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1. ABSTRACT

Clustering allows us to extract groups of
genes that are tightly coexpressed from Microarray
data. In this paper, a new method DSF_Clust is
developed to find dominant sets (clusters). We have
preformed DSF_Clust on several gene expression
datasets and given the evaluation with some criteria.
The results showed that this approach could cluster
dominant sets of good quality compared to kmeans
method. DSF_Clust deals with three issues that have
bedeviled clustering, some dominant sets being
statistically determined in a significance level,
predefining cluster structure being not required, and
the quality of a dominant set being ensured. We have
also applied this approach to analyze published data
of yeast cell cycle gene expression and found some
biologically meaningful gene groups to be dug out.
Furthermore, DSF_Clust is a potentially good tool to
search for putative regulatory signals.

2. INTRODUCTION

The advent of Microarray technology has enabled
biologists to monitor the expression patterns of thousands
genes in parallel during biological processes. How to make
sense of the massive data sets produced by Microarray is
now a great challenge. One of the aims is to identify, group,
analyze genes that exhibit highly similar expression
profiles. Such genes defined as coexpressed are probably
coregulated. Clustering is most widely used for grouping
analysis. There is a rich literature on cluster analysis and
various techniques have been developed. For example,
Eisen et al. popularized the use of hierarchical clustering
and applied the average linkage hierarchical clustering
algorithm to identify groups of co-regulated yeast genes
(1). Tamayo et al. used self-organizing maps to identify
clusters in the yeast cell cycle and human hematopoietic
differentiation data sets (2). Other techniques such as k-
means (3), principle component analysis (4), singular value
decomposition (5), have been implemented and
successfully been used to analyze high-dimensional
Microarray data.
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Clustering can be defined as the process of
organizing objects into groups whose members are similar
in some way. In Microarray data analysis, the algorithms
intend to group genes whose expression profiles are
sufficiently close to each other into small clusters. To find
small clusters, in some common k-clustering approaches,
such as k-means and self-organizing maps (SOM), the
predefinition of the number of clusters (parameter of the
algorithm) is required. However, the number of clusters
present in the data is usually unknown in advance.
Changing the parameter usually affects the final result
considerably. In addition, k-clustering algorithms do not
deal adequately with “noise”. If genes are, despite a rather
low correlation with other cluster members, forced to end
up in one of the clusters. Hence the clusters contain a lot of
“noise” and become less suitable for further analyses (6).

To address the issue of “noise”, some graph
theory based clustering methods are introduced. The
intuitive idea of these methods is that clusters can be
considered “densely populated areas” in data space. These
areas ideally are well separated from each other (7). Based
on the graph theoretic approach to clustering and
segmentation, novel clustering algorithms, such as the
corrupted clique model described by Ben-Dor et al. and
iterative feature filtering using normalized cuts described
by Xing et al. could be useful for Microarray data analysis
(8,9).

In this paper, we present a new method, based on
graph theoretic clustering, to find dominant sets in
Microarray data. There is an analogy between the intuitive
concept of a cluster and that of a dominant set (10). As a
cluster, a dominant set is a set of entities that are similar
under some criteria, and entities from different dominant
sets are not similar. In a complete graph, a dominant set is
considered as a subgraph only consisting of a cluster of
nodes. When the concept is introduced to Microarray data,
dominant sets turn out to be strictly equivalent to clusters of
genes or samples.

In our approach, clusters are built and portrayed
as unrelated entities. In contrast with k-means or SOM
approach, it does not assume a given number of clusters
and initial spatial structure of them, but determines cluster
number and structure based on the data. In addition, some
clusters are statistically determined. If appropriate
parameters are selected, the members which do not show
high correlations with other members in the dataset are not
grouped into any dominant set, thus every member has high
correlation with other ones in a dominant set, which results
in very low noise in one dominant set. For convenience, in
the following text, the algorithm is named as DSF_Clust.

3. ALGORITHM

3.1 Preliminaries
Dominant set is a novel concept that

arises from the study of maximal subgraph problem in
image clustering. An image can be represented as a
similarity (edge weighted) graph, where the vertices
represent individual pixels, and the weights on the edges

reflect the similarity between pixel appearances. Graph-
theoretic clustering reduces to a search for a complete
subgraph which can be considered as a concept of the
strictest definition of a cluster. A dominant set is a new
formal definition of a cluster in the edge weighted graphs.
In a complete graph, a dominant set is considered as a
subgraph only consisting of a cluster of nodes.

We denote ),,( wEVP =  as an undirected edge-
weighted graph without self loops, where },,1{ NV L=  is
the vertex set, VVE ×⊆  is the edge set, and w  is the
positive weight function that reflect similarity between
pairs of linked vertices. Higher the w  value is, closer the
pairs of vertices are. There are two basic properties of the
dominant set (cluster) definition: all elements within one
dominant set should be similar to one another, and not
similar to any element of other dominant sets. Based on the
properties of internal homogeneity and external
inhomogeneity, a dominant set can be defined as followed (10).

A non-empty subset of vertices VS ⊆  such that
0)( >TQ  for any non-empty ST ⊆ , is said to be dominant if:

1. 0)( >iqS , for all Si∈

2. 0)(}{ <∪ iq iS , for all Si∉ . (equation 1)
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For the total weight of T , )(TQ  is defined to be:
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For any Vji ∈, , if Sj∉ , we define:

∑−=
∈Sk

ikijS w
S

wjic 1),(   (equation 4)

In the definition, ),( jicS  measures the similarity
between nodes j  and i , with respect to the average
similarity between node i  and its neighbors in S , and

)(iqS  is the function of the weights on the edges of the
subgraph induced by S .

Let W  be the weighted adjacency matrix of P ,
there is a correspondence between the problem of finding
dominant sets in an edge-weighted graph and that of
finding solutions of quadratic program as followed (11):
Maximize XXWXf T

2
1)( = , subject to DeltaX ∈                  

(equation 5)

Where { }10: =≥∈= XeandXIRXDelta Tn  is the

standard simplex of nIR . By virtue of this theoretical result,
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Figure 1. Distributions of Pearson correlation coefficients
of elements set. (a) The set of 10 gene profiles with biggest

)(txi  values after running equation 7 in 500 gene profiles.
(b) The set of 10 randomly selected gene profiles from 500
gene profiles.

we can find a dominant set by first localizing a solution of
program (equation 5) with the following replicator equation
6 and equation 7, and then picking up the support set X  of
the solution to form a dominant set (9). We consider the
following dynamical system:

[ ])()())(()()( tWXtXtWXtxtx T
iii −=& , (equation 6)

where a dot signifies derivative with regard to time t , and
its discrete time counterpart

)()(
))((

)()1(
tWXtX

tWX
txtx

T
i

ii =+ .    (equation 7)

The function )()( tWXtX T  is strictly increasing
with increasing t  along any non-stationary trajectory

)(tX  under both continuous-time equation 6 and discrete-

time equation 7. Furthermore, any such trajectory
converges to a stationary point. Finally, a vector

DeltaX ∈  is asymptotically stable under equation 6 and
equation 7 if and only if X  is a strict local maximizer of

WXX T on Delta .

In the light of the dynamical properties, replicator
equations naturally suggest themselves as a simple and
useful heuristic for finding dominant sets. For we can find
the strict local maximizer of WXX T  in Delta  and also
find a dominant set based on the vector X . In the
following text, we will describe an approach to find
dominant sets in Microarray data after running replicator
equations.

3.2. Finding dominant sets in Microarray data
Microarray data can be represented by a real

valued expression matrix I  where ijI  is the expression
level of gene i  in the experiment (condition) j . Denote
G  as the set of genes and ijs  represents the similarity of
the expression patterns for genes i  and j . And each gene
can be regard as a point in high dimensional space. Since
the similarities between genes can also be presented by a
weight matrix. The above graph theoretic based dominant
set finding algorithm can be used to cluster genes in the
similar way.

We find that after replicator equation 7 the value
of )(txi  could be a criterion to judge if one point belongs
to a dominant set. We performed equation 7 in randomly
selected 500 gene expression patterns from Spellman et al
(12). Here we chose to use only a single time course
containing 18 time intervals. We can rearrange the 500
genes at the value of )(txi  after running equation 7. The
distribution of Pearson correlation coefficients of the ten
genes with biggest )(txi  values is shown in Figure 1a. In
comparison, we randomly chose ten genes and draw their
correlation coefficients distribution shown in Figure 1b.

Compared with random gene patterns (Figure
1b), the genes (Figure 1a) with bigger )(txi  value have
tighter relations. The distribution of random datasets is
sparse and the Pearson correlation coefficients are
relatively low, while coefficients in Figure 1a are high.
Assuming that the 10 genes with highest )(txi  value
constitute a cluster, we found that out of the rest 490, only
two genes’ coefficients with the cluster center were higher
than 0.8. And one of the two genes has 11th highest )(txi , and
the other gene ranks 13 at the order of )(txi  value. Thus we
can conclude that the genes with high )(txi  values would be
grouped into a cluster. However, like many other partition
algorithms, the cluster boundary is hard to define since )(txi

value is not obvious enough to distinguish the dominant set
from non-dominant set. In the following section, we
describe an approach to delimit the boundary between a
dominant set and the rest of dataset when this algorithm is
applied to Microarray data.
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Figure 2. The Pearson correlation coefficients between kth
gene and DSk-1. Kth gene is the gene kg  and DSk-1 is the
dominant set made up by genes from 1g  to 1−kg

After running the above replicator equations, the
genes ranked at )(txi  value. In the following text, the gene
with k th biggest )(txi  value is named as kg . Assuming
that the genes from 1g  to 1−kg  make up a dominant set and
the center of the dominant set can be consider as the mean
of the 1−k  genes’ expression profiles, then we calculated
the Pearson correlation coefficient between kg  and the
center. Figure 2 shows that the coefficients of

19,,4,3 L=k . As the increment of k , the correlation
coefficients tend to decrease. It shows that a gene has a
stronger tendency to belonging to a dominant set if it has a
bigger value of )(txi .

Therefore, definition of a dominant set is an
iterative process. Genes enter iterations in )(txi  value
order. That is, the bigger the value of )(txi  a gene is, the
earlier the gene is used to determine whether it is within the
dominant set. If a gene does not belong to a cluster, the
affinities between the gene and the members in the cluster
are lower than the affinities between the members within
the cluster. Based on the assumption, a stop criterion can be
created by two-sample t-test. The basic steps are described
below:

 (1) Initialization: This step initializes the
members of a dominant set. Generally, the first three gene
vectors are the initial members. However, if any Pearson
correlation coefficient between a member and the mean of
these three vectors is below a threshold, the first gene
vector is removed from dataset and this step is repeated on
the left dataset.

 (2) Iterations: Only one gene is allowed in each
iteration. When kg  is in this step, we denote Pearson
correlation coefficients between kg  and
{ }121 ,,, −kggg L as { }kkkk rrr 121 ,,, −L . In addition, the new

center kC  and the Pearson correlation value kr  between

kg  and kC  are calculated.

k
gCk

C kk
k

+−
= −1*)1(

    (equation 8)

 (3) Termination: We use two sample t-test to
create stop criterion. Assuming that { }121 ,,, −kggg L  is a
dominant set 1−kDS , we calculate the correlation
coefficients { })1)(2()1(2)1(1 ,,, −−−− kkkk rrr L  between 1−kg  and

{ }221 ,,, −kggg L . Denote kr  and ks  as sample mean and
sample variance of { }kkkk rrr 121 ,,, −L .
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The two-sample t-test is used to determine if the
means of two samples { }kkkk rrr 121 ,,, −L  and
{ }121211 ,,, −−−− kkkk rrr L  are equal. The two sample t-test is
defined as:
H0:     1−= kk rr

H1:     1−≠ kk rr
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If the t-statistics is higher than the t value of
significance level alpha, the null hypothesis H0 that the two
means are equal is rejected. It means that kg  is
significantly different from members of { }121 ,,, −kggg L

in level of alpha and the iterations are terminated. Besides,
to prevent low affinity members joining into a dominant
set, threshold tsr  is defined. If kr  is below tsr , the iteration
is terminated. When the stop criterion is satisfied, genes of
{ }121 ,,, −kggg L  constitute a dominant set.

In this approach, the mean of the corresponding
expression profiles is calculated iteratively and
subsequently the cluster center is moved to this mean
profile. This approach moves the cluster in the direction
where the “density” of profiles is higher.

3.3. Global Approach
The global approach (Table 1) is iterative. Each

iteration find a dominant set using the above three steps.
Before next iteration, the genes in the dominant set found
in this step are removed. The rest of genes are used to find
another dominant set in next iteration. There are two key
parameters. Significant level alpha is the statistical character of
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Table 1. The DSF_Clust global algorithm
Global Algorithm:
Initialize
• Input Microarray data matrix I, significant level

alpha, threshold tsr
Iterate
• Sort genes according to its corresponding ix  value;

let kg  be the gene with kth biggest )(txi  value
• Found one cluster using the gene list { }nggg ,,, 21 L ,

until t value of t-test above the t value of alpha
level or the Pearson correlation coefficient between

kg  and the dominant set { }121 ,,, −kggg L  below tsr
• Take away the genes found in the cluster then

continue with the genes left.

a dominant set and threshold tsr controls the quality of a
dominant set. In addition, this approach needn’t predefinition
of cluster number and structure. The Microarray data is
grouped to small dominant sets based on internal structure of
data. The source code is programmed in MATLAB and
publicly available in website
(http://www.chinagenenet.com/DSF_Clust). In the following
text, a dominant set found by DSF_Clust are called a DS.

4. RESULTS AND DISCUSSION

4.1. Performance on three gene expression datasets
We used three gene expression datasets to evaluate

the performance of our approach (13). The first dataset we
used was a set of data about the response of human fibroblasts
to serum (14). We chose a subset of 517 genes whose
expression changed substantially in response to serum.
According to Xu et al. work, the optimal number of clusters for
this datasets is five (15). The second dataset was the budding
yeast saccharomyces cerecisiae, with each gene having 18 time
points. We selected four clusters (74 genes) in previous work
(12,13). Genes in each of these four clusters shared similar
pathway. Our third application was on the fluctuation of
expression levels of approximately 6000 yeast genes over two
cell cycles (17 time points) (16). We chose the subset
consisting of 384 genes whose expression levels peaked at
different time points corresponding to the five phases of the
cell cycle.

According to the expected cluster numbers, we
applied Kmeans approach in the three datasets. The
resulted 4 clusters in first dataset, 5 clusters in second one
and 5 clusters in third one are regarded as standards to
evaluated our DSF_Clust results. We performed DSF_Clust

in the cases of different tsr s and alphas. For each trial we
computed the closeness between the Kmeans results and
the achieved DSs after using DSF_Clust. In convenience,
we use the term ‘cluster’ to refer to a group of genes
obtained by Kmeans approach. Two criteria introduced
from other areas for closeness were used: sensitivity and
specificity. Let opkN  be the number of entries of the k th
cluster, and if this cluster is divided into several DSs, in which
total entries’ number is denoted as ApkN . Then we define the
specificity
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Where n  represents the respective expected cluster
numbers in the three datasets. The specificity describes the
effectiveness of DSF_Clust approach. Higher the
specificity is, more entries belonging to one cluster are
grouped into tight dominant sets. Let AnkN be the number
of entries of the k th DS in achieved structure and the
genes in this dominant set can be fallen into several
clusters, among which one cluster would have the
maximum entries’ number OnkN . Then we define sensitivity
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The sensitivity shows the rate of genes, which belong to
one cluster, however, don’t belong to one dominant set.
Since the results of Kmeans partition are considered as
standards, sensitivity means the accuracy of DSF_Clust
approach. Higher the sensitivity is, fewer genes are grouped
into ‘wrong’ dominant sets.

In addition, we calculated Pearson correlation
coefficients between each member in a dominant set
(cluster) and the center of the dominant set (cluster). The
minimum coefficient MinR is regarded as an internal
criterion to evaluate the quality of a dominant set (cluster).
Intuitively, if MinR of a dominant set is close to 1, the
members in the dominant set have tight correlations and
very similar expression levels, whereas the MinR close to 0
means that some unrelated patterns or ‘noise’ are grouped
into the dominant set. Thus MinR can show the goodness
of a dominant set (cluster) quality.

Figure 3 shows sensitivities, specificities and
MinRs of the DSF_Clust approach on the three dataset with
various significant levels and correlation coefficient
thresholds. In general, the sensitivities in three datasets are
all above 0.85 even close to 1, except for in the alpha=0.99
condition. This ensures the correctness of the dominant sets
finding results. When significant level increases from 0.80
to 0.99, the condition is more difficult to be satisfied on
which dominant sets are separated in this level. Thus the
sensitivity decreases with the increment of significant level
alpha. If the correlation coefficient threshold tsr  is low and
a significant level is not low enough to make a gene
disjoint in a dominant set, some unrelated patterns join in a
dominant set. Then the sensitivity is low, which is showed
in the cases of alpha=0.99, 5.0≤tsr  in dataset2 and
dataset3. However, when significant level is below 0.99,
although with the increment of tsr  the sensitivity increases
slightly. Thus generally, the tsr  is independent on
sensitivity.

Specificity indicates that the ratio of the genes
grouped into dominant sets to the total genes. The others in
total genes are considered as unrelated patterns. With the
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Figure 3. Sensitivities, specificities and MinRs calculated with different tsr s and alphas on DSF_Clust approach. In each plot,
the lines representing 99.0=alpha (open diamonds), 95.0=alpha (solid triangles), 90.0=alpha (open circles) and

80.0=alpha (solid rectangles) are curved. (a). sensitivity in dataset1 (b). specificity in dataset1 (c). MinR in dataset1. The straight
line MinR=0.2362 represents the value of MinR obtained by Kmeans approach on dataset1 (d). sensitivity in dataset2 (e).
specificity in dataset2 (f). MinR in dataset2. The straight line MinR=0.2988 represents the value of MinR obtained by Kmeans
approach on dataset2 (g). sensitivity in dataset3 (h). specificity in dataset3 (i). MinR in dataset3. The straight line MinR=0.1448
represents the value of MinR obtained by Kmeans approach on dataset3.

increment of tsr  or the decreasing of significant level, the
constraint is strengthened. Consequently, the number the
genes belonging to one dominant set is decreasing, the
specificity is also decreasing. Essentially, when tsr
increases or alpha decreases, a Kmeans cluster is splitting
into several dominant sets that are satisfying the condition.
But some genes originally belonging to a cluster cannot be
grouped to any dominant set, then these genes are
considered as “noise” for the dominant sets. The specificity
is decreasing. However, in other aspect, the quality of a
dominant set is improving and a dominant set appears to be
“pure” after DSF_Clust approach.

The parameter MinR is used to evaluate the
quality of the clusters obtained by one cluster approach.

From the Figure 3, we can see that the MinRs of three
datasets on Kmeans approach are only 0.2362, 0.2988,
0.1448, respectively. However, the MinRs on DSF_Clust
approach are much higher than those on Kmeans
approach. If the correlation coefficient threshold tsr  is
chose to be 0.80, the MinRs are even higher than 0.90.
Therefore, the patterns in a dominant set are very close to
each other, and few “noise” patterns are contained in a
dominant set. However, the improvement of dominant set
quality is at the cost of the decreasing of specificity. That
is, it is probable that some useful information would be
lost after a Kmeans cluster is divided into few DSs. Yet
highly tight correlated patterns are the purpose of most
clustering approaches and they are also the base of
subsequently further research, for example, regulatory
elements finding.
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In summary, with the increment of correlation
coefficient threshold tsr , the sensitivity and quality of
dominant set is increasing, but specificity is decreasing. In
addition, with the increment of significant level alpha, the
sensitivity and quality of dominant set is decreasing, but
specificity is increasing. Noted that in the condition of
alpha=0.99, the magnitude of difference in sensitivity,
specificity and MinR is a bit big. However, in other three
conditions of alpha, they are only slightly changed. Based
on the rules and practical instances, the parameters tsr  and
alpha can be chosen in DSF_Clust approach.

4.2. Performance on yeast cell cycle
We applied our approach on a published data set

in http://cellcycle-www.stanford.edu, which, from
Spellman et al, consists of yeast Microarray experiments
from varying conditions (12). Here we chose to use only
one single time course, where gene expressions are
measured in a single process of cell division cycles
following alpha-factor block-and release. Moreover, we
just focused on genes that have known functions
characterized in data for easier interpretation and genes
without missing values. After gene selection, only 1914
yeast gene expression profiles taken at 18 time intervals
during two cell division cycles, synchronized by alpha
arrest and release, were clustered.

It is common to normalize gene expression
vectors before cluster analysis. Here we normalize the
expression profiles so that, of each gene, the mean is 0 and
the variance is 1. The parameters 95.0=alpha  and 8.0=tsr
were used to find dominant sets from normalized data.

4.2.1. Finding co-regulated dominant sets
After running DSF_Clust, 1259 genes in total were

grouped into 153 dominant sets. We mapped the genes in
DSs to the functional categories in the MIPS database,
http://mips.gsf.de/proj/yeast/catalogues/funcat/ version
from 06.12.2001. Using the hypergeometric probability
distribution, P values were calculated to associate DSs with
each functional category (Table 2). Lower a P value (higher
a –log10 p value) is, tighter the association is. It is likely
that most of the ORFs belonging to these enriched
functional categories are biologically significant members of
the corresponding DSs. Here only 9 DSs were listed in Table
2. To see all DSs whose P values are above E-04, you can visit
the website http://www.chinagenenet.com/DSF_Clust.

By using web-based tool FunSpec for rapid
interpretation of yeast gene clusters (17), we found that
many dominant sets are identified which have expression
profiles close to previous work (12,18,19). Since the gene
expression profiles cover about two full cell cycles, we
firstly care about the cell cycle related dominant sets.
Genes in DS3 are strongly cell cycle regulated and peak
expression occurs in mid-G1 phase. This DS is
corresponding to “CLN2” cluster described by Spellman et
al (12). Most of the genes in this DS involve in DNA
synthesis, replication, recombination and repair. The major
cell cycle regulators: CLN1, CLN2, CLB5, CLB6 and
SWI4 are contained in this DS. Many genes in this DS15

are included in “CLB2” cluster described by Spellman et
al, where the genes are highly regulated with a peak in M
phase. From the expression peak and genes’ function, it can
be suggested that genes in this DS may play a role in
budding and cell polarity. For the cell cycle was
synchronized by alpha arrest and release, a group of genes
directly involved in mating pheromone (alpha factor)
would be found. DS21 is about pheromone response, some
of which are known to be cell cycle regulated. It is
suggested that some alpha specific genes are induced by
transcription factor MAT alpha 1 binding to DNA
cooperation with another factor MCM1. Most of genes in
DS35 are involved in phosphate utilization. The cell-
regulated genes are involved in transport of essential
minerals and organic compounds across the cell membrane.
They reach peak expression late in cell cycle during M and
M/G1 phase. Most of genes in DS1 and DS9 participate in
RNA processing. The genes include the RNA related
enzymes or complexes, such as RNA polymerase, RNA
processing complexes and DNA directed RNA
polymerases. These genes are involved in tRNA or rRNA
related processes, such as ribosome biogenesis and
assembly, rRNA metabolism, rRNA modification, rRNA
tRNA synthesis and transcription. In addition, we found
many ribosome biogenesis dominant sets, in which the p-
value of DS16 is smallest. These genes are mostly
ribosome protein genes. A majority of the genes are
functionally characterized by structural protein of
ribosome, which means they are sub-components of
ribosome machinery. However, some dominant sets are not
shown in any reports and p values of mapping to functional
categories reveal that these clusters may be significant,
such as clusters of cytoplasmic and nuclear degradation
(DS42) and purine ribonucleotide metabolism (DS124).
These dominant sets can be done further research in their
biological processes and activities.

4.2.3. Search for putative regulatory elements
It is assumed that genes with similar expression

profiles, i.e. genes that are coexpressed may share
something common in their regulatory mechanisms, i.e
may be coregulated. Therefore, by clustering together
genes with similar expression profiles, we find groups of
potentially coregulated genes to search for putative
regulatory signals (20). Searching the yeast promoter
database SCPD (21), we found that most of the yeast cell
cycle dominant sets described in our paper have their
special regulatory elements (Table 3). DS3 is a dominant
set involved in DNA synthesis, replication, recombination
and repair. MBF and SBF are the two most direct cell cycle
regulators. Their binding sites MCB (AGCGCGT) and
SCB (CRCGAAA) can easily detected in these genes’
promoters. 25 genes of 29 in this DS contain MCB element,
and SCB motif can be found in the upstream region of 10
genes. DS15 is supposed to be MCM1 regulated dominant
sets. It is suggested that the majority of these genes contain
either MCM1 site or the composite site MCM1+SFF and
some genes are regulated through ECB element, a variant
of the MCM1 site. We detected the motifs in the upstream
region of these genes and found that 100 percent of these
15 genes contain CNNNWWRG element, which is very
similar to MCM1 site. DS35 is characterized with
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Table 2. Enrichment of DSs for ORFs with functional categories
DS MinR MIPS Functional category NDS NFC DP
1 0.90 rRNA processing 13 6 7.44E-08

3 0.80 DNA synthesis and replication
DNA recombination and DNA repair

29
29

14
6

3.00E-16
3.25E-07

9 0.82 rRNA processing 29 10 5.50E-11

15 0.80 cytokinesis (cell division) 15 4 4.22E-06

16 0.80 ribosome biogenesis 20 18 8.13E-22

21 0.80 pheromone response, mating-type
determination, sex-specific proteins

17 7 4.49E-07

35 0.78 phosphate utilization 11 4 2.86E-07

42 0.80 cytoplasmic and nuclear degradation 10 5 3.36E-06

124 0.78 purine ribonucleotide metabolism 7 4 6.51E-07

DS: the name of a dominant set. NDS: Number of ORFs in a DS. MinR : the minimal correlation coefficient between the members
of a DS and the DS center. NFC: ORFs within Functional category in a DS. DP: p-value, which shows the degree of enrichment of
a cluster for ORFs within a particular functional category. If we noted respectively kN  and kM  the total number of ORFs in the
clustering algorithm and the number of ORFs within a functional category, and the number of ORFs in the dominant set kDS  is

noted kn  while the number of ORFs in kDS  within the functional category is noted km , then we can use the hypergeometric
probability distribution to compute the probability(DP, CP) associated to each functional categoty,
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phosphate utilization then naturally the element of
phosphate utilization, PHO4, are the leading motif of this
dominant set. As expected, 8 genes of 11 contain this

PHO4 motif. In addition, about 80 percent (14 genes in 18)
of DS33 had the motif AGGNG. DS33 is involved
mitochondrion metabolism, therefore we infer that the
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Table 3. The elements of the DSs.
DS Consensus NE NDS
DS1 GCGATGAG 6 13

WCGCGW (MCB) 25 29DS3
CNCGAAA (SCB) 10 29

DS15 CNNNWWRG 15 15
DS35 CACGT (PHO4) 8 11
DS33 AGGNG 14 18

NE is the number of genes containing the element in this
DS. NDS is the number of the genes in the DS.

AGGNG motif may be functional important in the process
of mitochondrion metabolism.

In searching for regulatory sites using Microarray
data, the selection of appropriate clustering method is a
challenge. Using common clustering methods, many
unrelated profiles will be grouped into one cluster. Then the
confusion or “noise” would be introduced. When using
DSF_Clust approach with appropriate threshold, the
resulted dominant sets will exhibit a tightly related
expression profiles. It is effective to consider genes in a
dominant sets as candidates for extraction of regulatory
motifs. For example, in the above listed yeast cell cycle
dominant sets, DS1 and DS9 are all tightly associated with
rRNA processing and their profiles are very similar. In
common clustering method, these two DSs will be merged
into one cluster. However, the value of MinR of DS1 is
much bigger than the correlation coefficient threshold tsr .
It means that if we assume all the expression data form a
data space, the expressions in DS1 are close enough to each
other that the DS1 can be separated out in significant level
and the compulsory threshold tsr  is not needed. Moreover,
when we search for their common regulatory elements, the
motif GCGATGAG emerged in about fifty percent genes in
DS1, however, only less than twenty percent in DS9. We
supposed that this motif might be the key to result in
essential separation of DS1 and DS9. It is anticipated that
in future work DSF_Clust will be a useful tool to
understand the regulatory mechanism.

5. SUMMARY

In this paper, we present a new approach named
DSF_Clust to cluster Microarray data. The algorithm is
designed to find clusters of significantly coexpressed genes
in high-density areas of the data. It is an interesting new
approach for some important issues in clustering are tried
to deal with. Firstly, there is a significance level attached to
a dominant set. Secondly, no pre specific cluster number is
required. Number of dominant sets is automated
determined based on the expression data used in clustering.
Genes not exhibiting an expression profile significantly
similar to the expression profile of other genes in the data
set are not assigned to any one of the dominant sets.
Thirdly, if we consider the closeness between the elements
in one dominant sets as the criteria to evaluate the quality
of a dominant set, then every dominant set is of good
quality with high threshold tsr . Thus this approach is a
blend of unsupervised analysis and supervised analysis of
Microarray expression data. We have shown that the

unrelated patterns in a cluster produced by Kmeans
approach will not grouped in any dominant sets produced
by DSF_Clust. A “noisy” Kmeans cluster may be divided
into few dominant set where elements are tightly close to
each other in expression. When we used the DSF_Clust
approach to cluster the published yeast cell-cycle
Microarray data, a lot of dominant sets similar to clusters
reported in other literatures are found. Some dominant sets
of coregulated genes are easy to find putative regulatory
elements. Our DSF_Clust approach is could be a helpful
tool for finding motifs.

In our DSF_Clust approach, there are two key
user-defined parameters, significance level alpha and
Pearson correlation coefficient threshold tsr . Definition of
alpha has the advantage that a dominant set has a strict
statistical meaning. The threshold tsr

 
ensures the qualities

of the clustered dominant sets. When a dominant set is well-
separated in data space, significance level alpha plays a key
role to find the dominant set. However, in many cases, a
dominant set is not separated well from other data in the level
of significance alpha, then the threshold acts as “ a guard” to
prevent unrelated members joining in the cluster. When alpha

increases, the constraint t-value alphat
 to separate a gene from a

dominant set is getting small. Then a dominant set is easy to
build. In addition, if correlation coefficient threshold tsr

 
is

high, the members in a dominant set must have tight
affinity. However, that one relative loose dominant set
divides into few tight ones would happen.

Sometimes the results of our approach have a bit
of disagreement with external biological knowledge. For
the biological system is very complex, sometimes genes
with different annotated functions or involved in different
cellular process might have similar expression patterns.
Then in these cases it is not enough to partition genes into
disjoint clusters. The main purpose of our approach is to
obtain dominant sets with tightly close patterns. In most
cases, we can obtain detailed and meaningful groups. But at
the same time, it is probable that two patterns with
associated biological function are grouped into different
dominant sets because their expression patterns have no
enough affinity. Thus some information is lost. We should
adjust the parameters of significant level and threshold
according to the importance of the affinities between one
dominant set and the lost information. In addition, our
approach is not fast when the number of clustered patterns
is very big. The process of iterations is time-consuming so
that it may take much time to finding all dominant sets in
real data. This problem will be addressed to optimize the
algorithm in the future.
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