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1. ABSTRACT

Worldwide, cardiovascular disease (CVD) is a
leading cause of death. Endothelial dysfunction is now
recognized to be a key platform for the pathophysiological
effects of atherosclerosis.  It is now well accepted that
atherosclerosis is not merely a benign and passive process,
but is in fact a dynamic and progressive disease arising
from a combination of endothelial damage/dysfunction,
inflammation, thrombosis and coagulation leading to
potential clot-related vessel occlusion. The between
inflammation, thrombosis and coagulation in the
pathogenesis of CVD is more than simply association, as it
clear that these processes are critically influenced by one
another. In this preface we present a basic overview of the
evidence in support of this relationship, which will be
expanded upon in sequential chapters. In addition we
briefly discuss a number of novel anticoagulants which not
only reduce coagulation, but have ancillary
antiinflammatory properties, thus further supporting the
triad of inflammation, thrombosis and coagulation in the
development of CVD.

2. INTRODUCTION

Cardiovascular disease (CVD) is currently the
leading cause of death and disability in the developed
world, and is predicted to soon overtake infectious disease
as the pre-eminent cause of death worldwide (1). In

particular, myocardial infarction (MI) related to coronary
artery disease (CAD) represents the single greatest
contributor to this enormous health burden (2).

However, arterial thrombosis on disrupted
atherosclerotic lesions can manifest as other well
recognised cardiovascular events, such as stroke and acute
limb ischaemia. Thrombin, fibrin and platelets are the
prominent components of the thrombi that occlude arteries
and may also participate in the initiation and progression of
the atherosclerotic plaque (3,4).

Whereas previously considered a relatively bland
process, our current understanding of atherosclerosis
suggests that the latter is a dynamic and progressive disease
arising from a combination of endothelial
damage/dysfunction, inflammation and coagulation which can
ultimately lead to clot-related vessel occlusion (5,6).  Indeed,
the inflammatory response involves not only the arterial
smooth muscle and endothelial cells, but also leukocytes and
platelets derived from the blood. Also, endothelial
damage/dysfunction is considered the earliest pathological
signal of atherosclerosis (7). Many cardiovascular risk factors,
such as hypertension, smoking, diabetes and elevated
cholesterol impair endothelial integrity and may trigger
atherosclerosis (’atherogenesis’) without the need for
physical endothelial injury per se (8-11).
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Figure 1. Simplified illustration showing the interaction between inflammation, coagul;ation and thrombosis.

We are honoured to introduce this comprehensive
review issue of ‘Frontiers in Bioscience’, outlining the
unique relationship between blood coagulation,
inflammation, and thrombosis, and its implications in
cardiovascular disease.  This is even more pertinent in
recent years as our understanding of the complex
pathophysiology of these processes has dramatically
increased. This has allowed for the introduction of several
novel anticoagulants that - in addition to reducing
thrombosis - also appear to have a dual anti-inflammatory
role, providing further evidence to support the
inflammation/coagulation/thrombosis concept.

The process of clot formation (thrombogenesis) is
a complex process involving the initiation and propagation
of coagulation with simultaneous platelet activation and
thrombosis (12).  In the original ‘cascade’ system, the
process of coagulation was thought to involve two parallel
but separate pathways, known as the intrinsic and extrinsic
system (13). It is now known that this two-pathway model
is somewhat simplistic and outdated, and does not
accurately reflect the events of in vivo haemostasis;
consequently, the original, simple two-pathway model to
clot formation has been replaced by the tissue factor (TF)
pathway (formerly known as the extrinsic pathway) - where
TF/factor (F)VII  is the key protagonist – and the intrinsic

system (activated when FX (Hageman Factor) comes into
contact with negative charges underlying the endothelium)
providing an ancillary propagation and amplification role
(14).

The initiation of coagulation is triggered when
TF becomes exposed on the plasma membrane leading to
its interaction with FVII, or its active form, FVIIa, to form
the enzymatically reactive TF-FVIIa complex (Figure 1)
(14,15). TF is itself a lipid-dependent transmembrane
glycoprotein that is sequestered in the circulation in
quiescent endothelial cells and monocytes (14,16).  In
addition to its initiation by trauma, there is also increasing
evidence to support a pivotal role of inflammation as a key
trigger for the TF pathway (17). Also, the TF/ FVIIa
complex activates a series of clotting factors (FVIIIa and
FIXa) leading to the activation of activated X (Xa).
TF/FVIIXa with FVa as a cofactor and calcium then form
the prothrombinase complex, leading to the conversion of
prothrombin (FII) to thrombin (FIIa), platelet activation and
the subsequent conversion of fibrinogen to fibrin (18).

The TF pathway does not happen in isolation.
There are a number of additional amplification loops and
feedback mechanisms, involving various coagulation
cofactors, which further fuel the clot forming process,
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which will be addressed by Dr McVey in article 2 (15).
This system is simultaneously counterbalanced by a series
of activated coagulation inhibitors (tissue factor pathway
inhibitor (TFPI), antithrombin (AT) and the Protein C
pathway) working in tandem with the competing
fibrinolytic pathway, acting to control unrestrained
coagulation (figure 1)  (19).

Not only does inflammation lead to activation of
coagulation, but the converse is equally true, whereby
coagulation itself leads to activation of a number of parallel
processes culminating in vascular inflammation (20). The
vulnerable plaque model of coronary artery disease
provides an excellent example of the crosstalk that
potentially occurs between inflammation and coagulation.
Expression of coagulant material, notably TF, by
inflammatory cells in the unstable plaque can also initiate
coagulation and thrombin generation, resulting in the
formation of a platelet-fibrin thrombus, and further
stimulation of inflammatory pathways.

Coagulation activation induces a series of
signalling pathways that mediate both thrombosis and a
variety of inflammatory responses. The issue of coagulation-
dependent thrombosis and coagulation dependent
inflammation will be discussed in detail in sequential articles.
The key mechanism for this process is via activation of
protease activated receptors (PARs), located on endothelial
cells, mononuclear cells, platelets, fibroblasts and smooth
muscle cells (21,22). All PARs belong to a family of seven-
transmembrane G-protein-coupled receptors, which have the
pecuniary feature of serving as their own ligand. Consequently
proteolytic cleavage of the PAR receptor leads to
autoactivation of the same receptor by its new N-terminus,
which acts as a ‘tethered ligand’ (as the ligand is attached to
the receptor itself) leading to transmembrane signaling (23).

PARs appear to link tissue injury to appropriate
cellular responses. Also, PAR activation can induce cellular
production of several inflammatory cytokines - such as
tumour necrosis factor (TNF)-α, IL(interlukin)-6, IL-8 IL-
1β, etc – and cause the upregulation of inflammatory
responses in macrophages and the production of adhesions
molecules, such as ICAM (intercellular adhesion
molecule)-1 and VCAM (vascular adhesion molecule)-1
(24,25).  In addition, stimulation of PARs on  endothelial
cells leads to mobilization of von Willebrand factor (vWF)
and P-selectin from Weibel-Palade bodies, as well as the
production of platelet activating factor and subsequent
platelet activation (26,27).

Thus, coagulation can stimulate various
inflammatory pathways, but inflammation per se can
stimulate coagulation and thrombosis. Some of the key
concepts of this process will be reviewed in this series. In
cell cultures, both endothelial cells and monocytes can be
induced by inflammatory markers - such as C-reactive
protein, MCP-1, IL-1, IL-6 and TNFα - to produce TF,
shifting the vascular environment to a more prothrombotic
state (28,29). These cells can also release blood borne TF in
microparticles that further contribute to haemostasis
(30,31).

Perhaps the best in vivo evidence supporting the
important role of cytokines in mediating thrombosis is the
association of coagulopathy with sepsis, which has been
shown to be largely driven by bacterial endotoxin
stimulation of the de novo expression of TF on circulating
monocytes (32).  Administration of pro-inflammatory
cytokine inhibitors (eg. anti- IL-6 or anti-TNFα antibodies)
can even prevent abnormal coagulation during systemic
infection (33,34) Inflammation can also lead to reduced
activation of natural anticoagulant pathways, further
enhancing thrombosis (20).

The role of platelet aggregation and adhesion
involves a number of important interactions between
platelets, fibrin and leukocytes. Furthermore, we now know
that platelets provide a fundamental role in
atherothrombosis and the targetting of platelet interactions
has represented a fundamental advance in the treatment and
prevention of coronary artery disease, which will be
discussed in detail in a sequential article. In patients with
CVD, vascular intimal injury associated with endothelial
denudation and plaque rupture exposes subendothelial
collagen and vWF, which support prompt platelet adhesion
and activation (35). Circulating platelets can adhere either
directly to collagen or indirectly via the binding of vWF to
the glycoprotein (GP)1b/FIX complex on the platelet
surface (36,37).

P-selectin is a membrane adhesive glycoprotein
contained within platelet alpha granules and Weibel-Palade
bodies of endothelial cells (38). Following cellular
activation, P-selectin is rapidly mobilised to the plasma
membrane and facilitates interactions between platelets and
leukocytes and between endothelial cells and leukocytes,
the latter leading to leukocyte rolling (39). This interaction
between platelets and leukocytes also links
haemostatic/thrombotic and inflammatory responses.
Indeed, following platelet activation, P-selectin can directly
increase TF expression on monocytes (40). This process is
a key component in atherosclerotic plaque development
and subsequent thrombotic events (41).

Glycoprotein IIb/IIIa (GPIIb/IIIa) plays a major
role in the regulation of platelet adhesion and aggregation
during haemostasis. Platelet activation leads to
conformational changes within GPIIb/IIIa ("inside-out"
signalling), which increases the affinity of the receptor for
its primary ligand, fibrinogen (42). Bound fibrinogen then
acts as a bridging molecule facilitating the interaction of
adjacent platelets. Upon fibrinogen binding, GPIIb/IIIa on
the platelet undergoes further conformational changes and
through a process termed "outside-in" signalling the
receptor signals in to the platelet ultimately resulting in
acceleration of the aggregation process (42).

TF is the key protagonist of the coagulation
pathway and we have previously demonstrated its
importance in inflammation and hemostasis (14,15). It is
also increasingly appreciated that TF has a fundamental
role in intracellular signalling and cell proliferation (43).
The TF content of atherosclerotic plaques has been shown
to be a major determinant of its thrombogenicity and TF
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levels are increased in patients with acute coronary
syndromes (44,45). In fact, mononuclear cells on
atherosclerotic plaques appear to be primed to express more
TF than native circulating mononuclear cells, which
probably relates to sustained exposure to proinflammatory
cytokines in the plaque, such as IL-6, and monocyte
chemoattractant protein and platelet-derived growth factor
(46).

Given, the multiple complex roles of TF, and its
critical role in the initiation of coagulation and contribution
to inflammation, there has been a huge amount of research
interest in the development of specific TF/FVIIa inhibitors.
A wide array of strategic approaches to inhibiting TF/FVIIa
complex has been tried and developed, with some in their
very early infancy. Antagonists include active site inhibited
FVIIa, TF mutants, anti-TF antibodies, anti-FVII/FVIIa
antibodies, naturally-occurring protein inhibitors, peptide
exosite inhibitors, and protein and small molecule active
site inhibitors (47). The implications of these potential
therapies in anti-inflammation and antithrombotic therapy
will no doubt be a topic of future discussion. We expect
that there will be a rapid future expansion in research into
the targeted inhibition of TF/FVIIa in the setting of CVD,
(in particularly coronary artery disease) and in the
modulation of sepsis.

We have so far demonstrated the importance of
inflammation in the development of atherosclerosis,
thrombosis and coagulation. This process is known to be
orchestrated by the interactions between inflammatory cells
(such as platelets and T and B lymphocytes) and vascular
cells (such as endothelial cells and smooth muscle cells).
Following cellular activation or apoptosis these cells
release vesicles shed from the blebbing plasma membrane
called microparticles (MP) (48). Whilst once considered
merely inert debris reflecting cellular activation or damage,
MP are now acknowledged as important cellular effectors
involved in cell-cell crosstalk (49).

These MP have both cell surface proteins (with
negatively charged phospholipids on their surface) and
cytoplasmic components from the original cell. MPs differ
in their size, shape, cellular protein content (including
tissue factor) as well as in their procoagulant and
proinflammatory properties (48).  They have potent pro-
inflammatory effects, promote coagulation and affect
vascular function (50). For example, both platelets and
platelet-derived microparticles can lead to activation of
endothelial nuclear factor-κB and nuclear factor- κB-
regulated genes that play important roles in chemotaxis and
transmigration of monocytes (51,52). Since these processes
are critically involved in the development of CVD, coupled
with the fact that increased numbers of circulating MPs
have been identified in a variety of CVD states strongly
supports a role for MPs in the pathogenesis of CVD (53-
57).

MPs are known to be are present in low numbers in
health with dramatically increased numbers being found in
the presence of a number of CVD states. Flow cytometry
has evolved as the gold standard technique for their

quantification and identification (58). Recent findings have
demonstrated that leukocyte-derived microparticles,
bearing both tissue factor and the platelet adhesion marker
P-selectin glycoprotein ligand 1 circulate in the blood and
accumulate in the developing platelet-rich thrombus
following vessel wall injury (31, 59).  Once activated,
platelets themselves can release various pro-inflammatory
cytokines (such as CD40 ligand and IL-1β) and
chemokines (such as RANTES and platelet factor-4), which
further amplifies the inflammatory process (60-62). The
importance of MP in inflammation, vascular remodelling
and thrombosis will be further discussed in this special
issue.

Current anticoagulation practice involves the use
of drugs that inhibit thrombin directly or indirectly by
interacting with other clotting factors. Anticoagulants in
current use can broadly be divided into the heparins
(unfractionated and low molecular weight), vitamin K
antagonists (VKAs) and new agents, such as the factor Xa
inhibitors and thrombin inhibitors. VKAs antagonists, most
notably warfarin have represented the mainstay of
anticoagulation for the last 50 years. Unfortunately, whilst
highly effective anticoagulants, VKAs are beset by a
multitude of problems that have limited their use (63).

Given its unique position at the convergence
point of the original intrinsic and extrinsic (TF/FVIIa)
pathways in the coagulation system, FXa represents an
interesting therapeutic target for both antithrombotic and
anti-inflammatory drug development (64-66). The
physiological role of FXa is in the cleavage of prothrombin
to thrombin. The FXa inhibitors are a novel class of
anticoagulants, which are synthetic versions of the five
sugar sequence of heparin and are thus known as
pentasaccharides. They have specific inhibitory activity for
FXa, which is largely a reflection of their very small
molecular size and unlike heparins, they have no affect on
IIa (67).  The pentasaccharides can inhibit FXa either
directly (for example tick anticoagulant peptide, ZK-
807834 and DX-9065a) and indirectly by forming a tight
bond with antithrombin (for example, the subcutaneous
agents fondaparinux, idraparinux and the oral FXa inhibitor
razaxaban) (68-70). Both low molecular weight and
unfractionated heparin can to some extent be considered
indirect Xa inhibitors, as they inhibit both Xa and thrombin
by indirectly by increasing the antithrombin III activity.

Of note, FXa inhibitors have several advantages
over traditional VKAs and heparins, such as a predictable
anticoagulant profile without the need for routine
anticoagulant monitoring, few drug interactions and a very
low incidence of heparin induced thrombocytopenia (71).

With respect to cardiovascular disease, there have
been a number of promising data. For example, the
XaNADU-1B Investigators demonstrated the efficacy of
the synthetic reversible FXa inhibitor DX-9065a in
reducing both thrombin generation and fibrin formation
among patients with stable coronary artery disease (72).
Furthermore, in a phase II trial of 402 patients, there was a
non-significant tendency toward a reduction in ischemic
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events and bleeding with DX-9065a compared with heparin
in patients with acute coronary syndromes (73). In addition,
the PENTUA (Pentasaccharide in Unstable Angina) and
PENTALYSE (Pentasaccharide as an Adjunct to
Fibrinolysis in ST-Elevation Acute Myocardial Infarction)
trials provide data to support the safety and efficacy of the
FXa inhibitor fondaparinux in the setting of unstable angina
and ST-elevation myocardial infarction respectively
(PENTUA) Study (74-77).

It would seem plausible, given the demonstrated
interrelationship between inflammation and coagulation
and the composite role of FXa in this process, that
inhibition of FXa may also have the capacity to attenuate
inflammation (66). In rat models, FXa can induce TF
expression in human peripheral monocytes and inhibition
of FXa by DX-9065a reduces TF expression in the liver of
rat endotoxemia (78). Furthermore, in another rat model,
the FXa inhibitor DX-9065a showed a protective effect on
the microcirculation of endotoxemic rats by attenuating
leukocyte-endothelial interaction, with suppression of both
excessive coagulation and cytokine production appearing to
play an important role (79).

In contrast to all heparin products which act
indirectly via antithrombin to inhibit both thrombin and
FXa, the direct thrombin inhibitors (DTI) bind to thrombin
specifically and inhibit its catalytic activity without
involvement of AT. Drugs in this class (all administered
parenterally) include lepirudin (a recombinant hirudin),
bivalirudin (a semisynthetic DTI), argatroban, (a small
semisynthetic arginine analogue), inogatran, desirudin (a
recombinant desulfato hirudin), ximlegatran (AstrZeneca®)
and the active form of ximelagatran, which is melagatran (a
dipeptide potent reversible competitive inhibitor of alpha-
thrombin) (80-84).

Smaller DTIs, such as melagatran, offer the
advantage of inhibition of both free circulating and clot
bound thrombin (84,85). DTIs probably provide more
effective inhibition of thrombus progression than
unfractionated and low molecular weight heparins that
inhibit free thrombin only (86,87) In addition, DTIs have
few plasma protein and platelet interactions, do not bind to
PF4 on platelets, so their activity is preserved in the
vicinity of platelet-rich thrombi and they consequently do
not cause heparin-induced thrombocytopenia (88).

With respect to CVD, ximelagatran has proven
efficacy in the prevention of stroke among patients with
non valvular atrial fibrillation, however concerns over its
hepatic side effects, have curtailed its widespread approval
(89). Other DTIs such as Bivalirudin have proved
promising as an adjunct in percutaneous coronary
intervention (90,91).

DTIs are able to neutalize thrombin, by
occupying its catalytic binding sites, its fibrinogen binding
sites or both (92). However, whilst the anticoagulation
properties of DTI have been thoroughly investigated, the
anti-inflammatory potential of these drugs has not yet been
explored.  Whilst fibrinogen is an acute phase protein it can

itself act as an inflammatory trigger by stimulating the
expression of proinflammatory cytokines (such as TNF-α
and IL-1β) on mononuclear cells and induce the production
of chemokines (IL-8 and MCP-1) by endothelial cells
(93,94). Increased blood levels of circulating fibrinogen are
also associated with long-term risk of thrombosis, as well
as an increased risk of cardiovascular disease (95). Thus, as
DTIs inhibit the conversion of fibrinogen into fibrin, they
have the capacity to influence inflammation, by
augmenting neutrophil activity (96). Furthermore, by
inhibiting the availability of thrombin, DTI have the
capacity to interrupt its well known proinflammatory
actions (97).

The protein C anticoagulant pathway serves as a
major system for controlling thrombosis, limiting
inflammatory responses, and potentially decreasing
endothelial cell apoptosis in response to inflammatory
cytokines and ischemia (98).

Indeed, several components of the protein C
anticoagulant pathway can reduce the inflammatory
response. Under physiological conditions, for example,
protein C is activated by thrombin bound to endothelial
cell-membrane thrombomodulin (99). Thrombomodulin is
itself a membrane protein with several domains, and the
binding of thrombin to thrombomodulin results in a
significant increase in the activation of protein C and
prevents the thrombin-mediated conversion of fibrinogen to
fibrin, as well as prevention of the binding of thrombin to
other cellular PARs on platelets and inflammatory cells
(100,101). Binding of protein C to the endothelial protein C
receptor also results in a further 5-fold augmentation of the
activation of protein C by the thrombomodulin-thrombin
complex (102).

Activated protein C (APC) regulates coagulation
activation by proteolytic cleavage of the essential cofactors
FVIIIa and FVa. Furthermore, APC has a number of anti-
inflammatory effects and has been shown to inhibit endotoxin-
produced production of TNF-α, IL-1β, IL-6 and IL-8 by
cultured monocytes and macrophages (103). Given the
important dual anticoagulant and anti-inflamatory role of APC,
it would seem highly plausible that it could have potential
therapeutic benefits, particularly in disease states that involve
the activation of both systems. Current research in this field
with respect to cardiovascular disease is still in its infancy and
is a highly evolving area. Current research utilizing APC, in
the setting of cardiovascular disease has mainly centred on
ischemia-reperfusion injury and ischaemic stroke; however, we
expect there to be a significant expansion in therapeutic
options of APC in the setting of CVD in the future (104,105).

There are four identified PARs - PARs1, 3 and 4
bind thrombin whilst PAR-2 binds to several trypsin-like
serine proteases, including the TF-FVIIa complex, and are
thus important mediators of both inflammation and
thrombosis (106,107) PAR1 is the primary thrombin
receptor in human and animal cells, and whilst there has
been a great deal of interest in the development of specific
antagonists of the protease-activated receptors, achieving
such goals remains extremely challenging (108)
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Considerable efforts have been directed at
developing specific antagonists of the first elucidated
member of this receptor family, namely the thrombin
receptor, PAR-1 109).

In rat models, RWJ-58259 is a potent and
selective inhibitor of PAR-1, and has been shown to inhibit
thrombin-induced intracellular calcium signalling, vascular
smooth muscle cell proliferation and arterial injury-induced
stenosis post balloon angioplasty (110). However,
significantly less effort has been directed at the second
member of the family, PAR-2, due in part to lack of clarity
concerning its activating protease(s), and uncertainty
concerning its physiological and pathophysiological roles
in disease pathways (111).

PAR1 inhibitors are able to selectively inhibit
most of the cellular effects of thrombin. PAR1 antagonists
have the relative advantage over DTIs of not inhibiting the
enzymatic action of thrombin in the coagulation cascade,
and hence they have minimal bleeding side-effects
(112,113).

In conclusion, there have been extraordinary
advances in our understanding of the complex
pathophysiology of coagulation, thrombosis and inflammation.
These processes do not happen in isolation, and there is a clear
interaction between all 3 processes, in which thrombosis and
coagulation can act as triggers for inflammation and vice versa.
Atherosclerosis is a prime example of these systems working
in tandem, and thus represents a unique opportunity for further
research into the concepts of blood coagulation, thrombosis
and inflammation. Furthermore, this increased understanding
has created exciting opportunities for the development of novel
drugs that can interrupt these synergistic pathways with
consequent genuine therapeutic potential.
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