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1. ABSTRACT

Hierarchical clustering is difficult to be deployed strategy of cooperating both of the methods during
effectively in finding meaningful subtrees since genes clustering procedure should be an effective guideline for
rarely exhibit similar expression pattern across a wide functional predictions.
range of conditions. It is also difficult to find a suitable
level in cleaving a big hierarchy tree. Biclustering is a 2. INTRODUCTION
promising methodology in the field of the analysis of gene
expression data of genechip. Generally it can be employed Recent advances of microarray technology of
in identification of gene groups, which show a coherent high throughput profiling of gene expression have
expression profile across a subset of conditions. But in catalyzed an explosive growth in functional genomics for
some cases of biclustering analysis of gene expressions, the the aim of the elucidation of genes that are differentially
genes in one bicluster are involved in more than one expressed in various tissues or cell types across a range of
functional group, or all genes in one bicluster are involved experimental conditions, and the data analysis techniques
in unknown functional group (e.g. pattern VI and VIII in have been intensively studied. Clustering is one of the most
our studies). Then, how to predict the function of genes in popular approaches of analyzing gene expression data
these patterns? In the present research, we developed a new without prior knowledge. Several representative
strategy of combining both of the clustering methods, algorithmic techniques have been developed and
hierarchical clustering and biclustering. The reserved experimented in clustering gene expression data, which
conditions in datasets for hierarchical clustering were include but not limited to hierarchical clustering (1, 2), self-
elicited according to the conditions in biclusters, and after organizing maps (3, 4), and have been widely applied in
hierarchical clustering, more detailed results in predicting public website, e.g. http://ep.ebi.ac.uk/EP/EPCLUST/ etc.
unknown genes in certain patterns were obtained. This The applicability of clustering in prediction of gene
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functions is based on the hypothesis that similar expression
profiles imply a functional relation in biological activities
(5). As a result, the quality of the clusters has often been
evaluated by their correlations to the known genes’
function groups. Although these studies have successfully
shown that genes participating in the same biological
process have similar expression profiles, there are still
some deficiencies in preventing these methods from
solving a large dataset analysis, e.g. It is difficult to detect a
certain level of cleavage in hierarchy tree, and clustering
over all dimensions (conditions) may separate the
biologically related genes from each other. These have
been observed by comparison of several clustering methods
which have been deployed in diverse datasets, e.g. cancer
classification by Romualdi ez al. (6), clinical databases by
Hirano et al. (7).

Biclustering is a promising methodology in this
field, and might be a powerful measurement to solve the
above all problems. The original biclusters of gene
expression datasets were based on uniformity criteria, and
were discovered by applying the greedy algorithm
developed by Cheng and Church (8). The approximate
uniformity in a submatrix in gene expression data can be
detected by another model Plaid developed by Lazzeroni
and Owen (9), which they use a form of overlapping two-
sided clustering with an embedded ANNOVA in each
other. Patterns in which genes differ in their expression
levels by a constant vector can be detected by Plaid model.
Ben-Dor et al. discussed approaches for unsupervised
identification of patterns in expression data that distinguish
two subclasses of a tissue on the basis of a supporting set of
genes that can offer accurate classification (10). Ben-Dor et
al. also introduced the model of Order preserving
submatrix (11). Tanay et al. defined a bicluster as a subset
of genes that jointly respond across a subset of conditions
for reducing the biclustering problem (12). A biclustering
algorithm based on Gibbs sampling has been successfully
developed and implemented by Sheng er al. (13), and
applied on microarray datasets. With discretizing the
expression datasets into fixed number of bins, Sheng et al.
detected the motif subsequences in sequence data.
Caliafano et al. also previously observed this analogy, and
they applied a pattern-discovery algorithm SPLASH for
finding patterns in strings to gene expression data (14).
Also with Gibbs sampling, Wu ef al. developed a running
scheme and expand its application to biclustering
continuous gene expression data (15). Liu et al. presented a
technique named Smart Hierarchical Tendency Preserving
clustering, based on a bicluster model, Tendency
Preserving clusters. They incorporated Gene Ontology
information to subtrees directly (16).

But most biclustering strategy may meet several
baffles, e.g. all genes in one bicluster are involved in
unknown functional group. How to judge their functions?
In another case, genes included in one bicluster relate to
more than one functional group. How to judge the unknown
genes in this cluster even if there is a dominant functional
group within the pattern? Can we ignore the minor
functional group? In order to solve these problems, our
strategy to this situation is a cooperation of biclustering and
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hierarchical results

obtained.

clustering. The preferable were

3. MATERIALS AND METHODS

3.1. Microarray gene datasets

Whole-genome expression profiling, facilitated
by the development of DNA microarrays (Lockhart et al.
1996) (17), represents a major advance in genome-wide
functional analysis. Because the relative abundance of
transcripts is often tailored to specific cellular needs, most
expression profiling studies conducted on microarray have
focused on the genes that respond to conditions or
treatments of interests. Not only we can directly apply a
single assay to measure the interaction items of unknown or
known genes in finding functions, but also the idea of
“compendium” can be used for the purpose of predicting or
diagnosing etc (17, 18). Hughes datasets as a
comprehensive datasets of reference profiles were created
for the aim of analyzing functions, testing drug target, etc
(18). The reference datasets of three-hundred full-genome
expression profiles in S.cerevidiae corresponding to
mutations and chemical treatments in both characterized
genes and uncharacterized open reading frames (ORFs), as
well as treatments with compounds with known molecular
targets were developed. A gene-specific error model was
built for compensating for differences in variation of
transcript abundance among different yeast genes. Hughes
datasets contain totally 6316 genes corresponding to 300
conditions related to S. cerevisiae. For each experiment
(condition), five values were calculated: loglntensity,
logRatio, errors of error model, errors of measurements and
P value. The values of logIntensity and P value have been
investigated in present research.

3.2. MIPS (Munich information center for protein
sequence)

The MIPS Comprehensive Yeast Genome
Database (CYGD) presents the information on the
functional network and molecular structure of the entirely
sequenced and well-studied model eukaryote, the budding
yeast S. cerevisiae. In addition, the data of various projects
on related yeasts has been used for comparative analysis.
Nearly seven thousands genes and ORFs documented in
MIPS, and being categorized into root main 19 functional
groups. These informations known as for checking the
exact function related to each gene of each pattern were
stored into tables of local database.

3.3. Biclustering
3.3.1. Storing the datasets in database (SQL)

Several tables were built for storing Hughes
datasets, and SQL tools were used to elicit the values
(loglnternsity and P value) for biclustering. For the
purpose of information searching index of patterns, some
tables were built to store functional description of genes
in MIPS classes. These tables contain functional groups
of Metabolism, Energy, Cell cycle and DNA processing,
Transcription, Protein synthesis, Protein fate (folding,
modification, destination), Cellular transport and
transport mechanisms, Cellular communication/signal
transduction mechanisms, Cell rescue, Defense and
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Table 1. Number and proportion of ORFs and experiments (conditions) in each bicluster

Bicluster I 1l m v \% VI Vil | VIl X X XI

Composition

Experiments 13 19 23 7 5 23 21 15 18 20 5
43%) | (6.3%) | (7.7%) | 2.3%) | (1.7%) | (1.7%) | (7.0%) | (5.0%) | (6.0%) | (6.7%) | (1.7%)

ORFs 537 155 85 24 20 35 21 19 19 24 15
(283%) | (82%) | (4.5%) | (1.3%) | (1.1%) | (1.8%) | (1.1%) | (1.0%) | (1.0%) | (1.3%) | (0.8%)

virulence, Regulation of interaction with cellular environment,
Cell fate, Transposable elements, Viral and plasmid proteins,
Control of cellular organization, Subcellular localization,
Protein activity regulation, Protein with binding function or
cofactor requirement (structural or catalytic), Transport
facilitation, etc.

3.3.2. Preprocessing of biclustering in matlab

The main objective of preprocessing of biclustering
was to reduce noise. In the previous step, the values of
“logIntensity” and “P value” of genes’ expression were elicited
respectively. After that, the dataset was transfered and stored
into text file. The following was to load them in Matlab in
matrix form, then filtered datasets in MATLAB to delete the
data which show less standard deviation. In this step, a certain
filtering ratio was used for leaching. Afterward, variations of
each gene along all of experiments were examined to delete
those ORFs which hold a certain range of P value in less than
100 experiments (P<0.01, experiments<100). After that, the
filtered expression dataset was discretized into fixed number of
bins in the last of this step (13).

3.3.3. Running the biclustering scripts

The biclustering algorithm was based on the
Gibbs sampling strategy. In this method, a greedily iterative
searching was applied to find interesting patterns in the
matrices, and probabilistic models were proposed in which
matrix rows (genes in this case) and columns (experimental
conditions) were divided into clusters, and there were
linked probabilities between these clusters. These linked
probabilities can describe the association between a gene
cluster and an experimental condition cluster, and can be
found by using iterative Gibbs sampling and approximated
Expectation Maximization algorithms (13).

3.3.4. Checking functions of patterns through MIPS
database

This was a time-consuming work. In this step,
each table was checked in the MIPS database for
annotating function of patterns.

3.4. Hierarchical clustering
3.4.1. Eliciting conditions according to biclusters

The datasets were restocked in a local database
after preprocessing of biclustering and filtering on both of
Loglntersity and P value levels. Then the conditions
(experiments) involved in the interesting patterns of
biclusters were elicited, e.g. pattern VI, VIIL, in present
experiment, etc. Total 75 conditions were reserved in the
new basal datasets.

3.4.2. Hierarchical clustering and subtree obtaining
The datasets were analyzed by hierarchical
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clustering (http://ep.ebi.ac.uk/EP/EPCLUST/). Then the
output of a big hierarchy tree was cleaved according to the
patterns of interesting bicluster. In this step, firstly, the ID
and accession number of ORFs were redeposited in
database, simultaneously the sequence of ID was ordered
according to the hierarchy tree. Afterwards, the interesting
ORFs can be detected by SQL queries. Secondly, subtrees
were obtained by cleaving on certain level of linkage
according to the genes position in the sequence. The pattern
VI and VIII from hierarchical clustering were obtained by
this way.

4. RESULTS

4.1. Biclustering
4.1.1. Biclusters

Biclustering algorithm enables the detection of
multiple biclusters, through the way of masking the
genes or the experiments seclected for the found
biclusters and performing the algorithm on the rest of
the data. 11 biclusters were found in the original
datasets. Table 1 lists the compositions of biclusters
which consist of various genes and experiments.

4.1.2. Relevant functions of biclusters

Through checking in MIPS database restocked
in tables of local SQL database, the information of
relevant gene functions in each bicluster was obtained.
E.g. in bicluster I, 37% of the genes (199/537)
participate in cell metabolism, 62% of the genes
(333/537) involve in unknown functions, and less than
1% of the genes (5/537) is classified into other function
groups. Most parts in this pattern are those of “open
reading frames” with unknown or unclassified function,
also in other several patterns. See table 2 below for the
details of gene functions involved in each bicluster.

Pattern 1 comprises nearly 2 parts, the known
ORFs with the same function and the unknown ORFs, the
same for pattern V and VII. It is facilitated to predict
function of the unknown ORFs in these patterns on the
postulate that the same function exerts the same behavior. But
how to predict the 100% unknown ORFs in the pattern VIII
and the other patterns in which includes more than one kind of
functions? These tangles can be settled down by a combination
of biclustering and hierarchical clustering. The analysis of
pattern VI and pattern VIII are shown below as examples.

4.2. Pattern VI
4.2.1. Pattern VI from biclustering

The details of pattern VI are shown in figure 1,
containing 35 ORFs in total. In figure 3, the proportions of
three parts in this pattern are shown (according to MIPS),
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Table 2. Relevant functions of biclusters

Bicluster Function and proportion of genes holding the function in the cluster Unknown ORFs
I Lipid, cofactors, prosthetic groups, fatty-acid and isoprenoid metabolism (37%) 62%
11 Protein synthesis (61%) 32%
11 C-compound and carbohydrate metabolism (56%) 38%
I\ Transcription (62%) 33%
\Y Protein fate (folding, modification, destination) (55%) 45%
VI Cellular transport and transport mechanisms (72%) 11%
VII Protein synthesis (86%) 14%
VIII Unknown (100%) 100%
IX Energy (47%) 42%
X Cell Cycle and DNA Processing (38%) 50%
XI Amino acid, nucleotide metabolism (27%) 33%
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Figure 1. The pattern of bicluster VI comprises 35 ORFs and 23 experiments. 35 ORFs are involved in 3 functional groups,
cellular transport and transport mechanism, metabolism and unknown function. The experiments include “anp1”, “bim1”, “bull”,
‘Gfr)rl’7, “gln37?) “031:3”7 6£pep12”, 4pr‘d2’5’ G‘rpllza”, “rp]2037’) ‘Crp134a?’7 “Sap30”, “Sbhz”j “Spfl”, G‘vac8”! 66vma8”, 4£yar014c”,
“yel033w”, “yel067c”, “yer084w”, “yml005w”, “ymr293c” and “yor009w”, the details can be seen in experiment _list of Hughes

datasets (18).

72% represents the functional group I of cellular transport
and transport mechanism, 17% represents the functional
group II of metabolism and 11% represents unknown
function. Obviously, it seems less evident to assign the
unknown ORFs to the functional group I or II. So we
deployed the hierarchical clustering for the elicited datasets
which contain the same conditions with interesting patterns
of biclusters after preprocessing of biclustering.
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4.2.2. Pattern VI from hierarchical clustering

On the basis of the preprocessing datasets of
biclustering and the interesting patterns of biclusters, the
datasets including all rows (genes) and 75 columns
(conditions) involved in the interesting patterns were
restocked. A hierarchical clustering with an average linkage
strategy was deployed on the datasets in the website
http://ep.ebi.ac.uk/EP/EPCLUST/. After depositing the
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Figure 2. The pattern VI from hierarchical clustering was obtained through cleaving the tree on 0.359 linkage level, and
comprises 52 ORFs. It holds the higher similarity with pattern VI from biclustering. The details of ORF functions are shown in
figure 3. The three red rectangles are shown for 3 unknown ORFs and linked genes (ORFs).

ordered accession number of ORFs of hierarchy tree in a
table of local database (SQL), the interesting ORFs were
checked by SQL queries, and also the tree was cleaved on a
certain level of linkage according to the elements in the
pattern VI of biclustering. Therefore a correlated subtree
similar to a certain bicluster was found. The subtree shown
in figure 2 is pattern VI from hierarchical clustering (The
name 1is originated according to the corresponding
bicluster). In figure 3, the compositions of pattern VI from
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biclustering and pattern VI from hierarchical clustering are
shown. Although they do not fully match each other, more
details are complemented from the hierarchy subtree to the
bicluster. These are important to predict the function of the
unknown ORFs in the pattern. Furthermore, both of the
clustering methods show a higher similarity, i.e. 89% of
bicluster VI overlaps with 60% of hierarchy subtree VI.
The similarity mostly depends on the selected conditions. If
the elicited conditions from the original dataset for
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Figure 3. Functional compositions of pattern VI. The same color shows the same function group in both patterns. The pattern
from hierarchical clustering comprises 52 ORFs, and the details of functions and proportions are shown in this graph. The pattern
from biclustering comprises 35 ORFs categorized to 2 function groups and unknown category, and a higher similarity is shown
between the two patterns from both clusterings. The overlap-part contains 31 ORFs, it is 89% in pattern from biclustering and

60% in pattern from hierarchical clustering respectively.
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Figure 4. The pattern of bicluster VIII. It comprises 19 unknown ORFs and 15 experiments (conditions). The experiments
include “ard1”, “ecm31”, “eft2”, “erg2”, “erg6”, “hdfl”, “mrt4”, “rnrl (haploid)”, “rpl27a”, “rpl6b”, “stell (haploid)”, “ste5
(haploid)”, “yhl029¢”, “ymr025w”, “ergl1 (tet promoter)”, the details can be seen in experiment _list of Hughes datasets (18).

hierarchical clustering resemble mostly to the conditions in
the pattern of bicluter, the proportion of overlap-part
between the subtree and the bicluster should be higher.

In the pattern VI from hierarchical clustering, the
unknown ORF “YOL106w” is extremely correlated to
“YDRO50c” and “YALO17w” which both hold the function
involved in “C-compound and carbohydrate metabolism”.
Therefore the function of “YOL106w” can be predicted.
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Same procedure for “YOR343c”, it is correlated to
“YMLO075¢” and “YOL126¢”, and is predicted with the same
function as the both latter ORFs, i.e. “Carbohydrate or lipid
metabolism”. The unknown ORF “YOR183w” is correlated
to “YDR424c¢”, and is predicted with the same function as
the latter, i.e. “Cellular transport and transport
mechanisms”, and so on.

The comparability between the pattern VI from
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Figure 5. The pattern VIII from hierarchical clustering was obtained through cleaving the tree on 0.661 linkage level, and
comprises 37 ORFs. It holds a certain similarity with pattern VIII from biclustering. The details of these ORF functions and
proportions are shown in figure 6.
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Figure 6. Functional composition of pattern VIII. The pattern VIII from hierarchical clustering comprises 37 ORFs.
The proportions of functions are shown in this graph. The dominant function in pattern VIII from hierarchical
clustering is “protein synthesis” (51%). The pattern VIII from biclustering comprises 19 unknown ORFs, and shows a
certain similarity with the pattern from hierarchical clustering. The overlap-part contains 12 unknown ORFs which are
64% in pattern VIII from biclustering and 32% in pattern VIII from hierarchical clustering.
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biclustering and from hierarchical clustering was also
analyzed, as shown in figure 3. The intersection part is
dominant in the patterns from both of the clusterings. And the
most important is to detect the information relating to
functional prediction of genes, regardless whether the
intersection part is dominant or not.

4.3. Pattern VIII

The details of pattern VIII from biclustering are
shown in figure 4, and all 19 ORFs in the pattern fall into
group of questionable proteins or group with unknown
function (according to MIPS). We cannot make a functional
prediction of the pattern only on the basis of this bicluster.

The pattern VIII from the hierarchical clustering
was obtained according to the pattern of bicluster VIII by
cleaving on a certain level of linkage. The corresponding
pattern VIII from hierarchical clustering is shown in figure
5 which consists of 37 ORFs that mainly relate to the
functional group of “protein synthesis” (51%) according to
MIPS. 12 out of the 37 ORFs are unknown ORFs (32%)
and they are also elements in pattern VIII of biclustering
(12/19=64%). These results shown in figure 5 provide more
details of information about functional analysis than only
depending on biclustering. So the function of those
unknown genes may be predicted relating to “protein
synthesis” according to neighbor-joining in hierarchy
subtree. For example, YOL085c as an unknown OREF,
which is allocated in an unknown function pattern of
bicluster is linked directly to YGL135w and YDRO063w in
hierarchy subtree. The latter two genes participate in the
functional group of “protein synthesis”. Not only this ORF,
but also total 12 ORFs in pattern VIII from biclustering are
linked to the genes with the function of “protein synthesis”
in this hierarchy subtree. So we can make a functional
prediction for pattern VIII on the basis of not only
biclustering but also hierarchical clustering. Certainly,
these are only from prediction, and still need to be
validated in biological experiments. The details of
proportions in the two patterns from both of the clusterings
can be seen in figure 6.

In figure 6, the third graph is on the show of an
interaction between the patterns from biclustering and
hierarchical clustering. The overlap-part contains 12
unknown ORFs which are 64% in the pattern of
biclustering and 32% in the pattern of hierarchical
clustering respectively.

5. DISCUSSION

5.1. Comparability of biclustering and hierarchical
clustering

Biclustering and hierarchical clustering show a
certain level of similarity in corresponding patterns (e.g.
pattern VI). If the exact conditions of biclusters are elicited
for hierarchical clustering analysis, the similarity between
the corresponding patterns from biclustering and
hierarchical clustering can be much higher. And the most
important information is the linkage between each gene in
hierarchy subtree. As we have known in normal strategy,
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the hierarchical clustering is difficult to be deployed
effectively in finding meaningful subtrees since genes
rarely exhibit similar expression pattern across a wide
range of conditions, and it is also difficult to find a suitable
level in cleaving a big hierarchy tree. So the strategy in our
research is a significant supplement from hierarchical
clustering to biclustering in detailed information of linked
genes, and it is also a felicitous methodology to overcome
the drawback of hierarchical clustering in normal strategy.

5.2. Cooperativity of biclustering and hierarchical
clustering

For biclustering, it can generally be employed in
identification of gene groups that show a coherent
expression profiles across a subset of conditions. Genes
that exhibit similar expression profiles may imply strong
correlations between their functions in the biological
activities and the soundness of clustering in the analysis of
gene expression profiles. Genes’ functional prediction are
based on this hypothesis. But in some cases of biclustering
analysis of gene expression, the genes involve in one
pattern of bicluster referring to more than one functional
group, or all genes involve in one bicluster referring to
unknown functional group, e.g. pattern VI and VIII
mentioned above. How to predict the function of these
patterns? In the present research, we combined both of the
two clustering methods, biclustering and hierarchical
clustering, and gained better results. These mainly depend
on the features of both methods. First, biclustering of gene
expression data is a promising methodology, which can be
deployed in identification of gene groups on subset of
conditions. These subsets of conditions show us an
important range of datasets for hierarchical clustering.
Therefore the accuracy of hierarchy tree from hierarchical
clustering can be enhanced, and the two corresponding
patterns from two methods behave a strong similarity.
Second, hierarchical Clustering links each gene one by one
on the average or complete linkage strategy finally to form
one big tree. Consequently, more details of genes are
related to the final results in our new strategy, these can be
used for gene predictions. Therefore, we conclude that the
cooperativity between biclustering and hierarchical
clustering is distinct.

5.3. Robustness for functional predictions and clues for
interactomic analysis

A perfect pattern of bicluster is involved in a
general group of function, e.g. “protein synthesis” or
“metabolism” etc. Hierarchy subtrees display the details of
interaction and similarity of each branch through the way
of linked genes. However, it is deficient not only in
pathway and interactome analysis of genes or proteins in
biclustering, but also in preprocessing of analyzing genes in
hierarchical clustering. The combination of both methods can
overcome these drawbacks. Most unknown genes can be
predicted by this new strategy of combining both clustering
methods, although the validating experiments are still
needed.

Interactomic analysis in silico generally bases on
several methods, i.e. genes fusion, genes neighborhood,
phylogenetic profiles, efc. This new strategy of
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combination of the two methods can provide some clues in
interactomic analysis on transcriptional level by the
neighbor-joining of genes in hierarchy trees. This will be
focused on our research in future.

In fact, no one method is suitable for any kind of
datasets. Considering the accuracy, it is better to make a
combination of different methods even for a single kind of
datasets. However, the strategy in our study is a
combination in essence of both of the methods, not in a
simple form, and it has put up a promising application.
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