 
the 1st year, 30% by the end of the 5th year, and 50% of 
patients by the end of the 10th year post-transplant (5). 
During the development of CAV, it appears that smooth 
muscle cell proliferation occurs from the media to the 
intima layer. This is followed by the development of lipid-
laden foam cells and perivascular fibrosis (6). It results 
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in progressive concentric fibrous intimal hyperplasia, 
meaning that the vessel wall is thickened homogenously 
around its entire circumference (Figure 1). The disease 
is diffused as it progressively spreads along the length 
of the vessels. A  functional decrease of blood flow 
due to decreased caliber of the affected vessels leads 
to ischemia which can be followed by ventricular 
arrhythmias, congestive heart failure, or sudden cardiac 
death (7-9). CAV accounts for 3% of deaths within 1 year 
after transplantation and 10% of deaths between 1 to 
5 years (10). Risk factors for the disease are numerous 
as any phenomenon causing endothelial injury can 
potentially lead to CAV. There is extensive evidence 
that immunological factors, such as histocompatibility 
mismatch, acute rejection episodes and chronic 
inflammation, play a major role in the development of 
CAV (11,12). Additionally, non-immunological factors, 
including donor and recipient sex and age, as well as 
their history of diabetes and hypertension, have also 
been identified as risk factors (13,14).

Since CAV is irreversible, the ultimate recourse 
for a patient is often re-transplantation. The lack of 
organ donors and lower survival rate after a second 
transplant, however, are obvious limitations for this 
option (15,16). Thus, the focus of treatments remains 
mainly on prevention, and early detection of CAV. 
Before transplantation, significant effort is required 
during storage and transportation of the donor organ to 
reduce the cold ischemic time and subsequently reduce 
tissue damage  (3). Immunosuppressive drugs, such as 
cyclosporine, are then prescribed to the patients following 
heart transplantation to prevent rejection and subsequent 
risk of CAV. Unfortunately, such immunosuppressive 
drugs commonly lead to hyperlipidemia that is also 
known to be a risk factor for CAV. Thus, lipid-lowering 
drugs, such as statins, are also prescribed (17). After 
CAV is diagnosed in a patient, pharmacological treatment 
options become limited. Various statins, specifically 

3-hydroxy-3-methylglutaryl coenzyme A reductase 
inhibitors, have been shown to slow the progression 
of the disease and are generally prescribed (18,19). 
Procedures such as percutaneous coronary interventions, 
coronary artery bypass grafting, transmyocardial laser 
revascularization, and heparin-induced/mediated 
extracorporeal low density lipoprotein plasmapheresis 
are considered in severe cases when re-transplantation 
is not possible. There are conflicting reports, however, on 
their outcome and long-term efficacy (20-23). Drugs such 
as oral L-arginine, antioxidants such as vitamins C and E, 
and flavonoids have been shown to have the potential to 
restore endothelial function in allografts, although a large 
trial is still required to validate their efficacy in reducing 
the development and progression of CAV (24-26).

Cardiac denervation at the time of heart 
transplantation usually prevents transplant patients from 
experiencing angina, which is an important warning 
sign for coronary heart disease. Hence, imaging 
techniques play a crucial role to detect the disease as 
early as possible in order to prevent fatal outcomes. 
Reviews on commonly used imaging techniques, 
and non-invasive techniques with high potentials are 
available in the literature (27, 28). Here, we provide 
a review of the imaging techniques (established as 
well as emerging) and speculate on the future of CAV 
diagnosis. In Section 2, we introduce angiography 
and intravascular ultrasonography  (IVUS), the two 
most commonly used techniques in heart transplant 
centers for CAV diagnosis. The invasive nature of these 
methods, as well as the less than optimal sensitivity, 
have encouraged the development of alternative 
imaging techniques. These emerging techniques are 
presented in Section 3. We discuss dobutamine stress 
echocardiography (DSE) and single-photon emission 
computed tomography (SPECT) that have been greatly 
evaluated, and also include more recent methods 
such as computed tomography angiography  (CTA), 

Figure 1. Cardiac allograft vasculopathy. LEFT. Eccentric plaque showing the proliferative intima in the lower half of an epicardial coronary artery. 
(H&E, x10). RIGHT. The proliferative intima in this case is formed of mature extracellular matrix rich in glycosaminoglycans (green). The internal elastic 
lamina (black) is intact, and the media of the vessel is also intact (dark red). (Movat pentachrome, x10). Illustration reproduced with permission from 
www.e-heart.org.
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cardiovascular magnetic resonance  (CMR) and optical 
coherence tomography (OCT). The combined use of 
angiography and intravascular ultrasonography, as 
well as the combined use of angiography and optical 
coherence tomography, have also been evaluated for 
CAV diagnosis and are briefly included in the discussion. 
These emerging methods present limitations which leave 
room for innovative techniques that can be established 
in the future. In Section 4, we propose the translation 
of the innovations in the diagnosis of coronary artery 
disease (CAD) to CAV diagnosis. For instance, hybrid 
methods based on imaging and computational analysis, 
or computed tomography and scaling power laws, have 
recently shown potential for CAD diagnosis, and could be 
adopted for CAV as well. Finally, we speculate in Section 
5 that there might be possibilities for CAV diagnosis based 
on immunological factors. We review the biomarkers that 
have been identified for CAV, and provide an overview 
of a specific type of microvessel (referred to as capiole) 
that presents interesting anticoagulant properties and 
phenotypic characteristics of capillaries and small 
arterioles, mainly identified in patients with severe CAV. 
These structures may represent new targets for diagnosis 
and treatment of microvascular CAV.

3. COMMON IMAGING TECHNIQUES FOR THE 
DIAGNOSIS OF CAV

Coronary angiography is the standard technique 
used in all transplant centers for CAV diagnosis. 
Intravascular ultrasonography is slowly gaining popularity 
and is now used in combination with angiography in many 
centers. The International Society for Heart and Lung 
Transplantation guidelines for the care of heart transplant 
recipients classify angiography alone for the assessment 
of CAV as class I with level of evidence C, and the use 
of IVUS in conjunction with coronary angiography as 
class II with level of evidence B (29).

3.1. Coronary angiography
Coronary angiography is the method of choice 

at most cardiac transplant centers to detect CAV (30). 
The sensitivity of the method is estimated to be 10-20% 
during year 1, and 35-50% between years 1 and 5 post-
transplant (27).

To perform a coronary angiography, a small 
catheter is inserted into an artery of the leg, arm, or neck. 
The catheter is then guided until it reaches the heart. 
A contrast iodine dye is injected using the inserted catheter 
and X-ray pictures of the heart, called angiograms, are 
taken. The injected dye, which is based on a chemical 
modification of a 2,4,6-tri-iodinated benzene ring, 
enhances the visibility of the coronary blood vessels in 
the X-ray images (31).

A baseline angiography is commonly performed 
several weeks after transplantation, while follow-up 
is performed annually or biannually depending on the 

protocol of the transplant center. The lumens of the 
targeted vessels, filled with the contrast dye, appear 
as distinct dark branches on the X-Ray (Figure 2). It is 
then possible to observe narrowing in a blood vessel by 
comparison with the baseline.

Coronary angiography has several limitations. 
First, it is difficult to assess the “true” diameter from a 
single x-ray projection if the vessel lumen is not circular. 
Second, it permits assessment of vessel lumen but not 
the wall. Third, since reduction in the lumen diameter 
of the affected blood vessel does not occur initially, 
detection by angiography is only possible at a more 
advanced stage (32). Finally, since the disease is 
diffused and affects the entire length of the vessel, CAV 
can be missed if the thickening is evenly distributed 
along the length; i.e.,  a lack of reference normal 
vessel (33). As a result, concerns have been expressed 
regarding the sensitivity of the method for CAV (34). 
Many studies, mainly based on post-mortem correlation, 
have also questioned the accuracy and repeatability of 
the technique (35-39). This invasive technique is also 
prone to complications. For instance, the injection of 
contrast iodinated dye has been shown to increase 
the risk of kidney injury in patients (40). Although CO2 
can be used as a nontoxic, non-allergic, injectable, 
rapidly absorbable gas that provides a cost-effective 
alternative to iodinated contrast agents in peripheral 
vessels (41), the utilization of CO2 for coronary arteries 
is contraindicated due to generation of gas embolisms. 
Studies are currently underway to make CO2 viable 
for imaging of coronary arteries which would positively 
impact the diagnosis of CAV.

3.2. Intravascular ultrasonography
Intravascular ultrasonography is an imaging 

technique that has been introduced recently for CAV 
diagnosis. While coronary angiograms provide a 2D 
profile of the lumen of blood vessels, IVUS imaging 
allows visualization of the lumen cross-sectional area 
for observing the morphology of CAV. This is particularly 
useful, especially during earlier stages of CAV, for 
tracking the changes occurring on the intima layer. Due to 
better prognosis of CAV using IVUS, it is now becoming 
a popular method at many centers. A sensitivity of about 
50% is reported in assessing CAV during the 1st  year 
after transplantation (3).

The first step in performing IVUS is similar to 
coronary angiography, and involves inserting a catheter 
in the artery of the leg, arm, or neck. A catheter with a 
miniature ultrasound probe mounted on its tip is inserted 
and pushed until it reaches the heart, and then guided 
to the vessel of interest. The IVUS probe emits high 
ultrasound frequencies, typically centered around 
20–50 MHz. The ultrasound signal reflected back to 
the probe from the arterial wall is processed through a 
dedicated console. Using a 30 MHz probe, axial and 
lateral resolutions of approximately 150 and 250  µm, 
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respectively, are obtained. A detailed description of the 
procedure is available in (42).

During check-up, the probe is placed beyond 
the target lesion site and the ultrasound catheter is then 
withdrawn with continuous imaging, resulting in a series 
of tomographic images of the vessel wall (Figure  3). 

It is known that in a normal coronary artery, intimal 
thicknesses can be up to 0.3 mm. Thus, it is accepted 
that CAV is potentially present in a patient when the 
intimal thickness exceeds this value.

Although IVUS provides a clear advantage 
over angiography, it is currently not recommended as 

Figure 2. Coronary angiography of a proximal left anterior descending artery demonstrating distinct manifestations of cardiac allograft vasculopathy (blue 
arrows). Panels A and B show the classical angiographic appearance of CAV with multiple sequential lesions, diffuse narrowing of the coronary arteries, 
and prominent pruning of the distal vasculature (arrows). Panels C and D expose that CAV can also appear similar to typical atherosclerotic coronary 
artery disease in a native heart (arrows). Illustration reproduced with permission from (27).

Figure 3. Intravascular ultrasound frames corresponding to (A) middle left anterior descending artery, (B) proximal left anterior descending artery, and (C) 
distal left main of the same patient after 1 year of heart transplantation. Concentric thickening of the intima layer, suggesting presence of CAV, is identified. 
Illustration reproduced with permission from (27).
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a stand-alone diagnosis method, but is conducted in 
combination with angiography due to several limitations. 
First, the size of currently available IVUS catheters 
(smallest diameter about 1 mm) limits imaging only from 
proximal to mid-epicardial vessels (42). Moreover, only 
one vessel is usually targeted at a time due to difficulty 
in accessing multiple vessels with the current technology, 
which limits the sensitivity of the method (43). Finally, 
the invasive nature of the technique and the cost are 
additional shortcomings.

4. EMERGING TECHNIQUES

Due to limitations and the invasive nature of 
angiography and IVUS, numerous (mainly non-invasive) 
techniques have been developed for CAV diagnosis. 
Although these techniques are currently used mainly 
for research, they are slowly emerging as clinical 
alternatives. Dobutamine stress echocardiography (DSE) 
and single-photon emission computed tomography 
(SPECT) are the most promising candidates. Both are 
classified by the International Society for Heart and 
Lung Transplantation guidelines as class  IIa with level 
of evidence B for the assessment of CAV in patients 
who are not able to undergo an invasive procedure (29). 
The use of a clearly defined methodology and lack of 
a large study are restricting these methods from being 
widely accepted for CAV diagnosis. Additional novel 
techniques, such as computed tomographic angiography 
(CTA), cardiac magnetic resonance (CMR) and optical 
coherence tomography (OCT) along with co-registration 
using angiography and IVUS, as well as co-registration 
using angiography and optical coherence tomography 
have also been proposed. More studies are required to 
confirm their validity.

4.1. Dobutamine stress echocardiography
Stress echocardiography allows evaluation 

of myocardial function, and subsequent assessment of 
functional integrity of both the macro and micro vessels. 
Dobutamine stress echocardiography is the preferred 
stress modality in transplant patients as it has been 
shown to provide better sensitivity than exercise-based 
stress echocardiography. Sensitivity values ranging 
between 53% to 96%, and specificity values ranging from 
53% to 100% have been reported (44-53).

Dobutamine increases heart rate to mimic 
the effects of exercise to stress the heart. It is infused 
continuously into a vein, with a step-wise increase in 
concentration every 3 to 5  min. Generally, an initial 
concentration of 10  mcg/kg/min is introduced which is 
progressively increased to 20, 30, and 40 mcg/kg/min, until 
the patient attains the desired sub-maximum heart rate 
(defined as 85% of the maximum heart rate established 
for his age). Transducers that send ultrasonic sound 
waves are placed at several locations on the chest. The 
waves reflect back from the heart wall and are captured 

by the transducers that transmit them to a computer. 
Images of the heart structures are thus continuously 
recorded. A  detailed protocol to perform this technique 
can be found in reference (54).

Generally, 2D echocardiogram and M-mode 
echocardiogram are used for the diagnosis of CAV (51). 
The post-systolic strain index (PSI) is used to assess 
CAV in the imaged heart. This index is calculated based 
on various myocardial strain measurements obtained 
from the echo images using a dedicated software (55). 
End-diastole is chosen as the reference time point for 
strain calculations. The end-systolic strain esys is defined 
as the magnitude of deformation between the reference 
time point and the end of systole at aortic valve closure. 
The peak strain epeak is defined to be the highest strain 
value obtained for the radial direction (and subsequently 
the lowest strain value for the longitudinal direction). 
The post-systolic strain index is then defined as the ratio 
between [epeak – esys] and epeak. A  post-systolic strain 
index greater than 34% is prescribed by a study to identify 
patients suffering from CAV with a high sensitivity ratio of 
88% (53). The use of Doppler echography to measure 
coronary blood velocity and assess CAV has also been 
reported (56). Such echography allows measurement of 
blood flow velocity in the targeted arteries. The coronary 
flow reserve (CFR) can be calculated from the echo 
images as the maximum increase in blood flow between 
rest and stress conditions. A coronary flow reserve value 
lower than 2.9 has been found to indicate CAV with high 
sensitivity (56). A  limitation of coronary flow reserve is 
that it cannot differentiate between large coronary artery 
disease and microcirculation.

Dobutamine stress echocardiography has 
been shown to be non-suitable for early detection of 
CAV (46). A  recent study concluded that the technique 
had an inadequate sensitivity to detect CAV in the first 
five years after transplant (57). Generally, it is accepted 
that dobutamine stress echocardiography provides 
preliminary assessments that could assess the need for 
an invasive follow-up (58).

4.2. Single-photon emission computed 
tomography

Single-photon emission computed tomography 
is a nuclear imaging technique that uses gamma 
rays. Sensitivity values ranging from 21% to 92% and 
specificity values ranging from 55% to 100% have been 
reported by various studies for diagnosis of CAV, with 
better values in more recent studies (59-66). It can be 
noted that the use of positron emission tomography 
(PET), another nuclear imaging technique has also been 
assessed for the diagnosis of CAV by few studies with 
positive outcomes (67-69).

The procedure for single-photon emission 
computed tomography resembles that of the dobutamine 
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stress echocardiography. A  radioactive tracer is first 
injected into the blood. This tracer emits gamma rays 
that are picked up by a single-photon emission computed 
tomography camera and converted into 2D pictures for 
visualizing coronary blood flow. The position and angle 
of the camera are varied to visualize various vessels. 
On the pictures, areas with good blood flow will appear 
lighter in color whereas areas with poor blood flow will 
have darker color. The American Society for Nuclear 
Cardiology provides a comprehensive guideline for the 
use of this technique (70).

It has been shown that there is a correlation 
between CAV and abnormal blood flow (67). This 
correlation is used in single-photon emission computed 
tomography (SPECT) to diagnose CAV based on the 
observation of the blood flow in various vessels. The 
myocardial perfusion reserve (MPR) is the index used 
to assess CAV, which is calculated at rest and during 
stress test. The myocardial perfusion reserve is defined 
as the ratio between the myocardial blood flow velocity 
during stress and the resting myocardial blood flow 
velocity  (69). It has been shown that the myocardial 
perfusion reserve is inversely proportional to intima 
thickness. Hence, a decrease of myocardial perfusion 
reserve over time compared to a baseline is viewed as an 
indicator of CAV development and/or progression. The 
use of single-photon emission computed tomography 
(SPECT) for CAV diagnosis is limited primarily due to the 
risks associated with frequent exposure to nuclear dose, 
and the cost of the test.

4.3. Additional promising techniques
Additional diagnostic methods have emerged 

although they currently lack full assessment for CAV. 
Coronary computed tomography angiography is a 
major example (71). It is the only one classified in the 
International Society for Heart and Lung Transplantation 
guidelines (as class IIb with level of evidence C) among 
all the methods listed in this section. Sensitivity values 

ranging from 70% to 100% and specificity values varying 
between 67% and 97% have been reported by various 
studies (72–78). It combines the injection of iodine-rich 
contrast and computed tomography scanning to provide a 
high resolution 3D view of the coronary vessels. Variation 
of position and angle allow visualization of cross sectional 
areas along the length of the vessels, which is very useful 
for CAV diagnosis (Figure 4). The major limitations that 
have been identified so far are the risks due to exposure 
to radiation, the risks associated with the use of iodine-
rich contrast in patients with renal complications, and the 
resolution limits to vessels with diameters greater than 
1.5 mm (74,79).

Cardiovascular magnetic resonance has been 
proposed by several studies to assess CAV (80–83). 
Sensitivity values ranging between 67% and 100%, with 
specificity values of 63% to 85% have been reported 
in the aforementioned studies. The method consists of 
injecting gadolinium contrast, and conducting magnetic 
resonance imaging on the patient (Figure  5). Various 
parameters have been suggested to access CAV from 
these images, such as the myocardial perfusion reserve 
(MPR), peak systolic strain, and the mean infarct 
mass. Similar to computed tomography angiography, 
vessels with diameters smaller than 1.5 mm cannot be 
analyzed. Another limitation of this technique is the risk of 
developing nephrogenic systemic fibrosis that has been 
associated with gadolinium administration (84).

Optical coherence tomography (OCT) is 
another promising method that was first evaluated for 
measurement of coronary intima-media thickness in 
2005 (85), and has been successfully applied, especially 
in the last 4 years, to assess CAV (86–89). The procedure 
for OCT is similar to intravascular ultrasonography, with 
the only difference being that light near the infrared 
region is used instead of ultrasound (Figure 6). Although 
the depth of penetration is reduced with using light rays, 
the pixel resolution is significantly higher as it ranges 

Figure 4. Computed tomographic angiography of a patient 5 years after transplant showing diffuse concentric thickening of the wall of the mid left anterior 
descending artery (A, arrows), best seen in curved multi-planar reformatted (B, arrows) and short-axis images (C, arrowheads), but difficult to appreciate 
on invasive angiography (D, arrows). Illustration reproduced with permission from (28).
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between 12 µm to 18 µm (compared to 150 to 250 µm 
with IVUS) (90). The invasive nature and cost of the 
technology are currently the major drawbacks.

Finally, the feasibility of co-registration using 
angiography and IVUS for surveillance of CAV has been 
demonstrated (91). A contrasted angiogram of coronary 
artery is acquired at an end diastolic cardiac phase 
followed by pullback of the catheter tip that captures IVUS 
images at around 30 frames per second. The results 
provide more accurate cross-sectional imaging of the 
left anterior descending artery while exposing the heart 
to minimal radiation. Another co-registration technique to 
obtain images using angiography and optical coherence 
tomography (OCT) (92) has been utilized to provide 

procedure planning information to the cardiologists prior 
to intervention. The invasive nature of these approaches 
is again the major drawback.

5. TRANSLATION OF CAD DIAGNOSIS TO CAV

Coronary artery disease (CAD) encompasses 
various conditions that arise typically from atherosclerosis, 
which is characterized by the thickening of the intimal 
layer due to deposition of lipids and various cells (93). 
Although there are discrepancies between their patho-
physiology, CAV is often viewed as an accelerated 
form of CAD in the transplanted heart (3,94). This 
parallel encouraged the adoption of angiography for 
the diagnosis of CAV while it was originally developed 

Figure  5. Quantitative adenosine-stress perfusion cardiac magnetic resonance in 2 transplant recipients; one with minimal (A through H) and one 
with severe cardiac allograft vasculopathy (I through P). Intravascular ultrasonography images (A and I) are also provided. Illustration reproduced with 
permission from (28).

Figure 6. Coronary angiography (A), optical coherence tomography (B), and intravascular ultrasonography (C) imaging in a patient 8 years after heart 
transplantation. (A) Quantitative angiogram analysis showed 14% diameter stenosis in the mid–left anterior descending artery (arrow). (B) Optical 
coherence tomography revealed intimal hyperplasia with thickness of 150 μm. (C) Accurate measurement of intimal hyperplasia was difficult with 
intravascular ultrasound. Illustration reproduced with permission from (87).
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for atherosclerotic CAD diagnosis. Since CAD affects a 
larger population, more effort and resources have been 
allocated to diagnosis of this disease. Thus, we hope 
that novel techniques for CAV diagnosis (that overcome 
the limitations of the methods presented in the previous 
sections) can be adopted from techniques developed 
for CAD. The following sections present some of those 
techniques for detection of CAD.

5.1. Integration of imaging and computational 
analysis

Many studies have linked blood flow-induced 
shear stresses on the arterial wall to the development 
of atherosclerosis (95–97). Since stress cannot be 
measured, but only computed, the idea to use vessel 
images in conjunction with computational fluid dynamics 
(CFD) to compute fluid stresses has been widely 
adopted (98). The initial computational fluid dynamics 
(CFD) study on coronary artery stenosis can be dated 
back to work published in the year 2000 by Banerjee 
and colleagues who determined the effects of blood flow 
using computational fluid dynamics on coronary artery 
stenosis post-angioplasty (99). With advances in imaging 
techniques and greater computing power, computational 
fluid dynamics (CFD) has been able to predict the role of 
hemodynamic forces in developing CAD (100).

Although the role of hemodynamics in 
progression of CAV is poorly understood, recent 
research shows a strong hemodynamic basis for 
occlusive atherosclerosis in patients with CAV; i.e.  low 
and oscillatory wall shear stresses due to regional fluid 
dynamics, which can be determined using computational 
fluid dynamics (CFD) (101). Timmins et al. (102) 
calculated the wall shear stresses by generating 3D 
coronary reconstructed geometry from a patient’s 7-year 
post-transplant angiograms (when the patient did not 
have significant CAV) and performed computational 
fluid dynamics (CFD) simulation on the 3D model. The 
simulations were able to identify regions of low velocity of 
blood flow and hence low wall shear stresses. Moreover, 
the regions experiencing oscillatory wall shear stresses 
matched the sites of subsequent lesion formation in the 
patient at 15-years post-transplant follow-up. The positive 
results using simulations suggested an association 
between low and oscillatory wall shear stresses which 
may lead to subsequent development of a clinically 
manifested CAV. Based on these findings, it appears 
that combining computational fluid dynamics (CFD) with 
coronary imaging can be used to assess future risk and 
predict potential regions of CAV lesions in patients as well. 
This may be extremely useful to identify patients at risk, 
and adjust diagnosis frequency with invasive follow-up 
accordingly. More studies are required to confirm the 
potential of this computational analysis approach.

An extension of this hybrid imaging-
computational method for the diagnosis and prediction 

of CAD, is the computational fluid dynamics-derived 
fractional flow reserve (CFD derived FFR) method. 
The fractional flow reserve (FFR) method provides 
a physiologic assessment of lesion severity and is 
regarded as the gold standard for detecting stenosis. 
Conventionally, the pressure wire-based fractional flow 
reserve (FFR) method has been used by advancing a 
guidewire to the distal vessel. This invasive procedure 
adds time (especially in side branches and coronaries 
with complex anatomy (103)) and cost to the procedure 
and hence limits utility in everyday clinical practice. 
Recent improvements in the fractional flow reserve 
(FFR) method rely on the use of computational fluid 
dynamics (CFD) techniques in 3D models obtained 
from noninvasive computed tomography angiography or 
invasive quantitative coronary angiography (104,105). 
These studies report improvement in the diagnostic 
accuracy of the fractional flow reserve (FFR) method in 
predicting lesion-specific ischemia, with accuracy values 
of 86-88%. The accuracy was superior to anatomical 
assessment by coronary computed tomography 
angiography alone (diagnostic accuracy of 65%) (106).

The use of the fractional flow reserve (FFR) 
method with invasive coronary sensor pressure and flow 
wires has also been reported for CAV. Chih et al. (107) 
reviewed that normal fractional flow reserve (FFR) 
with reduced coronary flow reserve across macro- and 
micro-vascular compartments represents diffuse 
epicardial or microvascular CAV. For a given epicardial 
plaque burden, increased fractional flow reserve (FFR) 
was found to associate with deteriorated index of 
microcirculatory resistance. They concluded that, “both 
scenarios reflect the reduced physiological impact of 
epicardial disease in the presence of microvascular 
dysfunction and increased microvascular resistance as 
the maximal achievable coronary flow is diminished”. 
The graft microvasculature is affected early after 
transplantation and microvascular dysfunction (reduced 
coronary flow reserve, increased index of microcirculatory 
resistance, abnormal vasoconstrictor response to 
acethylcholine) predicts development of CAV (107–109). 
Again, the invasive nature of these methods is a 
limitation. Following the promising results for CAD, the 
computational fluid dynamics-derived fractional flow 
reserve (CFD derived FFR) method should be attempted 
for CAV to overcome this limitation.

5.2. Computed tomography and scaling power 
laws based approach

Another method, combining computed 
tomography and scaling power laws, has been shown to 
provide a simple, accurate and non-invasive diagnosis 
tool for Glagov’s positive remodeling of coronary arteries, 
a characteristic of atherosclerosis at early stages (110). 
This approach consists of obtaining computed tomography 
scans of the blood vessels of interests, and using them 
to reconstruct their 3D structures based on validated 
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algorithm (111,112). The reconstructed structures are 
then used to fit coefficients in power laws-type relations 
defined between various parameters of the vessels such 
as length, volume, and blood flow. Significant variation 
in the coefficients values of these power laws compared 
to healthy patients has been shown to provide a reliable 
diagnosis of Glagov’s positive remodeling. The method 
was introduced by Huo et al. (113) and applied to swine 
coronary arteries. It was found that the coefficients from 
the length–volume scaling power law varied significantly 
between healthy and diseased swine, and provided 
a quantitative rationale for the diagnosis of Glagov’s 
positive remodeling and subsequent atherosclerosis. The 
authors applied a similar method on a patient cohort with 
metabolic syndrome and concluded that the coefficients 
from the length-volume power law also provide a 
quantitative rationale for diagnosis of diffuse CAD (114). 
The scaling law approach for diagnosis of diffuse disease 
holds promise for early diagnosis of CAV.

6. IMMUNOLOGICAL APPROACHES TO CAV 
DIAGNOSIS

6.1. Biomarkers
In the last few years, strong focus has centered 

on biomarkers for diagnosis of CAV. In 2002, Labarrere 
et al. (115) found a correlation between increased 
concentration of C-reactive protein and risk of developing 
CAV. A decade later, the same group showed that early 
absence of atherothrombotic risk (measured using 
predictive markers such as myocardial fibrin deposition, 
and loss of vascular antithrombin and tissue plasminogen 
activator) identifies a patient subgroup that rarely 
develops CAV or graft failure, implying that this low-risk 
subgroup could possibly be followed with less frequent 
invasive diagnosis procedures (116).

A study published in 2008 concluded that higher 
levels of von Willebrand factor were found in patients 
who later developed CAV, and proposed the use of von 
Willebrand factor as a biomarker to identify patients with 
higher risk of developing CAV (117). A study published 
in 2013 found that higher levels of vascular endothelial 
growth factors (VEGF)-A, (VEGF)-C and platelet factor-4 
are strongly associated with CAV (118). Finally, a recent 
study published in 2015 demonstrated that the median 
plasma levels of endothelium-enriched microRNAs are 
higher in patients with CAV as compared to patients 
without CAV, and represent biomarkers with significant 
potential for use in CAV diagnosis (119).

Although these studies are promising, a 
comparative study to identify the biomarkers with 
highest potential is clearly required. Subsequently, the 
development of a non-invasive technique to measure 
these biomarkers that are currently evaluated through 
invasive biopsies is also needed. We have seen that 
hybrid methods provide improved detection, so methods 

combining imaging, computational analysis and multiple 
biomarkers may provide a predictive matrix for optimal 
CAV diagnosis.

6.2. Capioles: size matters, little things in the 
large panorama!

CAV is a disease that affects all vessels from 
epicardial arteries to veins compromising the entire graft 
vasculature. Since it is a panvascular disease affecting 
all vessels of the transplanted heart, imaging tools that 
evaluate large arteries, small arteries and arterioles and 
even smaller microvessels are needed.

Following transplantation, Labarrere et al. were 
the first to identify antithrombin-reactive microvessels that 
confer a favorable prognosis in patients with CAV (120). 
The antithrombin-reactive microvessels have particular 
phenotypic characteristics that differ from normal arteries, 
capillaries and veins. Capillaries binding antithrombin 
(Figure 7) are larger than normal capillaries (estimated 
range: 10-30  µm), and unlike normal capillaries 
(< 10 µm), they react with antibodies to smooth-muscle-
specific alpha actin and the Pathologische Anatomie 
Leiden-Endothelium (PAL-E) antigen (121,122): an 
antigen normally found only in venules, small to medium-
size veins, and capillaries with the altered vascular 
permeability observed in angiogenesis (123,124). It 
may be that this particular capillary antithrombin-binding 
is associated with neo-vessel formation or vascular 
remodeling involving pericytes or smooth muscle cells 
and capillary endothelial phenotypic changes (121,122). 
These capillary-like vessels may be involved in capillary 
arterialization secondary to ischemic injury, undergoing 
diameter increase and recruitment of smooth muscle 
actin-reactive cells to become new arterioles (125–127). 
An increased capillary arterialization in the presence of 
thrombin supports this hypothesis (128).

It is possible that capioles are capillaries 
involved in arteriogenesis (128), since arteriogenesis 
has been attributed to enlargement of a pre-existing 
collateral network or de novo formation of new arterial 
vessels by means of capillary arterialization (129,130). 
Angiographic studies performed in patients with capioles 
showed the presence of small vessel disease with a 
blush pattern (131). Although the artery-to-artery or 
arteriole to arteriole connection cannot be completely 
demonstrated by histology or immunopathology, the 
extraordinary phenotypic similarity between capioles and 
the collateral capillary arterialization following arteriolar 
ligation in mice (127); and the presence of small vessel 
disease with a blush pattern in transplanted hearts with 
capioles strongly suggest these particular vessels are 
involved in collateral arterial/arteriolar formation.

The generation of new (collateral) arteries 
from capioles may occur in response to occlusion of 
arterial trunks in areas of microinfarction with extensive 
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fibrin deposits in and around damaged cardiomyocytes 
(Figure  8). Capioles are predominantly identified next 
to areas of microinfarction in transplanted hearts with 
severe lesions of CAV (121–123). Quiescent capillaries 
found in normal hearts and hearts without microvascular 
fibrin deposits never express antithrombin compared 
to the antithrombin-reactive capioles. Capioles are 
most probably capillaries becoming arterialized with 
outstanding anticoagulant properties.

The relevance of the microvasculature in patients 
with severe CAV is highlighted by the demonstration that 
myocardial perfusion in transplanted hearts increases 
significantly after reduction of low-density lipoprotein-
cholesterol, lipoprotein (a), C-reactive protein and 
fibrinogen plasma levels following apheresis treatment in 
transplanted patients with severe CAV (132). This further 
suggests that improving the status of the microvessels in 
transplanted hearts with severe CAV may be considered 
as a novel therapy to increase survival. Understanding 
the physiopathology of endothelial and microvascular 
dysfunction in CAV will certainly play a crucial role in 
the development of novel diagnosis techniques and 
therapies (133).

7. CONCLUSIONS

Cardiac allograft vasculopathy (CAV) is one 
of the most common long-term complications of heart 
transplantation. Because of its irreversible nature, 
early detection is crucial to implement a strategy to 
slow down the progression of the disease. The most 
common diagnosis techniques, namely coronary 
angiography and IVUS, are invasive and have low 

sensitivity especially at early stages of the disease. 
There is clearly a need for better alternative for the 
diagnosis of CAV. Many techniques, mainly non-
invasive, have been developed. Among these, the 
non-invasive dobutamine stress echocardiography 
(DSE) and single-photon emission computed 
tomography (SPECT) have been studied largely with 
mostly positive outcomes. However, low sensitivity 
at early stages and risk from exposure to frequent 
nuclear dose, respectively, have been reported as 
major drawbacks. Additional techniques such as 
coronary computed tomography angiography (CTA), 
cardiovascular magnetic resonance (CMR) and 
optical coherence tomography (OCT) have also been 
evaluated with promising results. Large patient studies 
are still required in order to establish definitive efficacy 
and accuracy of these various approaches.

To date, none of the methods developed 
have provided an optimal predictive power of CAV 
without limitations. Hence, there is opportunity for novel 
techniques yet to come. We propose the translation of 
recent developments in CAD to CAV diagnosis. Use of 
non-invasive imaging techniques in conjunction with 
computational analysis method, such as computational 
fluid dynamics, have shown promising results for CAD 
diagnosis. The combined use of computed tomography 
images and scaling power laws is another potential tool 
for CAV diagnosis.

Various studies have reported different potential 
biomarkers for CAV. Agreement on a common biomarker 
and method of procurement (blood, tissue, etc.) is still 
to be determined. It is unlikely that a single biomarker 

Figure 7. Reactivity of heart biopsy specimens to antithrombin antibody. Note arterial (arrow) and venous (open arrow) antithrombin in normal donor heart 
(Left). Note intense antithrombin-reactivity in arteries (arrow) and capioles (arrowhead) in a patient with CAV that managed to survive (Right). Illustration 
modified with permission from (120).
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can be completely predictive of CAV but rather a set of 
biomarkers may be necessary. Hence, an integration 
of biological, imaging and computational indices may 
provide a reliable biomarkers matrix to identify patients at 
high risk and adjust assessment frequency accordingly. 
Finally, we identified microvessels with particular 
anticoagulant properties and phenotypic characteristics 
of capillaries and small arterioles, named capioles, 
which are mostly seen in patients with severe CAV. We 
argue that these microvessels may be new targets for 
the diagnosis of CAV and can be added to the biomarker 
matrix.

Although current methods for CAV diagnosis 
have limitations, it appears that non-invasive, highly 
reliable alternatives will emerge in the near future. 
Methods combining multiple techniques and fields, such 
as imaging, computational analysis, and biomarker 
detection, would likely provide a biomarker matrix that 
demonstrates higher accuracy and sensitivity.
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