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1. ABSTRACT

Endometriosis is one of the most frequent benign
gynecological diseases that affect women. Little is known
about the pathogenesis and etiology of endometriosis,
despite the numerous studies performed in this field.
Although endometriosis is a benign disease, the
endometrial tissue, after attachment to the peritoneum, has
the ability to grow and invade the surrounding tissues.
Similar to neoplastic growth, local extracellular proteolysis
might take place, and therefore, the fibrinolytic system may
be involved. An altered expression of several components
of the fibrinolytic system in the endometrium and
peritoneal fluid of women with the disease has been
suggested as a key factor in the establishment of the
endometriotic lesions. There is evidence of increased
fibrinolytic activity in the eutopic endometrium of these
women, resulting in endometrial fragments with a high
potential to degrade the extracellular matrix and facilitate
implantation. The peritoneum possesses an inherent
fibrinolytic activity that is responsible for the degradation
of the fibrin deposits originated after an injury. This
physiological function allows a correct repair of the
mesothelium, and therefore, prevents the formation of
adhesions. Peritoneal fluid of women with endometriosis
and pelvic adhesions has shown to have an increased
fibrinolytic activity that may be implicated in reducing the

formation of new adhesions. Endometriotic tissue has
abnormal proteolytic capacity, which is determined by
modifications of the fibrinolytic parameters in this tissue.
Proteolytic status is determined by the imbalance between
plasminogen activators and plasminogen activator
inhibitors, which are expressed differently depending on
the type of lesion considered and the stage of the disease.
The aim of the present study is to review the role of the
plasminogen activator system in endometriosis, consider
the clinical implications and focus on possible further
research efforts and therapeutic applications in this disease.

2. INTRODUCTION

Endometriosis is defined by the presence of
endometrial glands and stroma outside the uterus. It is one
of the most frequent benign gynecological diseases that
affect women with pelvic pain or infertility during their
reproductive age (1, 2). The etiology and pathogenesis of
endometriosis are far from clear, despite several decades of
research in this field.  Little is known about the
pathogenesis of endometriosis. However, it is thought that
retrograde menstruation may transport endometrial tissue to
ectopic locations. Several factors have been implicated as
causes of endometriosis including immune system
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Figure 1. Fibrinolytic system. The plasminogen activator system is based on the conversion of an inactive proenzyme,
plasminogen, to the active enzyme, plasmin. The activation of plasminogen to plasmin is mediated by two types of activators,
urokinase-type plasminogen activator and tissue-type plasminogen activator. Plasmin is an active enzyme that degrades fibrin
into soluble degradation products. The activity of the plasminogen activators is regulated by specific plasminogen activator inhibitors
(PAIs). The principal PAIs are PAI-1, initially termed the endothelial cell PAI; PAI-2, historically known as placental-type PAI and
PAI-3 that is identical to protein C inhibitor. Plasmin can be inhibited by specific plasmin inhibitors (mainly alpha2-antiplasmin and
also alpha2-macroglobulin).

disorders, genetic predisposition, altered peritoneal
environment and endometrial alterations (3, 4, 5). Although
endometriosis is a benign disease, the endometrial tissue
acquires the ability to attach and invade the peritoneum
through local extracellular proteolysis (6, 7). The
plasminogen activator system may be involved in this
process.

The mechanisms by which the plasminogen
activator system is implicated in the pathogenesis of
endometriosis are not well defined. Besides their
fibrinolytic function, plasmin and plasminogen activators
are implicated in tissue proliferation, cellular adhesion and
remodeling of extracellular matrix (8). Human
endometrium is a dynamic tissue that exhibits cyclic
changes during the menstrual cycle. The most widely
accepted theory for the pathogenesis of endometriosis is the
implantation theory, which suggests that retrograde
menstruation may enable the transport of endometrial tissue
to ectopic locations. Although retrograde menstruation is a
frequent finding in menstruating women (9), endometriosis
occurs only in some cases. Altered expression of several
components of the fibrinolytic system in both eutopic and
ectopic endometrium and peritoneal fluid of women with
the disease has been implicated in the onset and
progression of the endometriotic lesions.

Conflicting results have been published concerning
gene expression, protein production and precise
localization of the components of the fibrinolytic system
analysed in endometriosis. However, the studies are not
homogeneous with respect to the variety of tissues, models,
conditions and techniques. There is a promising scope for
defining the exact role of the plasminogen activator system

in endometriosis and its clinical implications. Hopefully,
further research lines focusing on the prevention of
adherences and the development of endometriotic lesions
will improve the current therapeutic management of women
with endometriosis.

3. GENERAL ASPECTS OF THE FIBRINOLYTIC
SYSTEM

The fibrinolytic system includes a broad
spectrum of proteolytic enzymes with physiological and
pathophysiological functions in several processes such as
fibrinolysis, tissue remodeling, tumor invasion,
angiogenesis and reproduction (8, 10, 11, 12, 13, 14, 15).

The main enzyme of the plasminogen activator
system is plasmin, which is responsible of the degradation
of fibrin into soluble degradation products.  Plasminogen is
an inactive proenzyme that can be converted to plasmin by
proteolytic cleavage of a single peptide bond. The
activation of plasminogen to plasmin is mediated by two
types of activators, urokinase-type plasminogen activator
(uPA) and tissue-type plasminogen activator (tPA) (figure
1). Additionally, plasmin also degrades a considerable
variety of extracellular matrix proteins and activates matrix
metalloproteinases (MMPs) and growth factors (8, 12). The
activity of plasminogen activators (PAs) is regulated by
specific PA inhibitors (PAIs). The principal PAIs are PAI
type 1 (PAI-1), initially called the endothelial cell PAI (10,
16), PAI type 2 (PAI-2), also known as placental-type PAI
(17, 18, 19) and PAI type 3 (PAI-3), which is identical to
protein C inhibitor (20, 21). Plasmin can be inhibited by
specific plasmin inhibitors (mainly alpha2-antiplasmin and
also alpha2-macroglobulin) (figure 1).
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Besides their fibrinolytic function, plasmin and
plasminogen activators are implicated in tissue proliferation
and cellular adhesion, since they can proteolytically degrade
the extracellular matrix and regulate the activation of both
growth factors and MMPs. By all these means, the fibrinolytic
system is also involved in physiological processes, such as
menstruation, ovulation and the implantation of the embryo
(22, 23), and in pathological situations such as endometriosis
(15, 24) or cancer (25, 26).

3.1. Plasminogen and plasmin
Plasminogen is a glycoprotein mostly synthesized in

the liver, although other synthesis sites have also been
described. Plasmin is the active enzyme of plasminogen. Two
of its most specific substrates are fibrin and fibrinogen. It is
known that plasmin binds to α2-antiplasmin through the
lysine binding sites (LBS) and the active center. Through the
LBS, plasminogen and plasmin bind to cell surface
plasminogen receptors (27). These receptors modulate the
fibrinolysis process and, in particular, the proteolysis related
to the cellular migration that take place on the cellular surface.
The binding of plasmin or plasminogen to cell surfaces is
the main mechanism that mediates its participation in
pericellular proteolysis (27, 28). Once bound to cell surface,
plasminogen is more efficiently activated to plasmin, and
bound plasmin is partially protected from inactivation by its
physiological inhibitors.

Plasmin has broad spectrum of proteolytic
functions. It can directly degrade multiple matrix proteins
(29), including fibronectin, laminin, and thrombospondin,
as well as the major provisional matrix constituent, fibrin.
Moreover, plasmin is an activator of several MMPs and it
also possesses a proteolytic action on the tissue inhibitors of
the metalloproteinases (TIMPs) (30).

3.2.  Plasminogen activators
3.2.1.Tissue-type plasminogen activator (tPA)

tPA is a serine protease that is synthesized by
endothelial cells and released into the circulating blood as a
single chain precursor (sc-tPA). Plasmin converts sctPA to
active two-chain form (tc-tPA or tPA) by cleaving a peptide
bond (figure 1). The activation of plasminogen by tPA occurs
on the fibrin surface and on the endothelial cell surface. This
process allows efficient and localized plasminogen activation
since tPA has a high affinity for fibrin and its enzymatic
activity is enhanced by fibrin binding (31). tPA-mediated
plasminogen activation is mainly involved in the lysis of
fibrin at the site of vascular injury.

3.2.2. Urokinase-type plasminogen activator (uPA)
uPA is a serine protease that is mainly implicated in

cellular proteolysis. uPA binds to a specific cellular
receptor (u-PAR) resulting in enhanced activation of cell-
bound plasminogen. uPA was initially isolated of the human
urine as a two-chain form (tc-uPA). However, uPA is initially
synthesized as a single chain polypeptide molecule (sc-uPA)
(32). Following partial digestion by plasmin, sc-uPA is
converted into a two-chain form denominated urokinase
(uPA). sc-uPA acts directly on plasminogen generating
plasmin but it is much less active than uPA. It has been

described that uPA activates plasminogen after binding to its
receptor (uPAR).

Besides its fibrinolytic activity, uPA also regulates the
cellular migration process under physiologic and pathological
conditions, such as angiogenesis, embryo implantation,
inflammation and tumor metastasis (12, 33, 34, 35). uPA was
obtained from ovarian carcinoma cell cultures (36) but its
production has also been observed in the majority of
malignant tumors (25, 26, 37, 38).

uPA plays an important role in the endometrial
physiology (39) and the mechanisms underlying menstruation
(40). uPA expression in endometrium is regulated by
paracrine mechanisms and steroid environment (41).
Progesterone stimulates the degradation of uPA in
endometrial stromal cells by increasing the production of
its inhibitor (PAI-1) and the surface expression of uPAR
(42, 43).

3.3. Plasminogen activator inhibitors
3.3.1. Plasminogen activator inhibitor type 1 (PAI-1)

PAI-1 is a multifaceted proteolytic inhibitor (44).
It does not function only as a fibrinolytic inhibitor, but also
plays an important role in cellular signal transduction, cell
adherence and migration (44, 45). It is a glycoprotein
synthesized by a great variety of tissues and cells including
endothelium, megakariocytes, human endometrium,
peritoneal macrophages and mesothelial cells (16, 46, 47, 48,
49). PAI-1 belongs to the superfamily of the serine proteases
inhibitors also called serpines. The PAI-1 is a relatively
termostable protein when deposited on the subendothelial
matrix (49). This stability is mainly due to the presence of a
glycoprotein, vitronectin, which is able to bind and stabilize
PAI-1 (51).

PAI-1 is one of the primary regulators of the
fibrinolytic system in vivo (10). Overexpression of this
inhibitor may compromise normal fibrin clearance
mechanisms and thus promote pathological fibrin deposition
and thrombotic events (52). Impaired fibrinolysis due to
increased PAI-1 levels in plasma is a common finding in
patients with deep vein thrombosis (53, 54, 55). A
fibrinolytic hypofunction due to an increase in PAI-1
concentration has been detected in patients with coronary
artery disease (56, 57, 58, 59). Moreover, some authors
have pointed out that an increase in plasma levels of
tPA:PAI-1 complex may constitute a risk factor for
recurrent myocardial infarction (60). In addition, PAI-1 is
increased in situations with high thrombotic risk, such as
pregnancy (61, 62), and in certain obstetric complications,
such as preeclampsia (63, 64, 65).

The fibrinolytic activity of human endometrium is
essential in the process of tissue remodeling during the
menstrual cycle. Plasmin is a proteolytic enzyme that is
capable to activate MMPs and to degrade extracellular matrix
proteins including diverse components of the basal
membrane.

There is compelling clinical evidence which
considers PAI-1 as a key factor for tumor invasion and
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Figure 2. Relationship between fibrinolytic and
metalloproteinase (MMP) systems. Plasmin is an active
enzyme that degrades a variety of extracellular matrix
proteins and activates MMPs. On the other hand, MMP- 3
specifically hydrolyses and inactivates human PAI-1 and
may regulate cell-associated plasmin activity.

metastasis. Both uPA and PAI-1 have been considered poor
prognostic factors in patients with several carcinomas, such as
breast cancer (66, 67). Furthermore, high level of PAI-1
protein correlated with cancer invasion potential despite its
well-known ability to inhibit uPA activity (67). No
explanation has been found for this apparent paradox. It has
been demonstrated that inhibition of proteolytic activity by
PAI-1 is essential for tumor angiogenesis, suggesting that
excessive plasmin proteolysis prevents the assembly of
tumor vessels (68). A critical balance between proteases
and PAI-1 levels would be necessary for optimal invasion.

3.3.2. Plasminogen activator inhibitor type 2 (PAI-2)
PAI-2 activity was first described in placental extracts

(69). Initially, it was believed that PAI-2 expression was
limited to placenta and monocytes/macrophages, however
there is a broad distribution of PAI-2 in different tissues (17,
70).

In general, PAI-2 levels are not detectable in
plasma from men and from non-pregnant women.
However, plasma levels from both PAI-1 and PAI-2
increase during the course of pregnancy, suggesting that
both PAIs may play a role in the maintenance of
haemostasis during pregnancy and delivery. Moreover, it
has been reported that PAI-2 can also be involved in fetal
growth regulation or be a marker of placental function
during pregnancy (62, 65, 71). In addition, PAI-2 may also
exert many other functions. PAI-2 has been identified
either as an intracellular nonglycosylated form or as an
extracellular glycosylated protein. The major proportion of
PAI-2 remains in the intracellular compartment but the
function of this form has not been clearly elucidated (72). It
may have cytoprotective functions and appears to play a
role in apoptosis. Overexpression of PAI-2 protected from
cytolysis induced by tumor necrosis factor (73). It has also

been suggested that intracellular PAI-2 could protect
placental cells from apoptosis in normal pregnancy and
therefore, a reduction of its local concentration may
decrease its cytoprotective effect, impair placental nutrient
transport and finally result in intrauterine growth restriction
(19).

3.3.3. Plasminogen activator inhibitor type 3 (PAI-3)
PAI-3, also known as protein C inhibitor and

synthesized in the liver and in steroid-responsive organs, is
present in plasma, urine, seminal and follicular fluid (74,
75, 76, 77, 78). PAI-3 was identified in human plasma and
urine as a glycoprotein that inhibits uPA (79). Later, it was
demonstrated that PAI-3 was identical to protein C inhibitor
(PCI) (20), initially characterized by Suzuki et al (78).
Previous studies have suggested that this inhibitor may be
involved in human reproduction (74, 75, 76, 77). PAI-3 is a
heparin-dependent serpine that inhibits several proteases,
including uPA, tPA, activated protein C, thrombin,
kallikrein and prostate specific antigen (74, 75, 77, 78, 80,
81).

In vivo studies have found uPA:PAI-3 and tPA-PAI-3
complexes in urine and semen (75), and during thrombolytic
therapy with uPA or tPA in patients with myocardial
infarction (81, 82). A decrease in plasma PAI-3 levels was
observed in liver diseases, disseminated intravascular
coagulation and in patients under heparin therapy (83).
Although plasma levels of PAI-3 are higher than PAI-1, its
plasma fibrinolytic activity is lower than PAI-1 (75, 79).
Previous studies have suggested that PAI-3 may be linked to
carcinogenesis in hormone-regulated tissues (77, 84).
However, its biological role in remodeling of extracellular
matrix, cell migration and tumor invasion is still unknown.

3.4. Relationship between plasminogen activator and
metalloproteinase systems

Besides plasmin and plasminogen activators,
MMPs are also enzymes involved in extracellular matrix
remodeling (85) (figure 2). These proteases have been
implicated in the endometrial remodeling during the
menstrual cycle (86) and also in the growth of
endometriotic tissue outside the uterus in patients with
endometriosis (87). MMP activities are regulated by tissue
inhibitors (TIMPs) which can inhibit in 1:1 molar ratio
different classes of MMPs (88, 89).

Fibrinolytic and MMP systems are involved in
both normal and pathological processes in which
degradation of the extracellular matrix is a key event.
Plasmin is an active enzyme that degrades a variety of
extracellular matrix proteins and activates MMPs and
growth factors (8). On the other hand, MMP- 3 specifically
hydrolyses and inactivates human PAI-1 (30) and may
regulate cell-associated plasmin activity (90). Although it is
far from clear, the mechanism that regulates and determines
the activity of the MMPs in the endometrium, peritoneal
fluid and endometriotic tissue of women with
endometriosis may also be implicated in the regulation of
fibrinolytic system in this disease. Therefore, more studies
are required in order to elucidate the ultimate connections
between both systems.
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Figure 3.  Fibrinolysis in endometriosis. The proteolytic capacity of endometrium from women with endometriosis and the
peritoneal environment may have an important role in the establishment of the endometriotic lesion. The up-regulation of uPA
and MMP observed in endometrium from women with endometriosis might be an important clue in the invasive potential and in
the growth of endometrial tissue outside the uterus. This process would lead to the formation of early endometriotic lesions. Once
the ovarian endometriotic cyst is developed, PAI-1 and TIMP-1 would increase and the proteolytic activity would, therefore,
decrease. This observation would explain the frequent clinical finding of an isolated endometriotic cyst without invasion of the
surrounding ovarian tissue.

4. THE ROLE OF FIBRINOLYTIC SYSTEM IN
ENDOMETRIOSIS

Endometriosis is a frequent benign gynecological
disease that usually affects women with pelvic pain or
infertility during their reproductive age (1, 2). Little is
known about the pathogenesis of this disease. Several
theories have been proposed including immune system
disbalances, genetic predisposition, altered peritoneal
environment and endometrial disorders (3, 4, 5). However,
the most widely accepted theory is the implantation theory,
which suggests that retrograde menstruation may transport
endometrial fragments to ectopic locations (91) (figure 3).
By degrading extracellular matrix, the ectopic endometrium
may be able to implant and invade the peritoneum and the
surrounding structures (6, 7). However, menstrual reflux of
endometrial tissue also occurs in healthy cycling women
who do not develop endometriosis (9). A possible
explanation for this finding is that the peculiar
characteristics of the endometrium and the peritoneal
environment of women with endometriosis may facilitate
the ectopic implantation of this tissue. The following
sections summarize the feasible mechanisms that support
the observation that the plasminogen activator system
might be involved in the pathogenesis of endometriosis.

4.1. Plasminogen activator system in normal
endometrium

Human endometrium is a dynamic tissue that
exhibits cyclic changes during the menstrual cycle. This
tissue proliferates in the follicular phase under the
stimulation of estrogens and differentiates by the action of
progesterone in the secretory phase of the cycle. At the end

of the secretory phase the decrease of progesterone levels
initiates the menstrual shedding of the superficial layer of
the endometrium. After menstruation the endometrium
rapidly regenerates in the proliferative phase, once again
under the influence of estradiol. In vitro studies with
endometrial stromal cells have demonstrated that the
presence of progesterone increases the synthesis of
extracellular matrix components, such as collagen, laminin
and fibronectin (92, 93), which may contribute to the
differentiation of endometrium.

The plasminogen activator system is influenced
by steroid levels in the human endometrium. Although it
has been reported that the plasmin activity of the
endometrium is mainly due to tPA, endometrial cells can also
express uPA and minimal amounts of tPA in vitro (94). This
can be explained by the storage of uPA as sc-uPA in
endometrial cells, an inactive precursor that cannot be
detected by all the assays (95). The expression of uPA
throughout the menstrual cycle has been studied and a
higher proteolytic activity due to high uPA levels has been
reported during menstruation (41, 94). Studies with human
endometrial cells have detected a higher production of uPA
in the proliferative phase than in the secretory phase (41,
96). In agreement with this point, other authors have
observed that the addition of progesterone to endometrial
tissue cultures reduced the expression of uPA (41, 97).

Human endometrial stromal cells supplemented
with progesterone express high levels of PAI-1 that can
neutralize uPA and thereby prevent the degradation of the
extracellular matrix (46). It has been pointed out that the
reduced uPA activity observed in these cells is also
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determined by an increased degradation of uPA (43).
Moreover, steroid treatment increases the number of available
cell surface binding sites for uPA and facilitates complexed
uPA degradation and clearance from the cellular membranes.
Therefore, the reduction of extracellular uPA may be
secondary to increased internalization and degradation of
uPA, phenomenon that is more efficient for uPA:PAI-1
complexes. The increase in uPARs combined with the
reduction of extracellular uPA may explain the low
fibrinolytic activity detected in the presence of high
progesterone concentrations. The direct consequence of
low uPA activity in the secretory endometrium is a
significant reduction of the degradation of the extracellular
matrix. Thus, endometrial bleeding is avoided and optimal
conditions for the implantation of the embryo are assured.
Although PAI-1 also inhibits tPA, non significant
variations in tPA concentrations have been observed in the
presence of progesterone. Moreover, several studies have
detected an increase in tPA levels in healthy endometrium
before menstruation, which is probably related to the
degradation of fibrin clots (98, 99). The low fibrinolytic
activity during the secretory phase may be altered by the
withdrawal of progesterone at the end of this phase
resulting in higher levels of uPA and tPA. This activation
of the fibrinolytic system may enhance the proteolytic
mechanisms that are implicated in menstruation.

Growth factors and cytokines may modulate the
concentration of plasminogen activators and inhibitors (37).
Epidermic growth factor increases the concentration of
uPA (100), transforming growth factor-β (TGF-β) and PAI-
1 and inhibits the growth of epithelial cells (37). Although
there are multiple paracrine mechanisms that determine the
fibrinolytic activity, the final regulation of this system is
performed by the plasminogen activators and plasminogen
activator inhibitors.

4.2. Plasminogen activator system in endometriosis
The mechanisms by which the plasminogen

activator system is implicated in the pathogenesis of
endometriosis are not well defined. Controversial results
have been reported in this disease concerning gene
expression, protein production and precise localization of
different components of these systems. However, these
studies are not homogeneous with respect to the variety of
tissues, models, conditions and techniques.

Ectopic endometriotic lesions are histologically
similar to eutopic endometrium. However, biochemical
differences exist between these two tissues. Although there
is little information regarding the differences between
endometrium from women with and without endometriosis,
evidences suggest that the eutopic endometrium from
diseased women shows an abnormal expression of several
components of the plasminogen activator system. This
finding would tightly link the plasminogen activator system
to the pathogenesis of the endometriosis.

Several reports have detected an increase in uPA
local concentration in the endometrium from women with
endometriosis (24, 15). In situ hybridization studies
performed by Bruse et al (101) showed that uPA mRNA

seems to be up-regulated in both endometriotic and
endometrial tissue. The higher concentration of uPA in
endometrium of women with endometriosis might result in
tissue fragments with a higher potential to degrade the
extracellular matrix and thus, in facilitated implantation
processes (6, 7, 24, 102, 103). However, studies with
isolated and cultured stromal cells from endometriotic
tissue and endometrium from women with endometriosis
showed lower uPA levels in all these cells when compared
to endometrium of healthy controls (104). Obviously, in
vitro models lack the environmental modulations of
hormones, growth factors, or cytokines, which are usually
present in vivo and would explain the observed differences.

In relation to endometriotic lesions, Lembessis et
al (105) reported an increase in uPA mRNA expression in
endometriotic lesions compared to eutopic endometrium.
However, we did not notice any increase in uPA mRNA
levels in ovarian endometriomas (15, 106). The
characteristics of the endometriotic samples might be the
reason for the disagreement of these results. As previously
suggested, endometriosis seems to be a progressive disease
and a reduction in the activity of endometriotic lesions has
been observed in advanced stages (107). Our results show
that uPA levels are higher in endometriotic implants than in
ovarian endometriomas (106). Furthermore, ovarian
endometriomas have higher PAI-1 antigenic levels than
peritoneal implants. Therefore, the ratio uPA/PAI-1
(antigenic and mRNA levels) is higher in the peritoneal
implants than in the ovarian endometriomas. These results
suggest that peritoneal implants correspond to proteolytic
active endometriotic lesions, while those advanced stages
of endometriosis (ovarian endometriotic cysts) show less
proteolytic activity.

Concerning the fibrinolytic inhibitors, previous
studies have shown that antigenic concentrations of PAI-1 are
higher in the eutopic endometrium from women with
endometriosis than in endometrium from healthy controls.
PAI-1 antigen levels are even higher in ovarian
endometriomas than in endometrial tissue (24, 15). PAI-1
mRNA is also overexpressed in endometriotic tissue (106)
and it seems to be located mainly in both glands and stroma
(102). However, the increase in PAI-1 antigenic levels is
higher than the increase in PAI-1 mRNA levels (107). A
probable explanation of these findings could be that the low
levels of activators in ovarian endometriomas may lead to
less degradation of PAI-1 protein, and thus result in higher
PAI-1 antigenic levels. The increase in PAI-1 protein
expression in ovarian endometriomas might contribute to
limit the invasive potential of the endometriotic tissue in
advanced stages of this disease.

A decreased PAI-3 antigenic and mRNA levels in
endometriotic cysts compared to endometrium has been
reported (15, 106). PAI-3 is a protease inhibitor that may be
involved in human reproduction (74, 75, 76). The precise
role of this inhibitor in extracellular proteolysis has not
been fully elucidated, but it has been suggested that PAI-3
protects uPA from the inactivation by PAI-1 (108). The
reduced PAI-3 expression observed in ovarian
endometriomas might enhance inhibition of uPA by PAI-1,
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and therefore contribute to the reduced proteolytic activity
of this tissue.

In relation to fibrinolytic receptors, soluble uPAR
is overexpressed in endometrial cells of women with
endometriosis (109). The soluble form of uPA receptor can
increase the local availability of uPA by delaying its inhibition
by PAI-1 (110). In addition, uPAR inhibits cell adhesion to
vitronectin, which would facilitate cell migration (111) and
PAI-1 stabilization (50). These findings reinforce the
previously commented theory of retrograde menstruation of
endometrial fragments with high proteolytic potential. In vitro
studies, found that basal release of soluble uPAR in
cultured endometriotic cells obtained from ovarian
endometriomas of women with endometriosis was lower
than in endometrium from women with and without the
disease (104). This report would indicate a low proteolytic
potential of the cells from ovarian endometrioma.

It is known that ovarian steroids have an important
role in the progression of endometriosis. This disease is
restricted to the reproductive age of the women and changes
in the steroid status, such as menopause or pregnancy, induce
a regression of the endometriotic lesions. On the other hand,
several authors have suggested that endometriotic tissue has a
different hormonal regulation than endometrium. In the
endometriotic tissue the estrogen receptor levels remain low
throughout the menstrual cycle and the progesterone receptors
synthesized are not all biologically active (112). It has been
shown that aromatase is overexpressed in endometriosis
resulting in high levels of estradiol that promote endometrial
gland growth. Additionally, endometriotic glandular cells are
deficient in 17beta-hydroxisteroid dehydrogenase type 2,
which impairs the inactivation of estradiol due to insensibility
to progesterone (113, 114). In vivo studies have shown that
estradiol would not be necessary for the implantation process
(115, 116) but it would be determinant for the implantation and
growth of endometriotic tissue (117).

There is compelling evidence that endometriosis is
influenced by the estrogenic levels, but conflicting evidence
exits about the effect of estrogens in the production of uPA,
uPAR and PAI-1. The invasive ability of ectopic endometrial
tissue has been studied in patients with adenomyosis, where
endometriotic tissue is located in the uterine myometrium. An
increase in uPA and its receptor (uPAR) has been reported in
both endometrial and ectopic tissue of women with the disease
and this may contribute to the invasive phenotype of
heterotopic endometrium (7). In addition, uPA expression is
dependent on the menstrual cycle with a significant increase in
both eutopic and ectopic endometrial tissues during
menstruation. uPAR is overexpressed in ectopic tissue in
comparison to eutopic endometrium with an increase in the
proliferative phase. Meanwhile uPAR expression is not
influenced by steroid treatment in cultured endometrial cells, it
is significantly higher in cells from patients with endometriosis
(109). The different expression pattern of the fibrinolytic
system in the endometriotic tissue may be implicated in the
different biological behavior related to its invasion potential.

As previously indicated, studies with human
endometrial cells have detected higher production of uPA

in the proliferative phase than in the secretory phase (94,
96). It has been reported that secretory endometrium from
healthy controls has lower uPA and MMP-3 mRNA levels
than proliferative endometrium. However, no differences
are observed between proliferative and secretory phase in
the endometrium from patients with endometriosis (106).
On the other hand, secretory endometrium from women
with endometriosis has higher mRNA and protein levels of
MMP-3 and uPA than secretory endometrium from
controls. These findings may indicate a failure of
progesterone or locally produced factors to suppress these
enzymes in women with endometriosis and might facilitate
the implantation of endometrial fragments after retrograde
pass through the fallopian tubes.

There is evidence in the literature of the implication
of the fibrinolytic system in the pathogenesis of
endometriosis. The proteolytic capacity of endometrium
from women with this disease and the peritoneal
environment may have an important role in the
establishment of the endometriotic lesion (figure 3). The
up-regulation of uPA observed in endometrium from
women with endometriosis might be an important clue in
the invasive potential and in the growth of endometrial
tissue outside the uterus. This process would lead to the
formation of early endometriotic lesions. Once the ovarian
endometriotic cyst is developed, PAI-1 would increase and
the proteolytic activity would, therefore, decrease. This
observation would explain the frequent clinical finding of
an isolated endometriotic cyst without invasion of the
surrounding ovarian tissue. On the other hand, peritoneal
fluid of women with endometriosis has shown to have an
increased fibrinolytic activity in the presence of pelvic
adhesions, which may be implicated in reducing the
formation of new adhesions.

4.3 Peritoneal fluid and endometriosis
The peritoneal fluid has been a target of research

on endometriosis due to  its proximity to the endometriotic
lesions. This milieu might play an important role in the
implantation of ectopic endometrium in the peritoneal and
ovarian surface. The physiological balance of the different
components of this fluid has been suggested to have a
protective role in preventing the development of
endometriosis through mechanisms such as macrophage
digestion or secretion of inhibitory factors (118).
Peritoneal fluid is mainly originated from plasma
transudate and ovarian exudate (119). It is also composed
of secretions from the mesothelial surface and tubal and
uterine luminal fluid. The cellular components are formed
by macrophages, red blood cells, neutrophils and
endometrial cells. Macrophages secrete cytokines and
growth factors creating an immunological environment
where reproductive processes such as ovulation take place.
There is evidence that alterations in the characteristics of
the peritoneal fluid may be implicated in the pathogenesis
of endometriosis. 

When the peritoneum is injured an inflammatory
reaction is initiated that leads to the formation of fibrin
deposits, white cell exudates and mesothelial tissue
necrosis. The generation of fibrin is a result of the
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haemostatic process and has an important role in tissue
repair by providing a matrix for invading fibroblasts and
new vessels. Peritoneum possesses an inherent fibrinolytic
activity, which is responsible of the degradation of the
fibrin deposits in the cell surface allowing a correct repair
of the mesothelium and thereby preventing the formation of
adhesions. Fibrinolytic activity of the mesothelial cells has
been studied in rodent models and a reduction in the
fibrinolytic capacity has been observed after trauma (120,
121). The area of the peritoneal defect has a progressive
recovery of its fibrinolytic activity when the healing
process is initiated. Long-term analysis of a peritoneal
adhesion model in the rat showed increased fibrinolytic
activity, which was found to be associated with the
persistence of adhesions (122).

 There are a variety of cells in the peritoneal
cavity capable of expressing different components of the
fibrinolytic system (123). Macrophages produce tPA and
PAI-1 but the main source of fibrinolytic factors is the
mesothelial cells, which are fundamental for the peritoneal
integrity (47, 48). There is a remodeling process in the
peritoneum that is very similar to wound healing. Previous
studies have shown that combined deficiencies of uPAR
and tPA do not exhibit the widespread fibrin deposition,
extensive multi-organ tissue damage and severe alteration
in the wound healing that is observed in combined uPA and
tPA deficient mice (124). This would suggest that uPA
could be the main PA responsible of removing fibrin
deposits in the mesothelium surface allowing a correct process
of peritoneal repair. In addition, ischaemic and tissue trauma
lead to a high incidence of adherence formation that is a
consequence of a reduction in the peritoneal fibrinolytic
activity. The peritoneal fibrinolytic capacity of the peritoneum
decreases during a surgical procedure as a local response to
trauma and consequently facilitates adhesion formation (125).
Intraabdominal adhesions have been shown to result from the
impairment of peritoneal fibrinolysis by inhibitors present in
the ischaemic tissue.

Conflicting evidence exists in relation to the
peritoneal fibrinolytic activity in patients with endometriosis
and pelvic adhesions.  Previous reports have suggested that
there is no difference in fibrinolytic parameters in peritoneal
fluid in patients with or without endometriosis (126) and/or
pelvic adhesive disease. (127). Meanwhile, Astedt and
Nordenskjold (128) have referred an increase in plasminogen
activators in the peritoneal fluid of women with endometriosis.
Dörr et al have stated that fibrinolysis occurs at a high rate, as
measured in the peritoneal fluid and plasma (129). An
increased uPA level has been reported in the peritoneal fluid of
women with pelvic adhesions but not in initial endometriosis
without signs of adhesion formation (130). It may indicate an
increased fibrinolysis parallel to the finding of pelvic
adhesions. In addition uPA is increased in peritoneal fluid of
women with advanced stages of the disease where adhesions
are often present and may suggest an activation of the
fibrinolytic system to inhibit further formation of adhesions in
these patients (15).

In relation to the role of plasminogen inhibitors in
women with endometriosis several studies have shown

changes in the peritoneal fluid. Bruse et al (24) reported
higher PAI-2 levels in the peritoneal fluid of women with
endometriosis than in controls. This could be due to an
increased activity of macrophages in peritoneal fluid, which
would lead to an inflammatory reaction that may contribute
to the high concentration of PAI-2. On the other hand,
when studying initial stages of the disease without
peritoneal adhesions, a reduction in PAI-2 levels in
peritoneal fluid is observed. PAI-2 increases significantly
after adhesiolysis, reflecting the need for fibrin deposition
in the initial reaction of the peritoneum after trauma (130).
Gilabert-Estelles et al, studied PAI-1, PAI-2 and PAI-3
antigen levels in peritoneal fluid of women with advanced
endometriosis (stages III-IV), and no significant difference
was found in comparison to women without the disease
(15).

The peritoneal fluid seems to play an important
role in the implantation process and the development of
endometriotic lesions of patients with endometriosis. The
differences observed between studies may be related to the
different characteristics of the samples and the different
stages of the disease. An increase in fibrinolytic activity is
observed in the presence of pelvic adhesions, which are
more frequent in the advanced stages of the disease. In the
initial stages an impaired peritoneal fibrinolysis may
facilitate adhesion formation because of reduced fibrin
clearance. The increase in plasminogen activators observed
in the peritoneal fluid of women with advanced stages of
the disease may be due to a peritoneal response in order to
limit the inflammatory process and the formation of new
adhesions.

5. CLINICAL IMPLICATIONS AND FUTURE
PERSPECTIVES

There is an increasing number of studies regarding
the pathogenesis and pathophysiology of endometriosis
and, consequently, more targeted therapies have been
proposed. Current research has focused upon drugs that
have the capacity to modify the development and
maintenance of the disease. These include progesterone
receptor modulators, gonadotropin releasing hormone
antagonists, aromatase inhibitors, tumor necrosis factor
alpha inhibitors, angiogenesis inhibitors, MMP inhibitors,
general immune modulators and estrogen receptor beta
agonists (131-136). Meanwhile, alterations observed on
fibrinolytic activity of eutopic endometrium and peritoneal
fluid of women with endometriosis have opened new
therapy options and experimental approaches for the
management of endometriosis and pelvic adhesions.

The fibrinolytic activity of the peritoneal cavity
has an important role in peritoneal healing after trauma and
in the process of limitation of adhesion formation. The
plasmin activity of peritoneal mesothelium determines
whether fibrin, which is formed after peritoneal injury, is
either lysed or organized into fibrous peritoneal adhesions
(137). Endometriotic implants in the peritoneum alter the
mesothelial integrity resulting in frequent adhesion
formation during the progression of the disease. Impaired
peritoneal fibrinolysis may determine adhesion formation
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and may result from altered proportion of plasminogen
activator and plasminogen activator inhibitors.

 It is believed that reduction of fibrinolytic
activity may be related to adhesion formation after
peritoneal trauma. However, Bakkum et al found an
increase in fibrinolysis associated with long-term
persistence of adhesions (122). These findings suggest that
the balance between plasminogen activators and
plasminogen activator inhibitors may be critical in the
induction of adhesion formation. Therefore several studies
have been developed in order to test the usefulness of
different molecules as targets to develop novel therapeutic
strategies to reduce adhesion formation. Intraperitoneal
administration of anti-PAI-1 antibodies has shown to be
effective in reducing adhesion formation after a surgical
trauma of the peritoneum by limiting the availability of PAI-1
for the inhibition of tPA (138). Several authors have
administered intraperitoneally recombinant tissue plasminogen
activator (rtPA) and have demonstrated in vivo a reduction in
postoperative intraperitoneal adhesion (139, 140).

Sharpe-Timms (141) evaluated the effects of
gonadotropin-releasing hormone (GnRHa) agonist on
plasminogen activator and plasminogen activator inhibitor in
peritoneal fluid of female rats relative to adhesion formation.
GnRHa decreased the PA activity and increased the PAI
activity resulting in an effective prevention of adhesion
formation.

Confusion exists about the optimal therapeutic agent
that should be tested in order to prevent the establishment of
the endometriotic lesion and the formation of new adhesions.
The broad variety of models and methods used may be a
confounding factor that would make difficult interpretation of
the results and the establishment of clinical basis for human
application. In addition, other factors independent of the
fibrinolytic system such as steroid environment or MMP
activity may be implicated in the pathogenesis of
endometriotic implants and pelvic adhesions. Since
endometriosis is diagnosed during surgical procedures,
somehow peritoneal trauma cannot be avoided. Hopefully,
further research will be able to develop new molecules which
will prevent adherences when administered intraperitoneally.
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