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1. ABSTRACT

Antigen specific T cells and B cells recognize
their target determinants by antigen specific receptors that
are being rearranged in a random manner. These cells then
undergo negative and positive selection processes that
limit, albeit not eliminate, the escape of self-reactive T and
B cells capable of eliciting autoimmune responses. The
above processes are referred to as “central selection”, and
their outcome is the “central tolerance”.  Auto-reactive T
and B cells escaping central tolerance are then subjected to
peripheral mechanisms that restrain their auto-aggressive
behavior. Different types of regulatory T cells are key
players in maintaining actively induced peripheral
tolerance. In patients suffering from various autoimmune
disorders autoreactive T and/or B cells that escaped central
tolerance also circumvented regulatory T cells that could,
potentially, eradicate their pathogenicity in the periphery.
We have found an additional regulatory mechanism that
restrains the harmful activity of these cells at that time. It
includes autoimmune B cells that produce neutralizing
autoantibodies against numerous inflammatory mediators,

mostly cytokines and chemokines, which participate in
destructive autoimmunity. These autoantibodies restrain the
harmful consequences of inflammatory autoimmune
conditions such as in Rheumatoid Arthritis. Interestingly,
this antibody production is elicited during autoimmune
diseases, and to a much lesser extent during local
inflammation. The specificity of this response is highly
restricted to determinants with minimal cross reactivity to
other known gene products. Thus, the immune system
allows selective breakdown of tolerance in autoimmune
conditions. The findings that this beneficial response is
turned on by the autoimmune condition, and then
regulated by its progression further imply for the
existence of a programmed regulatory response of
“Beneficial autoimmunity”.  In the current review we
describe how this mechanism was discovered in
experimental models of Rheumatoid arthritis and Multiple
sclerosis, demonstrate its importance in the natural
regulation of these diseases, and finally explore its
relevance to human diseases.
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Figure 1. A schematic view of the dynamics of the inflammatory process in the arthritic joint, in which the function of
inflammatory mediators produced by various cells in the joint is partially neutralized by beneficial autoimmunity.

2. INTRODUCTION

In inflammatory autoimmune diseases, auto-
reactive T cells recognize self-components as foe and
induce a destructive response. It is believed that at the
initiation of different autoimmune diseases, these cells are
being activated by infectious pathogens in patients carrying
the appropriate genetic background. This may explain, in
part, the low concordance in the prevalence of these
diseases (less than 30%) between identical twins (1, 2).

Infectious invaders can initiate an inflammatory
autoimmune disease by two different mechanisms of
action: elicitation of a direct cross-reactive response
between self and foe, or initiation of a bystander auto-
reactive response. According the first mechanism of action,
the auto-reactive cells are activated by microbial
determinants that posses high similarity to self-antigens.
These cells then home to different organs, including the
autoimmune site, where they propagate and induce
inflammation (3). The alternative mechanism includes
bystander activation of autoimmune cells (4). In this case,
an infectious invader, with no cross-reactivity to self,
induces a local inflammatory process. As a result, dendritic
cells are being activated via Toll Like Receptors (TLR's)
/CD14 molecules (5, 6) and present both microbial
antigens, as well as self antigens obtained from
apoptotic/necrotic cells in the inflamed tissue to autoimmune
T cells which commence the inflammatory process. For
example, subjecting SJL mice to Theiler's virus, that has no
cross-reactivity to Central Nervous Systems (CNS)
determinants, eventually leads to the development of

Experimental Autoimmune Encephalomyelitis (EAE), with
an apparent response to CNS determinants (4, 7).

The continuing inflammatory autoimmune
process can be viewed as a multi-sequential event in which
antigen specific T cells interact with their target
determinants to initiate a secondary influx of effector T
cells, B cells, monocytes and neutrophils, all of which
participate in the initiation, propagation and maintenance of
the inflammatory condition. Major tools with which these
cells communicate and directly damage tissues are the
inflammatory cytokines and chemokines (8). These soluble
mediators, particularly chemokines, also activate adhesion
molecules and attract leukocytes to the site of inflammation
(9-16). Among the key cytokines that direct inflammatory
autoimmune disorders are:  TNF-α, IL-1, IL-12, IL-15, IL-
17, IL-18, IL-23 (17-30), and the recently discovered IL-27
(31-33). These cytokines direct tissue destruction (8),
polarization of non-polarized CD4+ T cells into
inflammatory Th1 cells over non-inflammatory Th2 (25-
31), or support the proliferation and function of polarized
Th1 cells and other leukocytes, including B cells (31, 34).
As for chemokines, the role of MCP-1, MIP-1α, IP-10,
RANTES, and MIF has well been documented in
experimental models (35-47) now being extended to clinical
trials.  IL-8 is also an important potential target for therapy of
Rheumatoid Arthritis (RA) and related diseases (48).

What regulates the dynamics of inflammatory
autoimmune diseases? So far two major regulatory
cytokines were identified: IL-10 and TGF-β. During the
immune response, antigen specific regulatory T cells
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named Tr1, characterized by high IL-10 production, and
Th3 cells, producing TGF-β, were found capable of
restraining the destructive function of autoimmune Th1
cells (49-52). It is believed that during the inflammatory
process, in the presence of IL-10, initially produced by
activated macrophages, and of IL-2, mostly produced by
CD4+ Th1 cells, some antigen specific none-polarized T
cells (Thnp) are being polarized into IL-10 producing Tr1
cells (50). These cells then restrain the progression of the
autoimmune condition. Similarly, in the presence of TGF-
β, some of these Thnp cells are driven into Th3 cells that
also suppress inflammation (52). Two other cytokines that
are though to encompass anti-inflammatory properties are
IL-4 and IL-13, mainly produced by another subtype of
antigen specific T cells named Th2 (53-57). The anti-
inflammatory role of these cytokines, particularly IL-4, in
the regulation of RA has well been studied in different
experimental models of the diseases (58-61). It has been
shown that of the regulatory cytokines IL-10 mRNA
expression is the most dominant in the synovial tissues
from patients in early stages of rheumatoid, reactive, and
undifferentiated arthritis (61), though it is not clear whether
it is transcribed by Tr1 cells there.

In addition to antigen specific regulatory T cells,
the immune system generated another type of regulatory T
cells that continuously express the alpha chain of the IL-2
receptor (CD25). These CD4+CD25+ T cells actively
restrain the function of inflammatory CD4+ T cells, by
mechanisms yet to be fully identified (62-64). Recent
studies suggest that not only do these cells exist in human,
but they may also play a role in regulating the pathogenesis
of inflammatory autoimmune diseases (65), including RA
(66-68), and its experimental models (69, 70). In a very
recent manuscript, published in the August 2004 issue of
the Journal of Experimental Medicine, Ehrenstein et al
show that in RA patients most CD4+CD25+ T cells are in an
anergic state, and therefore are incapable of suppressing
inflammatory functions (71). However, treatment with a
monoclonal antibody against TNF-α (Infliximab) restored
the capacity of CD4+CD25+ regulatory T cells isolated
from these patients to inhibit cytokine production and to
convey a suppressive phenotype (71). This may explain, in
part, the beneficial effect of anti-TNF-α therapy in RA
(72).

All antigen specific regulatory T cells, and
possibly CD25+ regulatory T cells restrain the function of
auto-reactive Th1 cells by blocking their ability to produce
inflammatory mediators. We have recently identified a
novel mechanism by which the immune system also
inhibits the destructive reactivity of these mediators. We
found that some of the auto-reactive B cells that escaped
negative selection are specific to proinflammatory
cytokines and chemokines, and that during autoimmune
conditions, and to a much lesser extent during local
inflammatory reactions, these cells become activated and
elicit an autoantibody response against few of these
mediators (73). By doing so, they suppress the pathological
consequences of self-destructive immunity (73). Using a
modification of DNA vaccination, we could selectively
either amplify, or totally eliminate the “Beneficial

autoimmune response” to single mediators, and therefore
evaluate their contribution to the natural regulation of
disease (73). For example, while amplification of beneficial
autoimmunity to the single key mediator TNF-α markedly
suppressed experimentally induced RA, its exclusion
profoundly aggravated disease severity (73). This enabled
us to evaluate the contribution of this type of regulatory
response to the regulation of the disease (73).
Subsequently, we have noticed that patients suffering from
RA, but not Osteoarthritis (OA), display a similar type of
antibody production to this inflammatory cytokine. This
extends our findings and their relevance in human
autoimmunity (73). The current review explores this
interesting issue.

3. SELF-SPECIFIC AUTOIMMUNE CELLS ESCAPE
CENTRAL SELECTION AND CAN POTENTIALLY
INDUCE INFLAMMATORY AUTOIMMUNE
DISEASES

Antigen specific T cells and B cells recognize
their target determinants by their antigen specific T cell
receptor (TCR) and antigen specific B cell receptor (BCR),
respectively. These receptors are generated through a
random rearrangement process. Since this is a random
process, lymphocytes whose receptors can recognize one of
the body’s own components are also generated, and can
potentially induce autoimmunity (74, 75). These
lymphocytes then undergo a process that is commonly
referred to as “Central selection” that results in limitation,
but not total elimination, of these auto-reactive cells. This
process of successful selective deletion of auto-reactive
cells leads to the development of a state of resistance
against autoimmunity, which is referred to as “Central
tolerance” (74, 75). B cells and T cells undergo a different
path of differentiation. B cells differentiate in the bone
marrow.  The vast majority of those recognizing self-
antigens undergo a rapid stage of negative selection by
apoptosis.  Alternatively, some self-specific B cells can
rearrange their receptor in a process that is referred to as
receptor editing (76). Even though negative selection is
highly restrictive, and the vast majority of B cells entering
the process undergo apoptosis and never enter the
peripheral immune system, many self-specific B cells
escape central tolerance and can potentially be involved in
destructive autoimmunity (76). In fact, the repertoire of
antigen specific auto-reactive B cells is probably much
larger than the repertoire of antigen specific autoimmune T
cells that undergo a different process of negative and
positive selection, as described bellow.

T cells differentiate in the thymus. In contrast to
B cells that recognize target determinants by their BCR and
its secreted form (antibody) directly, T cell recognize target
antigens only when presented by major histocompatibility
proteins (MHC). Thus, T cell selection in the thymus
includes positive selection for TCR that recognizes self-
MHC and negative selection against those recognizing self
antigens presented by the MHC. Altogether more than 90%
of T cells that differentiate in the thymus undergo
apoptosis, some of which do not get positive signals by self
MHC, and about two thirds of those that are positively
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selected subsequently undergo negative selection (77).
Despite this highly selective process, and similarly to B cell
selection, this system is also leaky, and antigen specific
autoimmune cells escape central tolerance (74). In fact, the
leaking in T cell selection could be more dangerous then in
the B cell compartment. After all, it is the T cells that
regulate the harmful function of auto-reactive B cells (i.e. T
dependent responses).

How important is central selection? Recent
studies identified a functional mutation in a transcription
factor that is highly expressed in thymic medullary
epithelial cells, named autoimmune regulator gene (AIRE).
This mutation resulted in the development of severe
autoimmunity in human and mice (78, 79), which could be
explained by an aberrant deletion of auto-reactive T cells in
the thymus (78, 79). This further emphasizes the important
role of central selection in the prevention of autoimmunity.

After deletion of auto-reactive T cells and B cells,
those escaping central selection are subjected to peripheral
mechanisms that restrain their potential harmful effect (80).
Sections 4 and 5 discuss the role of inflammatory T cells
and the cytokines and chemokines they produce in the
initiation and progression of autoimmunity (section 4), and
how regulatory T cells and the cytokines they produce
restrain this destructive activity (section 5).

4. INFLAMMATORY CYTOKINE AND
CHEMOKINES AND ADHESION MOLECULES
DIRECT THE FUNCTION AND MIGRATORY
PROPERTIES OF AUTOIMMUNE T CELLS AND
ARE THEREFORE IMPORTANT POTENTIAL
TARGETS FOR THERAPY

The development of a T cell mediated
autoimmune condition can be viewed as a multi-sequential
process in which antigen specific effector T cells enter the
autoimmune site and interact with their target antigen
presented by activated antigen presenting cells (APCs),
including residual APCs, invading macrophages and
dendritic cells. As a result, inflammatory cytokines and
chemokines that are being produced at the autoimmune site
attract a secondary influx of other T cells, including those
that are not specific to the target antigen, monocytes and
neutrophils, to commence the inflammatory process (3, 81,
82). At all times invading T cells and macrophages undergo
Fas-FasL mediated apoptosis (83). Thus, administration of
anti FasL antibodies during ongoing EAE, a T cell
mediated autoimmune disease of the central nervous
system, inhibits apoptosis of auto-reactive T cells at the
autoimmune site and subsequently aggravated the disease
(84). Apoptosis of invading cells at the autoimmune site
requires continuing influx of invading cells to replace those
dieing there. Therefore, therapies that interfere in this event
could potentially ameliorate, or inhibit the progression of
these diseases. Indeed twelve years ago, together with L.
Steinman from Stanford University, and T. Yednock, at the
time at Athena Neurosciences, we have demonstrated, for
the first time that a monoclonal antibody to the alpha-4
chain of alpha-4 beta-1 integrin (VLA-4) could prevent the
accumulation of T cells and monocytes at the autoimmune

site and reverse EAE (85). This particular antibody has
successfully finished phase III clinical trial in the USA and
is about to enter the market as a potential drug for MS (86).

The function of VLA-4, and several other
adhesion molecules, is dependent on their prior activation,
a process that is directed by chemokines (13, 14, 87-89),
and shear forces (16). Chemokines are small (~8-14 kDa),
structurally related proteins that regulate cell trafficking
through interactions with a subset of seven-transmembrane,
G protein-coupled receptors (90). Based on the positions of
the first two cysteines, the chemokines can be divided into
four highly conserved, but distinct supergene families C, C-
C, C-X-C and C-X3-C. The C-C family is primarily
involved in the activation of endothelium and
chemoattraction of T cells and monocytes to the site of
inflammation (11, 90, 91). Of these families, more is
known about the role of different C-C chemokines, and of
CXCR3 and one of its three ligands, named CXCL10 (also
known as Interferon-gamma inducible protein 10, IP-10) in
the regulation of T cell mediated autoimmunity.   The first
study on the subject was published nine years ago. In this
study, Karpus et al. blocked EAE in mice by immunizing
them with rabbit anti-mouse polyclonal antibodies against
Macrophage Inflammatory Protein-1α (MIP-1α, CCL3)
(39). Gong et al. used an antagonist of another C-C
chemokine named monocyte chemoattractant protein 1
(MCP-1, CCL2) to inhibit arthritis in the MRL-lpr mouse
model (37). Subsequently, two complementary studies
showed that mice lacking MCP-1 or its CCR2 receptor are
EAE resistant (35, 92). Barnes et al. used anti-human
RANTES (CCL5) antibodies to ameliorate adjuvant-
induced arthritis (AA) in the Lewis rat (93).  Six years ago
C. Mackay and his colleagues identified that the chemokine
receptor CXCR3 is highly expressed on inflammatory Th1
cells, but not Th2 cells  (94, 95). This may suggest that
blockade of the interaction between CXCR3 and its ligands
could suppress inflammatory autoimmune diseases. Indeed,
later on two groups, the one led by W. Karpus and mine,
independently identified one of the three CXCR3 ligands
(IP-10) as a major target for therapy of EAE (45, 96). We
have also extended our study to AA (44).

 Neutralizing antibodies, peptide antagonists and
small molecule based drags the antagonize the interaction
of different CC chemokines and their receptors, particularly
the interaction between MCP-1 and its CCR2 receptor, as
well as monoclonal antibodies to CXCR3 and IL-8, are
currently at different stages of clinical trials in RA and
other inflammatory diseases, so far with a limited success
(97).  Another potential way by which the interaction of
chemokines and their target receptors could be inhibited is
by using small molecule receptor antagonists. On this
subject an CCR1 antagonist is now being tested in clinical
trials aiming at suppressing RA (98).

Thus far the most successful therapy for RA, and
related diseases, has been achieved by neutralizing the
function of TNF-α either by mAb or by a recombinant
soluble receptor for TNF-α (8, 99-102). The underlying
mechanism includes direct neutralization of the
proinflammatory, destructive, properties of this cytokine,
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and, as very recently shown, restoration of the suppressed
activity of CD4+CD25+ regulatory T cells (71). TNF-α is
produced at the site of inflammation by invading Th1 cells,
macrophages and residual cells at the inflamed joint. The
successes of anti TNF-α therapy in RA encouraged the
extension of this way of therapy to inflammatory
autoimmune diseases that are related to RA, and to other
inflammatory autoimmune diseases, like Intestinal Bowel
Diseases (IBD). It appears that anti TNF-α based therapy
has been found more successful for vast majority of
patients suffering from RA and related diseases, than those
experiencing other inflammatory autoimmune diseases,
including IBD. Additionally, within the RA patients it
appears that a notable portion of the patients display
resistance to anti TNF-α based therapy. This has motivated
investigators to develop complementary/alternative
therapeutic approaches. Similarly to TNF-α, IL-1 is a
proinflammatory cytokine that is though to manifest a
direct inflammatory role in the regulation of disease (17).
IL-1 receptor antagonist (IL-1ra) is a natural inhibitor of
IL-1. Its overexpression could successfully suppress
experimentally induced RA, (24). Clinical trails using
recombinant IL-1ra, administered alone, or in combination
with other drugs, are now being conducted (97). Another
related cytokine that exerts similar/complementary
biological activities is Interleukin-6 (IL-6). It is a
pleiotropic cytokine that regulates the immune response,
inflammation, and hematopoiesis. Overproduction of IL-6
plays pathologic roles in rheumatoid arthritis (RA), and the
blockade of IL-6 may be therapeutically effective for the
disease. A clinical trial has recently been undertaken to
evaluate the safety and efficacy of a humanized anti-IL-6
receptor antibody, MRA, in patients with RA (103).

TNF-α is largely produced by antigen specific
Th1 cells, which are believed to be the driving force of the
inflammatory process in T cell mediated autoimmune
diseases (81). During the initiation, and progression of
inflammatory autoimmunity, antigen specific none-
polarized CD4+ cells (Thnp) are being polarized either to
pathogenic Th1 cells or non-pathogenic Th2 cells (55).
Nine years ago Leonard et al demonstrated that neutralizing
the function of IL-12 could suppress EAE (30). Three years
later we were the first to demonstrate that neutralizing IL-
18 also suppressed the disease in a similar mechanism (29).
These studies were later extended to different inflammatory
autoimmune diseases (27, 28, 104-106).  It appears that
during their early antigen specific activation, antigen
specific Thnp cells express receptors for IL-12, IL-18 and
IL-4. Under a cytokine milieu that is enriched with IL-18
and IL-12, ligation of these cytokines to their target
receptors would initiate a signaling cascade via STAT4 and
T-BET, resulting in a significant polarization into Th1,
whereas if the cytokine milieu is enriched with IL-4, these
Thnp cells will be preferentially polarized into Th2 via
STAT6 or STAT5 and GATA3 signaling pathways (107-
110). Therefore, neutralizing antibodies that block IL-12 or
IL-18 suppress inflammatory autoimmune diseases. IL-23
and IL-27 are newly discovered cytokine that also
participate the promoting Th1 responses (26, 32, 33, 111-
118). A recent study in IL23-/- mice explored its critical role
in the pathogenesis of EAE (25). The role of IL-27 in the

regulation of autoimmunity has yet to be defined. In a very
recent study we have shown that neutralizing IL-27
suppresses AA (31). In this particular study we also showed
that IL-27 not only polarizes Thnp into Th1, but also
potentates the function of long-term CD4+ memory Th1
cells (31). Other cytokines that have shown to play a
significant role in the regulation of T cell mediated
autoimmunity, particularly experimentally induced arthritis
are IL-17 and IL-15  (18-23, 119, 120). These cytokine and
their receptors also serve as targets for antibody/soluble
receptor based therapy in RA (97).

5. PERIPHERAL REGULATORY MECHANISMS
THAT RESTRAIN THE HARMFUL FUNCTION OF
INFLAMMATORY AUTOIMMUNITY

What regulates the function of autoimmune T
cells and restrains their potential pathogenic consequences?
T cells that escape central tolerance are subjected to
regulatory mechanisms that restrain their pathogenicity.
Based on their specificity, they can be divided into natural
and adaptive regulatory T cells  (121). The first type
includes regulatory T cells that continuously express CD25.
These CD4+CD25+ T cells actively restrain the function of
inflammatory, CD4+ T cells, by mechanisms yet to be fully
identified (62-64). They express a unique transcription
factor named FoxP3 (122-124). Individuals that display
genetic modifications in this gene suffer from a severe X-
linked immunodeficiency syndrome named Immune
dysregulation, Polyendocrinopathy, Enteropathy, X-linked
syndrome (IPEX) (125). These recent observations further
substantiate the key role of “natural” regulatory cells in
maintaining active tolerance.

Antigen specific effector T cell reactivity is
dependent on their basic polarization. During the initiation,
and progression of an inflammatory autoimmunity antigen
specific non-polarized CD4+ cells (Thnp) are being
polarized either to pathogenic Th1 cells or non-pathogenic
Th2 cells or (55). Interestingly, even though altering the
Th1/Th2 balance into Th2 suppresses autoimmunity (27-
30, 104-106), the direct administration of these cells has
been found ineffective in suppressing ongoing
autoimmunity (45, 126). In contrast, the administration of
antigen specific TGF-β producing Th3 cells (49, 52), or IL-
10 producing Tr1 cells effectively suppressed these
diseases (49-52). It is believed that during the inflammatory
process, in the presence of IL-10, initially produced by
activated macrophages, and of IL-2, mostly produced by
CD4+ Th1 cells, some antigen specific none-polarized T
cells (Thnp) are being polarized into IL-10 producing T r1
cells (50). These cells then restrain the progression of the
autoimmune condition. Similarly, in the presence of TGF-β
some of these Thnp cells are driven into Th3 cells that also
suppress inflammation (52). Previous studies of H. Wiener
and his group showed that oral administration of self-
autoimmune antigens might effectively select antigen
specific Th3 cells capable of suppressing autoimmunity
(49, 127-130). My group has recently shown that Tr1 cells
participate in the natural regulation of T cell mediated
autoimmunity and that their function could be amplified by
soluble peptide therapy (51). Selective amplification of
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antigen specific regulatory T cells is indeed a major
challenge in clinical trials.

In patients suffering from various autoimmune
disorders autoreactive T and/or B cells escaped central
tolerance and circumvented active tolerance induced by
various regulatory T cells that could, potentially, eradicate
their pathogenicity. We have found an additional regulatory
mechanism that at that time restrains the harmful activity of
these cells at that time.

6. TARGETED DNA VACCINATION
TECHNOLOGY ENABLED THE DISCOVERY OF A
NOVEL ANTIBODY BASED REGULATORY
MECHANISM THAT RESTRAINS THE
DESTRUCTIVE ARM OF THE IMMUNE SYSTEM

Twelve years ago, in a pioneer study D.C. Tang,
M. DeVit and S.A. Johnston showed that administration of
a plasmid DNA encoding human growth hormone could
lead to the production of neutralizing antibodies to its gene
product (131). The authors assumed that tolerance against
growth hormone was broken due to the minor differences
between human and mouse growth hormone. Six years
later we showed that this technology, with modifications
(Tang et la used gene gun delivery, whereas we are using
naked plasmid DNA vaccines) could be used to
breakdown tolerance to self-chemokines (41). Our
approach included immunization with a mammalian
expression vector, encoding a selected proinflammatory
cytokine or chemokine, under the control of a strong viral
promoter (CMV). The same vector also drives the
expression of bacterial CpG as a recurring immuno-
stimulatory sequence (ISS) (132, 133), which signals via
TLR9 (134, 135), triggering a breakdown of tolerance and
establishing an immune response against gene products
encoded by the vaccines. At first, we demonstrated that
“vaccination” via administration of plasmid DNA
constructs encoding various C-C chemokines, followed by
later induction of EAE, elicited antibody production
against the chemokines encoded by the plasmid DNA and
at the same time suppressed the disease (41). Chemokine
specific purified antibodies isolated from these protected
animals could then be used to transfer the beneficial
effects of each vaccine (41).  Later we showed that this
strategy could be used to rapidly treat ongoing
autoimmunity and that neutralizing antibodies generated in
response to the gene product of each vaccine can
adoptively transfer the high state of resistance (41, 43-45,
136, 137).

Throughout these studies, we have repeatedly
observed some unexpected phenomena. The elicitation of
beneficial autoantibody production was dependent on
induction of an autoimmune disease, and was regulated by
the immune system in accordance with disease
progression. Thus, autoantibody production against the
vaccine-encoded product regressed to baseline levels
shortly after remission in acute EAE, whereas in chronic
AA these antibodies were continuously produced, at a very
high titer. (41, 43-45, 136, 137). Moreover, therapy of
ongoing diseases led to a very rapid (within less than 48h)

production of highly specific beneficial autoantibodies
(IgG2a) that could effectively transfer diseases resistance
(41, 43-45, 136, 137). The most reasonable explanation for
these unexpected findings is that targeted DNA vaccines
amplify a pre-existing anti-self regulatory response, which,
by itself, is capable of limiting, albeit not preventing, the
emerging autoimmune condition.

In a very recent study, G. Wildbaum, M. Nahir
and myself f explored the validity of this interesting
concept (73). The study included experimental work in an
animal model of RA that has been extended to human
patients. We shall first discuss the experimental work, and
later on its relevance for human diseases. Because of its
significance in the pathogenesis of RA, TNF-α was
selected to be at the focus of our study. To address the
question whether target DNA vaccines encoding TNF-α do
amplify an existing response, we mapped the determinants
that naturally produced antibodies to TNF-α recognize on
TNF-α. We found that these antibodies interacted with 3
determinants on TNF-α that displayed no cross reactivity to
any known gene product, and that targeted DNA vaccines
encoding TNF-α augment only these responses. Thus,
natural breakdown of tolerance is highly specific and
restrictive. We have purified TNF-α specific natural
antibodies from AA rats and used them to treat other sick
rats in adoptive transfer experiments. These antibodies
could effectively suppress ongoing diseases (73). We have
therefore decided to name them Natural Protective
Antibodies (NPA). We then looked for a novel way to
specifically eliminate the production of NPA to TNF-α
during AA, which would enable us to measure their real
involvement in the natural regulation of the disease.

How important are these NPA to the natural
regulation of disease? Neonatal administration of a self-
antigen may result in an inability to mount a significant
immune response against it in adult life (i.e. neonatal
tolerance) (138). This approach has recently been extended
to plasmid DNA vaccines (139). We used our TNF-α
encoding DNA plasmid to induce neonatal tolerance to its
gene product and studied the consequences of this abolition
on the development and progression of AA. The results of
these experiments clearly showed that NPA to TNF-α
manifest a pivotal role in the natural regulation of disease,
and while amplification of this response is beneficial for
the host, its selective elimination leads to its aggravation
(73).

7. ON MEN AND MICE: EXPLORING THE BASIC
FINDINGS AND RELEVANCE IN RHEUMATOID
ARTHRITIS

Therapies that neutralize the function of TNF-α
suppress RA but not Osteoarthritis (OA) (97). We decided
to learn, in double-blind set of experiments, if patients
“know” what could be beneficial for them. In collaboration
with M. Nahir, chief of the Rheumatology Department at
the RAMBAM Medical Center in Israel, we have tested the
potential production of NPA to TNF-α. We showed that the
vast majority (>70%) of patients suffering from RA, but
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not OA, had significant levels of autoantibodies directed
against TNF-α. Thus, similarly to the immune system in
experimental models, the human immune system also
selectively generates a beneficial autoimmune response to
restrain self-destructive immunity.

An interesting question is referred to the link
between the severity of the disease and the antibody titer. It
is possible that patients that develop severe RA do so
because they fail to generate high antibody titer against
TNF-α that would restrain their disease. Alternatively, the
severity of the disease promotes the amplification of anti
TNF-α antibody production. None of these possibilities
may explain why about 25% of the RA patients do not
produce autoantibodies against TNF-α. We (N. Karin G.
Wildbaum & M. Nahir) are now trying to define whether
patients that fail to respond to anti TNF-α therapy are those
naturally producing low anti TNF-α antibody titer.

It should be noted that autoantibodies to the
inflammatory chemokine IL-8 have been previously found
in RA patients (140). Moreover, in this study levels of
circulating free anti-IL-8 IgG autoantibodies were found to
display a significant correlation with inflammatory
parameters and disease severity (140). This may suggest
that IL-8 could be a highly relevant candidate target for
therapy.

From a clinically oriented perspective, the
finding that NPAbs to TNF-α exist in RA patients, and that
DNA vaccines could amplify such a response, may pave
the way for novel therapies that would be based on active
immunization with plasmid DNA vaccine, viral vectors
(141), or even modified TNF-α, at the protein level (142).
The major limitations of antibody/soluble-receptor therapy
are the high cost and our limited ability to produce large
amounts of engineered receptor or human/humanized mAb
for therapy. Active immunization would probably be a
much more affordable way of therapy.  However, the major
limitation of the active immunization approach is the
incapability to control its outcome. That is, a patient
suffering form RA could potentially have to live, probably
for lifetime, with an elevated titer to TNF-α. So far this
limitation restricts the potential use of active vaccines,
including DNA vaccines, as a way to effectively augment
beneficial autoimmunity.
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