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1. ABSTRACT

It is well recognized that one of the major 
drawbacks of using traditional two dimensional cultures 
to model the living systems is inaccurately reflecting the 
physiological manner in which modulators, nutrients, 
oxygen, and metabolites are applied and removed. 
Moreover, the two dimensional culture system poorly reflects 
how different cell types interact with each other in the same 
microenvironment. Since the first global development of 
three dimensional (3D) cell culture techniques in the late 
1960s, this last decade has seen an explosion of studies to 
promote 3D models in the fields of regenerative medicine 
and cancer. The recent surge of interest in 3D cell culture in 
cancer research is attributable to the interest in developing 
closer to real life models. The ability to include various 
cell types and extracellular components reflect more the 
physiological conditions of tumor microenvironment. In this 
short review, we will discuss different approaches of 3D 
culture system models and techniques with a focus on the 
3D interactions of cancer cells with stromal cells in the goal 
to reevaluate old and develop new therapeutics.

2. INTRODUCTION

Three dimensional (3D) cell culture techniques, 
pioneered at the beginning of 20th century by Harrisson 
and Carrel, have been rapidly gaining popularity in recent 
years (1, 2). In fact, around 90% of all 3D cell culture 
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articles listed on PubMed have been published since 
2000. This recent wave of interest and investigation in 
3D cell culture, especially in the area of cancer research, 
is likely attributable to increased recognition of the 
importance of cellular interactions in the context of the 
specific microenvironment. The 3D cell culture market is 
expected to grow to a staggering 3.7 billion US dollars by 
the year 2021 (3). Although research has come a long way 
toward improving our understanding of cells, the bulk of 
this knowledge has come from piecemeal investigations 
into one signaling pathway or another. This method has 
produced, to date, a comprehensive picture of the biology 
of individual cells. However, fundamental gaps remain 
between our understanding of individual cells and how 
these cells function collectively in interdependent tissues. 
In a research climate heavy with the influence of traditional 
2D monoculture, understanding the influence of real 
cell-cell and cell-matrix interactions on general cellular 
proliferation, differentiation, apoptosis, etc., requires a 
closer to real life model. Three dimensional models are 
particularly relevant in the study of interactions between 
normal and cancerous cells.

Through insights gained by stromal cell and 
cancer research using two dimensional (2D) models, we 
now have a better picture of how cells require signals 
from their environment to differentiate and form functional 
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tissues. These signals include not only ligands, such as 
VEGF, Wnt proteins, cytokines, and metabolites, but signals 
induced through tensile and sheer stresses relayed to cells 
by their attachments to the extracellular matrix (ECM) (4-7). 
There are, in fact, numerous studies providing compelling 
evidence that ECM remodeling is an essential component 
of the metastatic cascade in cancer (8, 9). Additionally, the 
distribution of oxygen, nutrients, and signaling molecules 
in 2D cultures are not the same as in 3D cultures. Indeed, 
because oxygen has low solubility in tissue culture media, 
it is sometimes supplied to cells within 3D scaffolds in 
specially-built perfusion bioreactors (10). This review 
will focus on the capacity of 3D culture to increase our 
knowledge of cancer initiation and progression, with the 
ultimate goal of finding new diagnostics and therapeutics 
through these techniques. It is compelling to develop 
and study the tumor 3D structures in order to advance in 
developing physiologically relevant tumor models.

3. EPITHELIAL TUMOR STRUCTURE

Between 80  -  90% of all cancers arise in the 
epithelium, which is present throughout the body as a 
component of the skin tissue, as well as the covering 
and lining of organs tissues, cavities, and internal 
passageways (11). Epithelial tissue has a bilayer 
structure that consists of polarized epithelial cells and 
ECM rich stroma (Figure  1a). Epithelial cells are very 
closely packed with almost no gap between cells and 
are based on a thin membrane-like extracellular matrix. 
The stroma contains essential structural and nutrient 
supplement systems, which include blood and lymphatic 
vessels, immune cells and fibroblasts. Blood vessels do 
not penetrate beyond the stroma, and nutrients at the 
apical surface are reached through diffusion. The apical 
facade of the epithelium protects the tissue by forming a 
barrier against the external environment. Depending upon 
the location, the apical layer of epithelium may consist 
of specialized structures known as cilia or microvilli. 

These specialized structures have vital functions like 
absorption, adsorption, secretion or removal of debris. 
The basal facade of the epithelium is attached to the 
basal surface through integrins and other matrix adhesion 
molecules (12). The stroma provides the epithelium with 
both physical support and ECM. The extracellular matrix 
is rich in collagen scaffolds and several other structural 
proteins, which forms the basis for physical support to 
the epithelial cells (13). The ECM also interacts with 
epithelial layer by controlling the microenvironment 
with their ability to bind to various proteins and 
molecules (12). Epithelial tumors originate from foci 
and then these cells evolve to proteolytically degrade 
their basement membrane to become mesenchymal 
cells by the epithelial-mesenchymal transition program 
(Figure1b) (7). These now mesenchymal cells enter 
the blood stream and migrate to farther locations. 
Malignancies formed in epithelial tissue are known as 
carcinomas. Carcinomas mainly affect organs or glands 
that are capable of secretion. Examples include breasts, 
lungs, prostate, bladder etc. (11). Carcinomas are highly 
heterogeneous even within the gland/organ type. Each 
type of neoplasm exhibits distinct histopathological and 
biological features. For example, according to World 
Health Organization (WHO) endorsed classification, 
there are 20 major types and 18 minor types of breast 
cancers that are prevalent (14). In another example of 
tumor complexity, efforts to identify the cell origin of the 
adenocarcinoma of the lungs resulted in unfruitful results 
due to not only epithelial cell types in the lungs, but also 
due to heterogeneity even in individual tumors (15). 
Given the knowledge about the tumor structure, a true 
to life model of an epithelial tumor would include stromal 
cells, epithelial cells, immune cells and endothelial cells.

4. MESENCHYMAL TUMOR STRUCTURE

Much of mass of the body is composed of 
connective tissue or “soft” tissue. Connective tissue is 

Figure 1. a) Structure of normal epithelium b) Structure of epithelium during epithelial- mesenchymal transition in tumor microenvironment.
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mesenchymal in nature, originating from mesodermal 
layer of the embryo (16). Contrary to epithelial tissue, 
cells in mesenchymal tissue lack polarity and are able to 
differentiate into multiple cell types (17). Mesenchymal 
cells play the pivotal role in tumor metastasis of 
several kinds of cancers (18). Tumors that originate in 
mesenchymal cells are called sarcomas. Sarcomas are 
relatively rare cancers and are observed predominantly 
in children and young adults (19). Physiologically, 
sarcomas are aided by stromal cells and ECM with 
structural support and nutrient supplement. Several 
reports conclude that ECM has great influence on 
proliferation, migration, and differentiation in various 
sarcomas (6, 7, 20). For example, proteins like stathmin 
I that regulate cell motility increase the metastatic 
potential of sarcoma cells (21, 22). Enzymes such as 
matrix metalloproteinases contribute to angiogenesis 
by unsettling extracellular matrix barriers and enabling 
endothelial cells migration through the surrounding 
tissues (5, 23). Sarcomas are less complex compared 
to carcinomas. However, they are hard to diagnose and 
are often underrated as benign due to painlessness and 
its ineffectiveness on overall health (24, 25). Sarcomas 
develop in bones, joints, and soft tissue, and are 
predominately observed in children. According to WHO 
classification, there are 10 major types of soft tissue 
sarcoma and 9 major types of bone sarcoma, in which 
both soft tissue and bone sarcomas contain at least one 
class that is either an undifferentiated or an unclassified 
sarcoma type (26). Osteosarcoma, Ewing sarcomas 
and rhabdomyosarcoma are most commonly observed 
sarcomas among children. Undifferentiated pleomorphic 
sarcoma, liposarcoma, and leiomyosarcoma are the 
most common sarcomas in adults (27).

5. TUMOR SPHEROID MODELS

Multicellular tumor spheroids (MCTS) can be 
obtained by the aggregation and compaction of cell 
suspension cultured under non-adherent or low-adherent 
conditions. Tumorospheres are then formed by clonal 
proliferation in low-adherent conditions (28). Primarily, 
there are four methods researchers have used to create 
the MCTS (Figure 2).

5.1. Suspension culture of stromal and cancer 
cells

In this method, cells are suspended in swirling 
liquid medium using a rotational motion to resist cell 
attachment to the culture surface. The swirling cells 
then form MCTS through collisions and subsequent 
agglomeration (29, 30). For example, in vitro dynamic 3D 
techniques cultures of Mesenchymal Stem/Stromal Cells 
(MSC) using spinner flasks and a rotating wall vessel 
bioreactor have been showed to be beneficial for retaining 
MSC properties over prolonged period of times (31-33). 
Spinning bioreactors have been used to generate large 
production of tumor spheroids to test the efficacy of 
chemotherapy or immunotherapeutic drugs (34-36).

5.2. Ultra-low cell adherent surfaces
Here, the interactions between cells are stronger 

than their adhesive forces with tissue culture plates (28). 
Several studies reported usage of an agarose surface to 
create MCTS, mainly due to the low cancer cell attachment 
to agarose (37-39). Commercially available ultralow 
attachment plates that use a hydrophilic, non-ionic, 
neutrally charged hydrogel covalently bound to a tissue 
culture polystyrene surface (Corning, Lowell, MA) have 
also been extensively used to generate MCTS (40, 41). 
Researchers have also used extracellular matrix (ECM) 
and protein-based hydrogel coatings to create MCTS. 
One such surface that is commonly used is Matrigel, which 
is obtained from the ECM of mouse sarcoma cells (42). 
Matrigel does not require single cell suspensions, which 
are sometimes difficult to obtain. For instance, Young et al. 
cultured cell clusters obtained from LuCap xenografts 
atop the ultralow attachment plates (43) and Theodoraki 
et al. used spontaneously-  formed spheroids of tumor 
explants sieved for various sizes using cell strainers (44).

5.3. The hanging drop technique
In this method, the cells are suspended in a 

droplet of medium and are allowed to aggregate into MCTS 
under the influence of gravitational forces (Figure 3). This 
technique, used since the last century, is very simple to 
execute and highly cost-effective. Standard cell culture 
plates or lower cost bacterial culture plates are alternative 
choices to generate MCTS as the cells do not attach the 

Figure 2. Principle difference among MCTS formation techniques.
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culture surface. One of the major limitations of this technique, 
and also shared by the two other described above, is an 
important size variability between MCTS obtained. There 
are commercial 96 or 384-well plates specially designed 
to create hanging drops in a more uniform manner using 
an automated cell culture robot to achieve high throughput 
drug screening (45). Other commercially available designs 
have been used to create MCTS of breast cancer cells in a 
semi-automated process (46).

5.4. Microfluidic devices
Microfluidic technologies involve the manipulation 

of very small fluid volumes within artificial microsystems (47). 
In this method, the formation of spheroids is based on 
hydrodynamic trapping of cells in micro-chambers with 
controlled geometries. The continuous perfusion of fresh 
liquid media maintains the compaction of the trapped cells, 
and the size uniformity of the spheroids can be controlled 
by perfusion flow rate (48). Each micro-chambers that can 
house one to a few-hundred cells are usually designed 
using soft lithography on polydimethylsiloxane (PDMS), an 
elastomeric material with optical transparency and high gas 
permeability qualities (49). Several studies have adapted 
this technology to grow more size controlled spheroids. 
For example, Sabhachandani et al. prepared MCTS of 
MCF-7 breast cancer cells by encapsulating them in 

alginate droplets inside a PDMS microfluidic device (50). 
This device has the capacity to simultaneously culture a 
thousand MCTS on a chip and can perform drug sensitivity 
testing in a high throughput manner. Ayuso et al. used 
spheroids of oral squamous carcinoma cells embedded in 
collagen in a microfluidic device to study their chemotactic 
response (51). More recently, microfluidics coupled to a 
flow cytometry device has shown the ability to produce and 
analyze thousands of spheroids, making this technique 
suitable for drug screening applications (52). In the coming 
years, the generalization of 3D printing devices will allow 
the explosion of microfluidic chip use (53).

Other microfluidic systems have been used for 
large production of spheroid. For instance, Alessandri 
et al. have developed a microfluidic technique using 
permeable, elastic, hollow microspheres capsules by 
co-extrusion of colon carcinoma cells with alginate (54). 
Similarly, Kim et al. obtained a large number of embryonic 
carcinoma cells spheroids in alginate core-shell 
microcapsules using a 3D coaxial flow (55).

6. 3D SCAFFOLD-BASED MODELS

To achieve true to life model of cells interactions, 
other studies have focused on the integration not 

Figure 3. Schematic depicting the principle of hanging drop technique. Dark spots in the center of droplets in (a) and (b) represent cancer cells. Dark 
mass in the center of droplets in (c) represents well-formed 3D tumor spheroids.
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only of particular cells but also by addition of multiple 
components to improve the cellular three-dimensional 
microenvironment. Several approaches have been 
used in the construction of 3D scaffold-supported tissue 
models.

One approach is to use materials with the 
closest 3D environment already available by using tissue 
decellularization techniques (56, 57). These promising 
techniques developed for clinical transplantation 
applications have not been tested yet to study stromal-
cancer interactions but might be really useful once 
adapted for in vitro research studies.

At the in vitro level, researchers have 
developed particular scaffold materials ranging from 
natural biomaterials (e.g.,  collagen, fibrin, hyaluronic 
acid, gelatin, matrigel, or alginate) (58-62) to synthetic 
biomaterials (e.g.,  polymers such as polycaprolactone 
or polyethylene glycol, and inorganic materials such as 
titanium or ceramic-based materials) (63-66). Natural 
biomaterials have the advantages to be biocompatible 
but are also biodegradable, which can cause problems 
in the study of stromal and cancer cells interactions (67). 
These problems do not occur with synthetic scaffolds 
but they may lack sites for proper cellular adhesion. In 
addition, 3D cells aggregates may be difficult to recover 
for further in vitro studies (68).

While using a scaffold to encapsulate cells can 
put diffusion limits on nutrient and waste flow, researchers 
have used the various scaffold properties such as 
chemistry, porosity, and stiffness to generate favorable 
culture performance. For instance, Liang et al. compared 
soft collagen gel to stiff collagen-PEG gels and found 
that the scaffold stiffness suppressed tumor malignancy 
in hepatocellular carcinoma cells (69). The elasticity 
and stiffness of scaffold material can be controlled by 
changing the concentrations of gelating agents. Ulrich 
et  al. developed a strategy to improve the elasticity of 
weak collagen gels by two orders of magnitude by 
incorporating the agarose, without disrupting the fiber 
architecture (70). For example, a recent reports suggests 
the possibility of using nanofiber based scaffolds (71), 
which improve the survival and differentiation of mouse 
embryonic stem cells.

Many reviews reported advantages and 
disadvantages between the multiple types of 3D 
scaffold (72-75), and it appears that combinations 
of different approaches, including with non-scaffold 
technologies, are the most promising (Table 1).

7. FUTURE PERSPECTIVES FOR 3D CULTURE 
METHODS

Regardless of the methods used to generate 3D 
cells aggregates, there are a few mandatory requirements 

to accurately replicate the in vivo environment in vitro. 
Essentially, in varying levels of complexity, these models 
seek to recreate as closely as possible the real cellular 
microenvironment by integrating multiple cell types, blood 
and lymphatic vessels or mimics, and extracellular matrix 
components (76). Immortalized and primary in vitro 
cultures have now been derived from a wide range of 
cancers and are currently used in numerous cell biology 
studies. Newer methods for 3D cultures of these cells will 
range from bottom-up to top-down methods, including 
but not limited to: 1) decellularization of natural tissue, 
followed by recellularization with the desired cell types, 
2) gradual layer-by-layer cell growth in culture dishes, 
3) micropatterning and microfluidics technologies, and 
4) 3D printing. The micropatterning and microfluidics 
technologies offer a great prospect of standardized MCTS 
generation for mass production. It will enable scientists 
to employ high-throughput screening technologies 
including using more sophisticated MCTS co-culture 
models, which more closely reflect to the reality of tumor 
tissues composed of tumor and various stromal cell 
types (77-79). For example, a stereolithography-based 
3D printer using hydroxyapatite nanoparticles suspended 
in hydrogel is able to create a geometrically optimized 
matrix to mimic the 3D environment of bones (80). 
Similarly, 3D bioprinting offers unlimited possibilities to 
arrange different cell types and ECM-based biomaterials 
in a normal anatomical arrangement to create a more in 
vivo-like culture performance (81) as shown in Figure 4.

8. DRUG SENSITIVITY PATTERNS

Recent developments in tissue culture 
technology made it possible to culture patient derived 
cells to obtain tumor spheroids without losing the 
original tumor’s properties in terms of genotype and 
phenotype (82-84). These developments may soon 
replace the traditional 2D cell culture protocols and will 
establish themselves as standard techniques for culturing 
cancer cells. Establishment of 3D cell culture as standard 
technique provides an exciting prospect in drug screening 
for specific types of tumors for specific patients, which will 
be a giant leap towards the development of personalized 
medicine. Nevertheless, these developments also grant 
different challenges. For example, traditional cytotoxicity 
assays are developed and optimized for 2D cell culture 
models and may not serve the purpose in 3D models.

3D cell culture is currently used in anticancer 
studies, cytotoxicity studies, drug discovery experiments 
and biosensor/bioassay applications (84-86). 3D cell 
culture models are superior models and better mimic 
the actual tumor microenvironment and pathological 
conditions. For example, 2D cell culture cells are grown 
in a single layer spread on a plastic surface. When a 
potential treatment model is tested, cells are prone to 
death at lower concentrations of chemotherapeutic 
agents or under low intensity radiation (87-89). The 
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reason for this kind of observation is that the drug/
radiation has to penetrate just a single layer in order to be 
effective against cancer cells. Whereas, MCTS grown in 
3D model are multilayered structures and may not likely 
be killed at similar concentrations. This phenomenon 
may be attributed to the inefficiency of the low doses of 
drug or radiation, which may not be able to penetrate 
the core of the tumor, a close mimic of the real tumor 
conditions. Similarly, differences in cellular compaction 
has been observed in cancer cells spheroids model 
generated by suspension culture, ultra-low attachment 
or hanging drops techniques, which led to an increased 
chemotherapeutic resistance (90). Hence, MCTS/3D 
model serves as valid targets for developing personalized 
medicine/drug screening/drug discovery experiments.

9. CAVEATS

Though 3D scaffold based models boast close 
resemblance to real tumor micro-environment, it is not 
a 100% match to real tumor environment for obvious 
reasons (anatomical complexity, physiological context, 
etc.). Apart from that, 3D models also suffer from severe 
reproducibility problems. Oftentimes, it is observed that 
the size of spheroids is not uniform (86, 91, 92). Pipetting 
errors or non-homogenous cellular resuspension can lead 
to important size difference. In addition, the presence of 
any small particles in the culturing media could modify cells 

aggregation and the fate of the spheroid shape (93). This 
non-uniformity in the spheroid size leads to inequivalent 
distribution of nutrients, differences in microenvironment, 
and inequivalent drug/radiation exposure. 3D scaffolds also 
demand a much more carefully controlled environment in 
terms of temperature and pH, which is laborious (94-97). 
Post culture process is another laborious task involved 
and automated solutions are yet to be improvised. It 
is also difficult to analyze 3D models using the most 
common biology lab tool the microscope in which typical 
light penetration depth is around 100 µm (98). Insufficient 
penetrability of light makes it tricky to analyze the cells 
in the inner layers of the spheroids, causing some well-
established, cost effective techniques like MTT, Trypan 
blue assay ineffective in the analysis of 3D models.

3D cell culture undoubtedly has improved the 
efficiency of non in vivo assays by closely mimicking the 
tumor microenvironment. Scientists are able to obtain 
more meaningful data before they enter into any mouse 
or human models and were successful in eliminating 
those drug candidates which are only effective against 
less relevant 2D cell culture models. However, 3D 
culture models still are impeded by some reproducibility 
problems, and lack of automation makes it a tedious 
technique. Addressing these problems will greatly 
enhance the capability of the technique itself and high 
throughput screening as well.

Figure 4. A 3D bioprinter prints cell aggregates in precise patterns to yield anything from simple 3D cell spheroid to whole tissue. 3D bioprinting also 
makes it possible mimic tumor microenvironment that is closely comparable to real tumor microenvironment.

Table 1. Advantages of 3D vs. 2D cell culture models
3D culture 2D culture

Superior model and closely represents the tumor microenvironment Less relevant with tumor cell monolayers

ECM interacts with cells by providing structural, nutrient, and communicative 
support

Cells are in contact with ECM and with plastic on one surface

Co‑culture model mimics tumor microenvironment with multiple cells layers Co‑culture model incapable to create a tumor microenvironment

Tumor drug distribution and drug dosage can be studied more precisely Drug distribution cannot be studied on a monolayer

Cell‑cell interactions are similar like in tissues in vivo Limited cell‑cell interactions
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