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1. ABSTRACT

Matrix metalloproteinases (MMPs) are a family
of proteolytic enzymes important in the degradation and
turnover of extracellular matrix (ECM) components. MMPs
and their inhibitors play major roles not only in ECM
degradation but also in mediating cell-cell adhesion, cell
migration and invasion, cell proliferation and apoptosis,
tissue remodeling, and growth factor and cytokine
signaling. There is a vast amount of literature regarding
changes in MMPs and MMP inhibitor levels during the
progression of cardiovascular diseases but a paucity of
information regarding their roles in the embryonic
cardiovascular development. Yet, by studying
cardiovascular development, much can be learned with
regard to the pathophysiology and etiology of adult
cardiovascular diseases. In fact, the development of many
pathological conditions may reflect inappropriate
recapitulation of embryonic events. The objective of this
review is to provide an overview of what is known
regarding the role of MMPs and their inhibitors during
embryonic cardiovascular development and to relate these
to the pathophysiology of adult cardiovascular diseases
whenever possible.

2. INTRODUCTION

Matrix metalloproteinases are proteolytic
enzymes whose function is primarily viewed as being the
degradation and turnover of ECM components. However,
MMPs and their inhibitors also play key roles in regulating
many fundamental cell processes including regulation of
cell growth, cell adhesion, cell migration and invasion, cell
death, and tissue remodeling events. Because of their
involvement in so many diverse processes, a better
understanding of how this group of enzymes and their
regulators interact and mediate these processes will be
necessary in order to understand whole organism biology
and pathology.

During the past decade, it has become recognized
that MMPs and their inhibitors play significant etiological
roles in the development of cardiovascular diseases
including congenital heart defects, atherosclerosis,
aneurysms, vascular remodeling, and myocardial ischemia
and infarction. Many of these pathological conditions may
stem from inappropriate recapitulation of embryonic and
developmental events. This review will focus on what is
known regarding MMPs and MMP inhibitors in
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Figure 1. Domain structure for the major classes of MMPs. Major domains include the signal peptide (SP), prodomain (Pro),
catalytic domain with the active site zinc (Zn) bound to cysteine residues within this domain and “cysteine switch-residue” in the
prodomain, the hinge domain (HG), the hemopexin domain, and in some cases either a transmembrane domain or GPI-anchor
domain (GPI). A furin cleavage site between the prodomain and the catalytic domain is found in some MMPs. In the gelatinases,
fibronectin-like type II repeats (FN) are also present.

cardiovascular development and to relate these findings to
various cardiovascular diseases whenever possible.

3. MMPS AND MMP INHIBITORS

MMPs are a family of zinc-containing
endopeptidases that cleave almost every known component
of the ECM. These enzymes were initially classified and
given common names based on their substrates until it
became clear that each has multiple, often overlapping,
substrates. As the MMP genes became better characterized,
MMP nomenclature moved toward a numerical system and
the MMPs were grouped into classes based on their domain
structure rather than substrate (Figure 1, Table 1, for
reviews see, 1, 2).

The catalytic activity of MMPs is dependent on
the presence of zinc bound to a conserved
HEXXHXXGXXH motif found within the catalytic domain
of MMPs (Figure 1). The catalytic domain forms a small

cleft harboring the zinc and its 3-dimensional structure
determines substrate cleavage-site specificity. For instance, the
catalytic domain of MMP-2 and MMP-9 contains fibronectin
type-II repeats making these MMPs particular effective in
degrading multiple types of collagen. The pro-peptide domains
of MMPs contain a conserved sequence, PRCXXPD. The
cysteine residue within this sequence interacts with the
catalytic zinc rendering MMPs inactive. MMPs (with the
exception of MMP-7, MMP-23, and MMP-26) also have a
hemopexin-like domain connected to the catalytic domain by
an intervening hinge domain. The hemopexin domain
influences substrate binding and specificity, membrane
activation, and binding of MMP inhibitors.

Of particular recent interest are the membrane
type-MMPs (MT-MMPs), of which six different ones have
been described. MT-MMPs are anchored to the plasma
membrane either through a GPI-tail or by a transmembrane
domain (Figure 1). These MMPs are primarily activated by
furins as they contain a conserved furin cleavage site
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Table 1 Major MMPs and Their Principle Substrates
Group/Enzyme MMP Designation Principle Extracellular Matrix Substrates
Collagenases
Interstitial collagenase MMP-1 Collagens I, II, III, VII, and X, entactin, aggrecan, tenascin, proMMP-1, -2
Neutrophilic collagenase-2 MMP-8 Collagens I, II, and III
Collagenase-3 MMP-13 Collagens I, II, III, VI, X, aggrecan, fibronectin, laminin, tenascin, proMMP-9, -13
Gelatinases
Gelatinase A MMP 2 Collagens I, IV, V, VI, VII, X, and XI, fibronectin, laminin, vitronectin, entactin, proMMP-1, -9, -13
Gelatinase B MMP 9 Collagens I, IV,V, VI, X, and XI, aggrecan, elastin, entactin, fibronectin, vitronectin
Matrilysin
Matrilysin MMP-7 (PUMP) Collagens III, IV, IX, X, and XI, elastin, entactin, fibrin, fibronectin, laminin, tenascin, proMMP-2, -7,

vitronectin
Stromelysins
Stromelysin-1 MMP-3 Collagens III, IV, V, VI, IX, X, and XI, proMMP-1, -3, -7, -9, -13, osteonectin, tenascin, fibronectin,

proteoglycans, laminin
Stromelysin-2 MMP-10 Collagens III, IV, V, and IX, fibronectin, laminin, proteoglycans
Stromelysin-3 MMP-11 Collagen IV, fibronectin, laminin, alpha1-proteinase inhibitor, aggrecan
Membrane type MMPs
MT1-MMP MMP-14 Collagens I, II, and III, fibrin, fibronectin, proMMP-2, -13, alpha1-proteinase inhibitor, vitronectin,

proteoglycans, laminins, tenascin, aggrecan
MT2-MMP MMP-15 ProMMP-2, fibronectin, laminin, proteoglycans, tenascin, entactin, aggrecan

MT3-MMP MMP-16 ProMMP-2, collagen III, fibronectin, laminin, aggrecan, vitronectin
MT4-MMP MMP-17 Fibronectin, fibrinogen
MT5-MMP MMP-24 ProMMP-2, fibronectin, proteoglycans
MT6-MMP MMP-25 Collagen IV, fibronectin, fibrinogen, fibrin, proteoglycans
Others
Macrophage metalloelastase MMP 12 Elastin, fibronectin, collagens I and V, osteonectin, alpha1-proteinase inhibitor, vitronectin
Enamelysin MMP-20 Aggrecan, amelogenin

Abbreviations: MMP, matrix metalloproteinase and MT-MMP, membrane-type matrix metalloproteinase

between the prodomain and catalytic domain. MT-MMPs
are critical to the functional activities of secreted MMPs as
many proMMPs are converted to active forms by MT-
MMPs (for reviews see, 3, 4-6). In addition to activating
proMMPs, MT-MMPs directly degrade ECM components
including collagens, fibronectin, vitronectin, laminin B
chains, and proteoglycans (7, 8) and they can activate,
release, and regulate turnover of cell-surface receptors and
receptor ligands (for a review see 9). In addition, cells can
actively redistribute cell-surface MT-MMPs thereby
localizing and concentrating MMP activity to particular
sites on their cell surfaces (10, 11).

ADAMs (A Disintegrin And Metalloproteinase)
may be considered as an extended family of the MMPs (for
reviews see, 12, 13). ADAMs are integral membrane
glycoproteins containing a disintegrin domain (related to
snake-venom integrin-binding ligands that disrupt
integrin/ligand interactions) and a metalloprotease catalytic
domain (that may or may not exhibit MMP-like activity).
Over 30 have been described. Many ADAMs regulate
cellular behavior through their cell-surface convertase and
sheddase activities and by mediating cell-signal
transduction activities of certain receptors. ADAMs have
also been implicated in mediating angiogenesis and
cardiovascular development and disease (14-16).

The degree of MMP activity depends, in part, on
levels of local inhibitors. Tissue inhibitors of
metalloproteinases (TIMPs) bind MMPs, block MMP
activity, and regulate MMP-dependent cell migration,
invasion, and tissue remodeling (for reviews see 17, 18-21).
Four TIMPs have been identified in vertebrates and they
share similar functional motifs. The amino-terminal portion
is responsible for the MMP inhibitory capacity.
Structurally, this inhibitory capacity is dependent on

maintaining the integrity of particular disulfide bonds
within the TIMPs (22, 23). The carboxyl-domain is
primarily responsible for TIMP binding to ECM molecules.
In the case of TIMP-1 and TIMP-2, the carboxyl domain is
responsible for binding proforms of MMPs and in the case
of TIMP-3, it is responsible for the binding of TIMP-3 to
sulfated ECM components like chondroitin and heparan
sulfate proteoglycans (24).

TIMPs play major roles in regulating many
biological events through their ability to mediate MMP
activity. Studies show TIMPs inhibit the migration of
endothelial cells (25, 26), formation of 3-dimensional
endothelial tubule structures (27, 28), and smooth muscle
cell invasion in vitro (29, 30). In vivo for instance,
exogenous TIMP-3 blocks basic fibroblast growth factor-
stimulated angiogenesis in chorio-allantoic membrane
assays (28) and overexpression of TIMP-2 inhibits
formation of experimental hemangiomas in mice (31).

Alpha2-macroglobulin (an abundant plasma
protein) is also a major irreversible inhibitor of MMPs (see
review by 32). Alpha2-macroglobulin binds active MMPs,
traps them, covalently bonds with the MMPs, and blocks
their catalytic activity. Once bound, the alpha2-
macroglobulin/MMP complex is removed by the LRP
scavenger-receptor complex and cleared through
endocytosis (33, 34). Extracellular MMPs levels can also
be regulated by similar clearance mechanisms, such as
what occurs when thrombospondin-2/proMMP-2
complexes are removed by internalization via binding to
the LRP scavenger-receptor complex (35).

The discovery of a GPI-linked membrane MMP
inhibitor, RECK (REversion-inducing-Cysteine-rich
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protein with Kazal motifs), has garnered recent attention.
RECK plays an important role in embryonic neurogenesis
and vasculogenesis, tumor angiogenesis, and metastasis
(for reviews see 36, 37, 38). Knockout mice for RECK die
by embryonic day 10.5, have a smaller body size, and
exhibit more abdominal hemorrhages than their
heterozygotic litter mates (39). In addition, the vascular
networks formed in RECK-deficient embryos are not
organized as tight tubules. RECK inhibits proMMP-2
activation and the enzymatic activity of active MMP-2,
MMP-9, and MT1-MMP (36, 39, 40). It is also expressed
in normal adult tissue, including vascular smooth muscle
cells of large vessels. When RECK synthesis is stimulated
or is over expressed, RECK attenuates tumor growth by
limiting endothelial cell migration and angiogenic
sprouting (26, 39).

4. MMP ACTIVATION

Most MMPs are synthesized and released as
inactive pro-enzymes requiring proteolytic cleavage of the
prodomain before exhibiting their full proteolytic capacity.
For example, MMP-2 is secreted as a 70-72 kDa pro-
molecule that is reduced to 62-63 kDa when processed to
its mature active form. Once converted, MMP-2 can
degrade type-IV collagen, interstitial collagens, and several
other ECM components (3, 41-43). Hence, levels of MMP
activity not only depend on the levels of synthesis and
secretion by cells but on their conversion to functionally
active forms.

ProMMPs can be activated in at least four ways:
autolytically, by plasmin, by MT-MMPs, or through the
actions of other active MMPs. Autolytic MMP activation can
be initiated by chemical means. 4-Aminophenylmercuric
acetate, thiols, sodium dodecylsulfonate, and chaotropic agents
can all initiate proMMP activation by perturbing the disulfide
bond between the cysteine residue in the prodomain and the
zinc ion (the so called “cysteine switch”, 44, 45, 46, and for
review see 47). This permits the zinc ion to bind water and
hydrolyze peptide bonds including the intramolecular peptide
bond linking the prodomain to the rest of the MMP molecule.
Interesting, recent studies suggest chemical activation
mechanisms may also occur in vivo as nitric oxide generated
by living cells can activate proMMP-2 (48).

Plasmin generated from plasminogen is also capable
of initiating proMMP activation (49-51). Plasmin is thought
to activate proMMPs by proteolytically cleaving a portion
of the MMP prodomain, thereby disrupting the catalytic
zinc/proMMP cysteine bond responsible for enzyme
latency. However in the case of proMMP-2 activation,
activation by plasmin requires MT1-MMP as a co-factor,
although the catalytic activity of MT1-MMP is not required
(52). Why the MT1-MMP is required for plasmin to
activate MMP-2 is still unclear.

MT-MMPs are thought to be the primary activators
of proMMPs. Some MT-MMPs directly activate MMPs, as
is the case for MT2-MMP activation of proMMP-2 (53).
Although TIMPs inhibit proteolytic activity of MMPs, MT-
MMP activation of many proMMPs require TIMPs (3, 54-

59). In the case of proMMP-2, activation usually requires
either TIMP-2 or TIMP-3 and MT1-MMP or MT3-MMP
(for reviews see 5, 60-63). The N-terminal domain of the
TIMP binds the catalytic domain of the MT-MMP forming
a TIMP/MT-MMP complex on the cell surface (Figure 2).
While this inhibits the activity of the occupied MT-MMP,
the C-terminal domain of the TIMP retains the ability to
bind proMMP-2, effectively recruiting proMMP-2 to the
cell surface forming a “ternary complex”. Once on the cell
surface, an adjacent TIMP-free MT-MMP then cleaves the
prodomain and activates proMMP-2. However, excess
TIMP interferes with this activation by sequestering all the
available TIMP-free MT-MMP molecules on the cell
surface. Therefore, TIMPs can either facilitate or inhibit the
activation of proMMP-2 depending on the relative levels of
TIMP (54, 55, 64).

Activation of proMMP-2 or other MMPs, however,
does not exclusively require TIMPs. For instance, MT1-
MMP can activate proMMP-2 in the absence of TIMP-2 if
the cells express alphaV beta3 integrins. This integrin
directly binds proMMP-2, docking it to the cell surface for
activation by MT1-MMP (65). Blocking the interaction
between alphaV beta3 integrin and proMMP-2 inhibits
proMMP-2 activation and inhibits angiogenesis and tumor
growth (65, 66). Consequently, there are numerous means
available to cells for activating proMMPs.

5. OVERVIEW OF MMP FUNCTIONS

5.1. Cell-ECM Adhesion, Migration, and Invasion
Much of our understanding regarding MMP and

TIMPs stems from work in the area of cancer biology. It
was long ago recognized that ECM turnover was important
for cell metastasis and angiogenesis and that high levels of
MMPs are correlated with increased tumor invasion
capacity and their ability to recruit blood vessels. MMPs
also have major roles in controlling the migratory behavior
of both normal and transformed cells (for reviews see, 67,
68, 69). For example, selectively blocking MMP-2 or
MMP-9 activity with synthetic peptides or inhibiting their
synthesis using antisense mRNAs, blocks tumor and
endothelial cell migration (70-74). MMPs also modulate
the way cells interact with their extracellular environment.
For instance, alphaV beta3 integrins expressed by
melanoma cells do not bind native fibrillar type I collagen
unless the collagen is first proteolytically cleaved by MMPs
(75). And, MT-MMPs exhibit integrin convertase activity
generating mature alphaV beta3 integrin subunits capable
of transmitting outside-in signaling when bound by their
ligand (76, 77).

Cells localize MMP activity to specific sites (e.g.,
focal contacts and invadopodia) and as such, are capable of
differentially regulating substrate adhesiveness at discrete
regions on their cell surface. This is essential for the
formation of functional invadopodia and cellular invasion
(10, 11, 78-81). MMPs can be localized and concentrated
on the cell surface by binding to integrins. For instance, the
clustering of alphaV beta3 integrins in response to
proMMP-2 or ECM binding results in co-clustering of
MT1-MMP by virtue of specific interactions between this
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Figure 2. Simple model illustrating the basic steps of proMMP-2 activation through the formation of a proMMP-2/TIMP/MT-
MMP ternary complex. In this model, TIMP-2 or TIMP-3 binds the catalytic domain of MT1-MMP or MT3-MMP forming a
TIMP/MT-MMP complex on the cell surface. While this inhibits the activity of the occupied MT-MMP, TIMP-2 and TIMP-3
retain their ability to bind proMMP-2 effectively recruiting proMMP-2 to the cell surface. Once on the cell surface, an adjacent
TIMP-free MT-MMP cleaves and activates proMMP-2.

integrin and the hemopexin domain of MT1-MMP.
Blocking the interaction between MT1-MMP and alphaV
beta3 inhibits angiogenesis (65, 66). The formation of
proMMP/TIMP/MT-MMP complexes also enable cells to
localize MMP-2 activity to specific sites on the cell surface
(10, 11, 72, 80).

Cells can also cluster MMPs through the
interactions between MMPs and cell surface CD44. CD44 is a
multifunctional cell surface molecule that mediates cell-cell
and cell-ECM adhesion (82, 83). CD44 is the principle
receptor for hyaluronan, a large polysaccharide that plays an
important role in cell migration and invasion. CD44 also serves
as a receptor for other ECM components including fibronectin,
collagen type-I, and heparan and chondroitin sulfate
proteoglycans. CD44 binds MMP-9, promoting tumor
migration and angiogenesis. CD44 also recruits MT1-MMP
into lamellopodia via binding to MT1-MMP’s hemopexin
domain. MT1-MMP then proteolytically releases the
ectodomain of CD44 from the cell surface, a prerequisite for
migration of many cell types (84-87). Therefore, through
specific interactions with cell surface receptors, cells can
localize proMMP activation and MMP activity to particular
areas of the cell surface where it is needed for directed cell
migration and invasion.

Degradation products generated from ECM by
the proteolytic action of MMPs also mediate cell migratory
and invasive responses (Table 2). Cleavage of laminin-5 by
MMP-2 generates gamma2-chain laminin fragments that

bind epidermal growth factor (EGF) receptors and induce
breast epithelial cell motility (88, 89). Angiostatin,
generated from plasminogen by the actions of MMP-2,
MMP-3, MMP-7, MMP-9, or MMP-12, reduces endothelial
cell invasion by blocking MT1-MMP and MMP-2 activity
(90-92). Likewise, expression of MMP-12 inhibits
angiogenesis by cleaving and shedding urokinase receptors
required for endothelial cell invasion (93). MMP-9
generates a cleavage fragment from the alpha3 chain of
type-IV collagen that binds alphaV beta3 integrins and
attenuates tumor angiogenesis and tumor growth (94).
Therefore, MMPs can regulate cell migration by generating
bioactive cryptic fragments of ECM components.

5.2. MMPs and Epithelial-to-Mesenchymal Transitions
MMPs have been implicated in regulating

epithelial-to-mesenchymal transitions (EMTs). Exogenous
inhibitors of MMPs block EMT during tumor metastasis
while reducing endogenous MMP inhibitor levels increases
metastasis (30, 95, 96). Blocking MMP activity during
embryonic heart development also inhibits the EMT
responsible for endocardial cushion cell formation and inhibits
the subsequent migration of cushion cells in vivo and in vitro
(97). Studies also suggest MMPs alter cell-cell adhesion
interactions mediated by cadherins during EMTs. For instance,
MMP-3 cleaves the ectodomain of E-cadherin (98).

Overexpressing MMP-3 in mammary epithelial
cells increases degradation of E-cadherin (99). Upon release,
the ectodomain of E-cadherin perturbs the function of intact
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Table 2. Bioactive Molecules Released or Degraded by MMPs
MMP Growth Factor and Receptor Activation or Release Cytokine Activation Adhesion Molecules/Bioactive peptides
MMP-1 IGF-BP, proTNF-alpha, VEGF proIL-1beta, monocyte chemoattractant

protein-3
MMP-2 proTGF-beta, IGF-BP, VEGF, proTNF-alpha, FGFR1,

endothelin-1
proIL-8, monocyte chemoattractant
protein-3

PEX, angiostatin,, endostatins, laminin-5
gamma2 fragments

MMP-3 proTNF-alpha, proHB-EGF, IGF-binding protein,
proTGF-beta, basic FGF

proIL-1beta E-cadherin, laminin-5 gamma2 fragments,
osteonectin fragments

MMP-7 proTNF-alpha, proHB-EGF, proTGF-beta, FasL E-cadherin, beta4-integrin, endostatin
MMP-9 VEGF, proTGF-beta, proTNF-alpha, basic FGF, kit

ligand, endothelin-1
proIL-1beta, proIL-2R alpha, interferon-
beta, IL-8

ICAM-1, alpha3 collagen, type-IV
fragments

MMP-12 urokinase receptors laminin-5 gamma2 fragments

MMP-13 basic FGF, proTGF-beta laminin-5 gamma2 fragments
MMP-14 proTGF-beta, basic FGF, VEGF, proTNF-alpha CD44, alphaV-integrin, tissue

transglutaminase
Abbreviations: FGF, fibroblast growth factor; HB-EGF, heparin binding-epidermal growth factor; ICAM, intercellular adhesion
molecule; IGF, insulin growth factor; IL, interleukin; MMP, matrix metalloproteinase; PEX, hemopexin-like domain; TGF,
transforming growth factor; TNF, tumor necrosis factor; and VEGF, vascular endothelial growth factor.

membrane-anchored E-cadherin and stimulates the invasion
of these cells into 3-dimensional collagen matrices (98, 99).
Conversely, increasing E-cadherin expression reduces
MMP activity and metastasis (100, 101). Collectively, these
studies suggest MMPs play important roles in mediating
cell-cell adhesion and EMTs.

5.3. MMPs and Cell Signaling
Regulation of growth factor and growth factor-

receptor expression, activation, and turnover are also
important in the development and maintenance of the
cardiovascular system. MMPs release membrane-anchored
growth factors and cytokines, and release and activate
latent growth factors sequestered within the ECM (Table
2). For example, MMP-2, MMP-9, and MT1-MMP release
and activate latent transforming growth factor-beta (TGF-
beta), basic fibroblast growth factor (FGF), and vascular
endothelial growth factors (VEGFs) deposited within the
ECM and make available other growth factors, such as
insulin growth factor (IGF), by degrading their binding
proteins (85, 102, 103). MMP-7, by forming a complex
with CD44 and proheparin-binding epidermal growth factor
(proHB-EGF), proteolytically cleaves proHB-EGF and this
cleavage is a prerequisite for the trans-activation of the
erbB receptors by this ligand (104-106). Blocking MMP
activity has also been shown to attenuate growth factor-
related apoptosis in endothelial cells (107, 108). Therefore,
controlling MMP activity is instrumental in regulating
normal and pathological growth factor-mediated processes.

MMP inhibitors themselves exhibit growth
regulatory activities. In fact, TIMP-1 and TIMP-2 were
initially identified as erythroid colony-stimulating factors
(109, 110). Recent findings show both TIMP-1 and TIMP-2
mediate cell proliferation independent of their MMP
inhibitory activity (25, 111-114). TIMP-2 binds directly to
alpha3 beta1 integrins and initiates a transduction signal
within cells that is independent of its MMP inhibitory
activity (111, 112). Consequently, TIMP-2 alters the
proliferative response of cells to several growth factors
including EGF, platelet-derived growth factor (PDGF),
basic FGF, and VEGF-A. Addition of a single alanine to
the N-terminal end of TIMP-2 renders it incapable of
inhibiting MMP activities (22, 23), yet, this TIMP is still
capable of binding proMMPs, binding alpha3 beta1

integrins, and eliciting signal transduction responses in
cells (111). In fact, alanine-modified TIMP-2 or the C-
terminal domain of TIMP-2 (non-MMP inhibitory domain)
both have the ability to block growth factor-dependent
angiogenesis as effectively as wild-type TIMP-2 (111,
114). Hence, not only do these inhibitors block MMP-
mediated activation of growth factors and cytokines, but
they are also capable of directly eliciting or altering
receptor-mediated signal transduction in cells independent
from their MMP inhibitory capacity.

5.4. MMP-Deficient Animals
Several mutant mice with genetic deficiencies in

various MMPs have been generated (115). However, mice
have a considerable amount of compensatory capacity for
the genetic loss of a particular MMP during development.
Despite numerous studies implicating MMPs in mediating
important developmental events, MMP deficient mice are
generally normal in appearance and overall growth. For
instance, MMP-2 deficient mice, while smaller in size, are
otherwise normal and fertile (116). Because MMPs have
overlapping substrates and functional roles, other MMPs
likely compensate for the genetic lose of an MMP.
However, detailed examination of cardiovascular
development in MMP deficient animals has not been
performed. One MMP that does exhibit a developmental
phenotype when knocked out is MT1-MMP. MT1-MMP
deficient mice exhibit craniofacial and skeletal defects, are
growth restriction, and have higher mortality rates than
their wild-type littermates (117). Recently, MT1-MMP
expression has also been knocked down in zebrafish
embryos using antisense mRNAs and these embryos also
exhibit axial deformities and cranial defects (118). While
the overall embryonic development of most MMP deficient
mice is phenotypically normal, the same can not be said for
these mice as they age or are challenged by disease. As
discussed later, responses to vascular injury, myocardial
ischemia, and vascular disease in MMP deficient mice are
quite different from their wild-type littermates.

6. MMP AND TIMPS IN CARDIOVASCULAR
MORPHOGENESIS

Cardiovascular morphogenesis requires dynamic
changes in cell-cell adhesion, cell migration, selective
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proliferation and apoptosis, and tissue remodeling. Many
adult cardiovascular diseases may reflect a recapitulation of
embryological events. For instance, it has been proposed
that intimal thickening in response to hyperplasia after
balloon angioplasty or during restenosis may reflect an
abnormal recapitulation of the EMT responsible for the
formation of endocardial cushion cell tissue during
embryonic cardiac septation (119-123). In response to
injury or increased work load/stress, the heart undergoes
remodeling events eliciting changes in MMP activity and
ECM turnover as a part of the response to functionally
compensate for the extra load. Such responses may mirror
MMP-driven remodeling events that occur during
embryonic cardiac morphogenesis (e.g., cardiac looping,
trabeculation of the primitive ventricles, and
myocardialization of the conal outflow tracts).
Unfortunately, there is a profound lack of understanding
regarding the precise role of MMPs or their inhibitors
during cardiovascular morphogenesis and development.

6.1. Embryonic Vasculogenesis and Angiogenesis
Vasculogenesis is the process of making de novo

blood vessels directly through cell determination of
angioblasts (the endothelial cell precursors) and
differentiation. This is a distinct process from angiogenesis.
Angiogenesis, by strict definition, is the process of making
new blood vessels from preexisting blood vessels either
through sprouting or remodeling of existing vessels (124).
Unfortunately, the two terms are often used interchangeably.
Very little is known regarding the role of MMP and MMP
inhibitors in the process of vasculogenesis because it begins so
early in embryogenesis. Both vasculogenesis and angiogenesis
require that endothelial cells (or their precursors) form 3-
dimensional aggregates and networks through directed cell
migration, invasion, and ECM remodeling. Hence, much of
what is known regarding angiogenesis likely applies to
embryonic vasculogenesis as well.

The earliest embryonic site for vasculogenesis
occurs during blood island formation in the extraembryonic
yolk sac wall where vasculogenesis is coupled with
hematopoiesis (for review see 125). These blood islands
coalesce forming a primitive vascular network that
becomes connected to vascular networks forming within
the embryo (intraembryonic vasculogenesis is thought to be
uncoupled from hematopoiesis although recent studies
suggest otherwise, 126, 127). Fibroblast growth factors,
VEGFs, and their receptors play essential roles in the
formation and maintenance of blood vessels during
embryogenesis (128-131). MMPs, particularly MMP-9,
release bioactive basic FGF and VEGFs sequestered within
the ECM (102, 132). In turn, active FGFs and VEGFs
stimulate the expression of several MMPs necessary for
angiogenesis (133-136). MMP-9-deficient mice are fertile
but these mice exhibit abnormal or delayed angiogenesis
(137). In this case, MMP family members likely
compensate for the loss of MMP-9.

Vasculogenesis and angiogenesis requires cell
migration, proliferation, and the formation of branching
endothelial chains and concomitant lumen formation (138).
MMPs also play important roles in regulating these events.

For instance, invasion and remodeling of endothelial cells
into 3-dimensional networks requires MMP activation of
proMMP-2 and MMP activity (139-141). MT1-MMPs
rather than secreted MMPs appear to be more important in
the formation of these 3-dimensional networks (141, 142).
Recombinant TIMP-1 and synthetic MMP inhibitors
attenuate microvascular endothelial cell migration and
increase VE-cadherin and PECAM-1 expression and
accumulation at cell-cell junctions (25). Migration of
endothelial cells during angiogenesis also requires
breakdown of collagenous components in the ECM as
substitution of wild-type collagen type-I with one that is
collagenase resistant, blocks new vessel formation (143).

Integrins play major roles in vasculogenesis and
angiogenesis. When the function of beta1 integrin is
blocked in avian embryos, angioblasts still form cord-like
assemblies resembling blood vessels but these cords do not
develop lumens (144). In contrast, neutralizing antibodies
to alphaV beta3 integrin prevent the angioblasts from
organizing into blood vessels (145, 146). PEX (a natural-
occurring proteolytic fragment of MMP-2) inhibits
proMMP-2 binding to alphaV beta3 integrin resulting in a
decrease in MMP-2 activation and angiogenesis (65). As
mentioned earlier, MT1-MMPs exhibit integrin convertase
activity generating mature alphaV beta3 integrin subunits
capable of eliciting intracellular transduction signals when
bound by ligand (76, 77). Therefore, MMP activity may be
an upstream prerequisite enabling integrin-mediated
signaling necessary for blood vessel formation.

In the past, endothelial cell precursors were
thought to be only present in the embryo and fetus.
However, evidence shows endothelial cell precursors exist
in adult bone marrow and peripheral blood. VEGF,
granulocyte-monocyte colony-stimulating factor, basic
FGF, and IGF-1 all stimulate endothelial-precursor cell
mobilization and differentiation (for review see 147, 148,
149). Both MMPs and plasmin stimulate angiogenesis by
liberating these growth factors from ECM (150-152).
However, excessive MMP activity inhibits angiogenesis.
MMP-mediated degradation of plasminogen generates
angiostatin and endostatins, potent inhibitors of
angiogenesis (153), thereby providing a braking
mechanism for MMP-driven angiogenesis. Endothelial cell
migration in adult blood vessels requires loosening of inter-
endothelial cell contacts and weakening of peri-endothelial
cell support. In embryos lacking the angiogenic factor,
angiopoietin-1, endothelial cells fail to associate with the
underlying ECM and do not recruit peri-endothelial support
cells resulting in the formation of leaky vessels (154).
Overexpression of Ang-1 results in the formation of non-
leaky vessels. Angiopoietin-1 increases plasmin generation
and MMP-2 secretion in adult porcine pulmonary arterial
endothelial cells while suppressing TIMP-2 secretion (155).
Hence, the angiopoietin-1-dependent recruitment of peri-
endothelial cells and degree of endothelial cell adhesion
and blood vessel permeability may depend on particular
levels of MMP and plasmin activity.

The decision of circulating endothelial cells to
integrate into blood vessel walls may involve the
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ephrin/EphB family. Ephrins are transmembrane ligands
for a family of EphB receptor-tyrosine kinases (156, 157).
The binding of ephrins to Eph receptors stimulates
transduction signals in the EphB-expressing cells but can
also transduce a reverse signal into the ephrin/ligand-
expressing cell. Such interactions and signaling events have
been shown to play major roles in the development of the
vascular system including blood vessel remodeling and
specifying artery or vein differentiation (158, 159, for
review see, 160). EphB4 receptors promote microvascular
endothelial cell migration and proliferation (161).
Stimulation of the EphB4 receptor by ephrin-B2 increases
levels of both activated forms of MMP-2 and MMP-9 in
cultured human microvascular endothelial cells and
stimulates the migration and proliferation of these cells
(161). In ephrinB2- or EphB4-deficient mouse embryos,
there is a complete arrest of angiogenesis (159, 162). In
addition, ephrin-B2 reverse signaling is required for proper
development and remodeling of the embryonic cardiac
valves (162-164). These observations show ephrins and
ErbB receptors likely have important roles in regulating
MMP activity during blood vessel development.

6.2. MMPs and TIMPs in Heart Morphogenesis
The first morphological evidence of embryonic

heart formation is the organization of bilateral epithelial-
lined compartments within the lateral plate mesoderm.
Within the anterior cardiogenic field of this mesoderm
flanking the developing foregut, cells begin segregating and
forming endocardial-lined tubes that fuse in the midline and
then become surrounded by developing cardiomyocytes
(165). Thus, heart formation begins much like
intraembryonic vasculogenesis elsewhere in the embryo.
Because congenital heart and great vessel defects occur
with a frequency of almost 1:200 live births and they
comprise the most common life-threatening birth defect,
future preventative or intervention measures will rely on a
better understanding of normal cardiac development.

6.2.1. MMPs and Cardiac Tube Formation and Looping
Very little is known regarding the role of MMPs

and TIMPs during the early phases of heart development.
To date, the earliest MMP known to be expressed during
heart development is MMP-2. In the avian embryo, MMP-2
expression first appears within the lateral plate mesoderm
and becomes increasingly restricted to the splanchnic
mesoderm adjacent either side of the developing cranial
foregut (166). Within this splanchnic mesoderm,
angioblasts organize into two primitive endocardial-lined
tubes that eventual fuse forming a single inner endocardial
tube surrounded by differentiating cardiomyocytes this
single heart tube is suspended from the foregut into the
primitive thoracic cavity by dorsal mesocardium. The
dorsal mesocardium eventually ruptures permitting looping
of the primitive heart tube. During the process of making a
single heart tube, MMP-2 is expressed in the endocardium,
early differentiating cardiomyocytes, and dorsal
mesocardium but is soon lost within the myocardium (166,
167). Blocking MMP-2 activity prevents midline fusion of
the primitive heart tubes leading to cardiac bifida (167).
TIMP-2 is also expressed within the endocardium of the
single heart tube and in the dorsal mesocardium just prior

to the rupture of the dorsal mesocardium and the onset of
cardiac looping (167, 168).

Cardiac looping converts the single, straight
tubular heart into a S-shaped tube and re-positions the
primitive heart chambers into their adult anatomical
positions before cardiac septation is complete. Looping is
thought to be driven by elongation and remodeling of the heart
tube at the cranial end (169). As the heart tube continues to
lengthen during the looping process, TIMP-3 expression
appears within the endocardium and in the myocardium of the
outflow region (168). The cardiac outflow region is where the
most pronounced remodeling and heart-tube lengthening
occurs (170, 171). The expression of TIMP-3 within this
myocardium is precisely where one would expect it if it were
involved in the lengthening and remodeling of cardiac tube.

The direction of cardiac looping may be driven
by differing rates of proliferation, not in the heart tube
itself, but rather in the dorsal mesocardium and adjacent
splanchnic mesoderm (greater on the left side rather than
the right, 167). MMP-2 is expressed within the dorsal
mesocardium and in both the right and left adjoining
splanchnic mesoderm whereas TIMP-2 expression is more
prevalent in the left side of the dorsal mesocardium and
adjoining left splanchnic mesoderm. This suggests the
possibility that more proMMP-2 is activated on this side as
TIMP-2 plays an important role in proMMP-2 activation.
Interestingly, cell proliferation is also more pronounced
within the left splanchnic mesoderm and left dorsal
mesocardium. Blocking MMP-2 activity not only disrupts
this asymmetric pattern of proliferation, it also randomizes
the direction of cardiac looping (167) and increases the
incidence of dextrocardia (reversal of the normal
anatomical position of the heart, i.e., right-sided heart).
Therefore, MMP-2 mediated growth appears to be involved
in orchestrating the direction of cardiac looping.

Recently, HB-EGF expression has also been
reported to be more prevalent in the left side of early embryos
than in the right while its receptors, erbB1 and erbB4, are
expressed symmetrically (172). Interestingly, in iv/iv mouse
mutants that exhibit situs inversus, HB-EGF expression is also
reversed. Mice with non-MMP cleavable proHB-EGF exhibit
heart failure, myocardial hypoplasia, and enlarged heart valves
(173) and HB-EGF-deficient mice have similar defects and
abnormal semilunar and AV valves (174, 175). Therefore, one
could speculate that temporally- and spatially-restricted MMP
activation may dictate where bioactive HB-EGF is available.

6.2.2. Heart Septation
Defects in cardiogenesis during the first three

weeks of gestation are usually lethal (i.e., during heart tube
formation and early cardiac looping stages), and therefore,
spontaneously aborted. However, anomalous events
occurring later in embryonic development often permit the
embryo and fetus to make it to term. These anomalies most
often manifest themselves as great vessel or cardiac septal
defects in neonates.

The septation of the atria and ventricles and
division of the cardiac outflow tract into the aorta and
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pulmonary artery requires the migration, proliferation, and
differentiation of two distinct mesenchymal populations,
endocardial-derived cushion cells and invading neural crest
(NC) cells (176, 177). MMPs have been implicated in
regulating of EMTs responsible for forming both
populations of cells. MMP-2 is expressed by endocardial
cells prior to and during the EMT of the endocardium in
both the atrioventricular and outflow tract regions of the
developing heart (166, 178). MT3-MMP (although based
on primer sequences listed in the publications, it is
mistakenly refer to as MT1-MMP) is expressed just prior
for endocardial EMT suggesting proMMP-2 activation is a
prerequisite to the EMT (97, 178). Collagen type-IV
integrity is lost within the endocardial basement membrane
just prior to endocardial EMT and blocking MMP activity
not only decreases levels of active MMP-2 in the heart, it
prevents the loss of basement membrane integrity and
inhibits endocardial EMT (97, 179). In addition, TGF-beta,
a growth factor known to enhance endocardial EMT (180,
181), increases MMP-2 and MT3-MMP expression in
migrating endocardial-derived cushion cells (97).
Activation of proMMP-2 requires TIMP-2 or TIMP-3 via
formation of a ternary complex with either MT1-MMP or
MT3-MMP. Both TIMP-2 and TIMP-3 are expressed in the
endocardium of the atrioventricular and outflow tract
regions prior to and during EMT of the endocardium (168).
Therefore, endocardial cells undergoing EMT and
migrating cushion tissue cells not only can activate
proMMP-2 necessary for migration but they have the
means to direct this activity to the leading edges of their
invadopodia.

Hyaluronan, an abundant ECM component of the
pre-mesenchymal heart (182), is an important mediator of
cell migration and invasion. Mice lacking hyaluronan
synthase die in utero because of failed cushion tissue
formation in both the atrioventricular and outflow tract
regions (183). Hyaluronan is essential for heart
development because it augments heregulin-1 activation of
erbB receptors essential for proper heart development
(184). Heregulin (also known as neuregulin-1) up-regulates
the expression of multiple MMPs in several cell types and
directly induces EMT of the endocardium. Like
hyaluronan-deficient mice, heregulin-deficient mice and
mice with nonMMP-cleavable proHB-EGF exhibit heart
malformations and die in utero (184-187). Hence, MMPs
play pivotal roles in modulating hyaluronan and erbB
signaling necessary for EMT of the endocardial and cardiac
septation.

Endocardial cushion tissue formation requires
turnover of the cell-cell adhesion molecules NCAM, N-
cadherins, and PECAM-1, in a subset of endocardial cells.
PECAM-1, a cell adhesion molecule expressed in the
endocardium, is lost in endocardial cells undergoing EMT.
In mice, hyperglycemic conditions decrease VEGF-A
released from the myocardium, decrease endocardial
MMP-2 expression, and cause a retention of PECAM-1 in
endocardial cells, thereby, inhibiting the endocardial EMT
(179). Blocking the bioavailability of endogenous VEGF
mimics the effect of hyperglycemia on endocardial EMT
whereas exogenous recombinant VEGF-A reverses the

deleterious effects of hyperglycemic conditions (179).
Moreover, the effect of hyperglycemia on endocardial EMT
is lost in cultures of atrioventricular explants derived from
PECAM-1 deficient mice. PECAM-1 is normally shed
from endothelial cell surfaces during EMT through the
action of MMPs (188). Thus under hyperglycemic
conditions, the reduction in VEGF-A released from the
myocardium would decrease MMP-2 expression resulting
in retention of PECAM-1 within the endocardium.
Consequently, cell-cell separation necessary for
endocardial cushion tissue formation would be insufficient
for proper embryonic cardiac septation.

Many congenital heart and great vessel defects
stem from aberrant neural crest (NC) morphogenesis (for
review see,189). A perturbation of NC cell migration into
the pharyngeal arches or NC cell proliferation resulted in
congenital heart defects such as persistent truncus
arteriosus, transposition of the great vessels, ventricular
septal defects, double-outlet right ventricle, and others.
MMPs and their inhibitors may have important roles in
mediating NC cell emigration from the neural tube (also an
EMT event) and regulating NC cell migration and invasion
through embryonic ECM. In the trunk axial level, NC
progenitor cells transiently express MMP-2 and blocking
this expression inhibits NC cell EMT (190). During the
early emigration of cranial NC cells, NC cells encounter
MMP-2 protein localized within the ectodermal and neural
tube basement membranes and within the interstitial ECM
through which they migrate (166). Blocking MMP activity
inhibits NC cell migration both in vivo and in vitro (166,
190, 191). Patch mice, which exhibit NC-related
craniofacial and cardiac defects (192, 193), have
deficiencies in MMP-2 and MT1-MMP expression and
NC-derived mesenchyme from these embryos have
decreased migratory capacity in vitro (194). ADAM-13, a
disintegrin with MMP activity, is also required for proper
migration of NC cells into the branchial (pharyngeal)
arches of Xenopus embryos (195).

In addition to the dorsal mesocardium and early
endocardium, TIMP-2 mRNA is also expressed in the
neural epithelium during early neurulation and only in NC
cells that will enter pharyngeal arches III, IV, and VI (often
referred to as cardiac NC cells as a subset of these cells
participate in cardiac septation and valve formation, 196).
In vitro, cardiac NC cells express MT1-MMP and TIMP-2
and secrete and activate proMMP-2. Antisense TIMP-2
oligonucleotides block proMMP-2 activation in vitro,
decrease cardiac NC cell migration from explants, and
inhibits cardiac NC formation and migration in vivo (196).
Because TIMP-2 is required for activation of proMMP-2 by
MT1-MMP, this suggests TIMP-2 expression by cardiac
NC cells initiates proMMP-2 activation necessary for their
EMT and subsequent migration. These studies show MMPs
and their inhibitors play important roles in enabling cardiac
NC mesenchymal cells to reach the cardiac primordia and
participate in cardiac septation.

6.2.3. Embryonic and Fetal Cardiac Remodeling
One of the earliest reports showing MMP

expression during heart development was based on
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immunocytochemistry using an antibody directed against a
collagenase. Nakagawa et al. (197) showed a collagenase
was present within the cardiac trabeculae, ventricular and
atrial walls, and in mesenchymal cells of the developing
cushion tissues of embryonic day 11.5 and 12.5 rat
embryos. Since then, other MMPs and their inhibitors have
been shown to be temporally and spatially expressed during
stages of embryonic and fetal heart remodeling. The
developing valve leaflets surrounding the atrioventricular
orifices express MMP-2 (166, 178). During the formation
and remodeling of the muscular septa, cells of septum
primum adjacent ostium primum express MMP-2, TIMP-2,
and TIMP-3. TIMP-3, but not TIMP-2, is also expressed
within remodeling myocardium (166, 168). With the onset
of cushion cell formation, the atrioventricular and conal
myocardium begin expressing TIMP-3 in a pattern
suggesting TIMP-3 participates in separating the atrial
myocardium from the ventricular myocardium and in
realigning the atrioventricular canals with the developing
ventricles (168). The overlapping expression of TIMP-2
and MMP-2 within the epicardium and developing
coronary vasculature also suggests MMP activity is
important in the development of this tissue layer as well
(166, 168).

Remodeling events responsible for transfiguring
the primitive ventricular myocardial wall into a compact
layer and inner trabecular layer also involve MMPs. In the
mouse embryo, MMP-2, MMP-3, MMP-9, and MMP-13
are all expressed in prenatal hearts, particularly over the
trabeculae and epicardial tissue, as early as embryonic day
12, and continue to be expressed there during the remainder
of fetal period (198). Based on zymography, levels of
active MMP-13 increase in mouse hearts beginning
embryonic day 12 and plateau a few days before birth while
levels of active MMP-2 peak at embryonic day 16 and then
decline, suggesting differing roles for these two MMPs
during late stages of embryonic heart development (198).
Activation of the erbB2/erbB4 receptor complex by
endocardial-derived heregulin is required for trabeculation
and remodeling of the primitive ventricle (186). MMPs
release bioactive VEGFs from the ECM (102, 199) and
active VEGF-A increases the expression of several MMPs
(200, 201). Therefore, if MMP processing is required for
erbB signaling in the developing heart, the specific
temporal and tissue-specific expression of MMPs and
TIMPs could dictate where and when particular growth
factors modulate cardiac remodeling events. This may be
exemplified by the observation that expansion of the
trabecular layer occurs at the expense of the ventricular
compact layer with modest overexpression of VEGF-A, as
VEGF-A-driven increases in MMP expression could lead
to an abnormal increase in heregulin signaling (202).

7. MMP AND TIMPS IN CARDIOVASCULAR
DISEASE

7.1. MMPs and Atherosclerosis
Atherosclerosis, a pathological vascular

remodeling event, is initiated by a chemical and/or
mechanical-induced injury of the endothelium leading to an
accumulation of lipid beneath the endothelium. Circulating

monocytes then infiltrate the vascular intima. Here, these
monocytes become activated, take up lipid, and release a
variety of cytokines and growth factors. Eventually, a lipid
core develops within the intima forming a plaque
surrounded by a thin fibrous capsule. In response to
monocytic invasion, VSMCs also migrate from the tunica
media into the intima and undergo hyperplasia thereby
contributing to stenosis of the vessel (203-205). Clinical
complications and symptoms are often triggered by rupture
and release of unstable plaques leading directly to
obstructions or to development of thrombi compromising
the circulation to vital organs. Clinical complications also
result from thinning and weakening of the vascular wall
promoting the development of aneurysms.

7.1.1. Plaque Development, Intimal Thickening, and
Plaque Stability

Inflammation and the associated increase in
MMP activity are implicated in playing major roles in
plaque-forming events and plaque destabilization (205).
Circulating monocytes exhibit little or no MMP activity,
but once adhered to the endothelium and in contact with
underlying ECM, there is a marked up-regulation of MMP
expression (206-209). Activation of these vascular
monocytes (i.e., macrophages) results in the release of
several different inflammatory cytokines and growth
factors (e.g., interleukin-1, interleukin-6, tumor necrosis
factor-alpha, EGF, PDGF, basic FGF, macrophage
migration-inhibitory factor) that induce expression of
several types of MMPs (210-215). Still, others are
inhibitory for MMP expression (e.g., interleukin-4,
interleukin-10, and interferon-gamma) or increase TIMP
expression (216-218).

Many acute cardiovascular events related to
atherosclerosis may be due to occlusive thrombi formation
occurring after a partial disruption of an atherosclerotic
plaque (219, 220). Several lines of evidence support the
idea that infiltration and activation of macrophages within
plaques induce breakdown of the fibrous capsule leading to
an increased likelihood of plaque rupture. For instance,
lipid-laden macrophages from human atherosclerotic
plaques secrete MMP-1 and MMP-13 (221) and culturing
macrophages with fibrous caps of human plaques induces
MMP-dependent collagen degradation via macrophage-
derived MMP-3 (222). MMP-3, MMP-7, and MMP-12
mRNA expression in coronary lesions also co-localize with
clusters of lipid-laden macrophages found in shoulder areas
of plaques and along the capsular border of human carotid
plaques (223, 224). Based on immunostaining, the
distribution of MMP-2, TIMP-1, and TIMP-2 is uniform
within lesion-free arteries whereas MMP-1, MMP-3, and
MMP-9 levels are higher within the endothelium overlying
plaques, in the plaque core, and in vascular smooth muscle
cells (VSMCs) adjacent the fibrous cap and shoulders of
the lesions (225, 226). In addition, MMP-8, a collagenase,
is more prevalent in shoulders of plaque lesions from
patients exhibiting symptoms than in plaque shoulders of
non-symptomatic patients (227). Oxidized low-density
lipoproteins within the developing plaque also induce
MT1-MMP and MMP-9 expression in macrophages while
reducing TIMP-1 expression in these cells (213, 228).
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Macrophage migration-inhibitory factor released by
macrophages and VSCMs within plaques, increases MMP-
9 expression and is elevated in both cells types in
vulnerable plaques but not in plaques having thicker fibrous
capsules (214). MMP-2, MMP-9, MMP-12, and MMP-13
levels increase in plaques forming in ApoE-deficient mice
fed a high-fat diet but this does not occur in ApoE-deficient
mice fed a low-fat diet or in wild-type mice (229).
Collectively, these and other studies show plaque
development and plaque instability are associated with
increases in overall MMP activity in areas occupied by
macrophages. However, it should be noted that increases in
macrophage MMP expression do not always correlate with
increases in plaque formation. For example, macrophage-
specific miss-expression of MMP-1 in ApoE-deficient mice
fed a high-fat diet form fewer atherosclerotic lesions then
those with normal macrophages (230).

Inflammatory cytokines and growth factors
released by macrophages entering the site of a developing
plaque up-regulate MMP expression in VSMCs as well
(including MMP-1, MMP-2, MMP-3, and MMP-9, 231,
232-234). As a consequence, VSMCs migrate from the
tunica media into the intima and undergo proliferation,
thereby narrowing the vascular lumen (235, 236). The
expression of several MMPs in macrophages and VSMCs
also increase in several different vascular injury models
(221, 224, 237, 238) as well as in injuries associated with
surgical removal and grafting of saphenous veins (239). In
a focal endothelial injury model leading to intimal
thickening, MMP-2 and MMP-9 expression increase within
the neointima (240). VSMC of mice lacking MMP-2 do not
migrate into the intima nor do they exhibit hyperplasia after
experimentally-inducing vascular remodeling (241, 242).
VSMC from mice lacking MMP-9 also have a reduced
capacity to migrate, proliferate, and invade the intima (243,
244). While both MMP-2 and MMP-9 appear to be
required for neointimal formation, it appears that MMP-9,
together with CD44, may be primarily responsible for the
ongoing reorganization of fibrillar collagen occurring
during neointimal formation (242).

In vivo, the principle mechanism for proMMP
activation is through the proteolytic action of MT-MMPs,
and in the case of proMMP-2 and proMMP-9, it involves
MT1-MMP or MT3-MMP (60, 245, 246). MMP-2 is
rapidly converted to its active form in injured arterial walls
and wounded VSMC cultures (237, 238, 247). Studies
show both macrophages and VSMC within human plaques
express MT1-MMP and MT3-MMP and that cytokines
released by activated macrophages increase MT1-MMP
and MT3-MMP expression in VSMCs (213, 215). Hence,
MT-MMPs, in addition to their own ability to degrade
ECM, likely mediate the degree to which MMP-2 and
MMP-9 functionally contribute to plaque formation,
stability, and intimal thickening. However, few studies
have yet to investigate the role of this family of MMPs in
plaque formation and stability.

Given the evidence that MMP activity is an
important determinant in plaque development and stability,
recent studies are exploring the possibility that MMP

inhibition or limiting MMP bioavailability may slow the
progression of plaque development and help stabilize
plaques. Systemic delivery of non-selective synthetic MMP
inhibitors does not reduce plaque mass in LDL-deficient
mouse models but it does attenuate aortic elastin
degradation and ectasis in these mice (248). In contrast,
blocking MMP activity with native inhibitors or
eliminating synthesis of particular MMPs, genetically, does
restrict neointimal formation. As mentioned, VSMCs of
mice lacking MMP-2 do not exhibit hyperplasia after
vascular injury (241, 242). Mice deficient in both MMP-9
and ApoE and fed a high-fat diet develop significantly
fewer advanced atherosclerotic lesions than their wild-type
MMP-9, ApoE-deficient counterparts (249). This is not true
for mice deficient in both MMP-12 and ApoE, showing
differential roles for these two MMPs in plaque
development (249). In TIMP-1-deficient mice, intimal
thickening induced by vascular injury is significantly
greater compared to wild-type mice (250). However, mice
with MMP-11 deficiency have enhanced neointimal
formation 2-3 weeks after injury (251). Why this occurs is
unknown but could be related to the fact MMP-11 cleaves
alpha1-proteinase inhibitor (252), an important inhibitor of
elastase activity (253, 254). Therefore, one might speculate
that because of the MMP-11 deficiency, levels of alpha1-
proteinase are higher thereby restricting elastase activity.
Regardless, the consensus from these studies is that MMPs
play important roles in enabling VSMC invasion into the
intima and in stimulating VSMC hyperplasia after vascular
injury.

Genetic diversity in MMP genes can have an
impact on the progression of disease. A common
polymorphism in the MMP-9 promoter region increasing
MMP-9 transcription is associated with increased severity
of coronary artery disease (255). Higher plasma levels of
MMP-9 appear to be a prognostic indicator of
cardiovascular mortality in patients with coronary artery
disease (256, 257). The link between coronary disease and
higher MMP-9 levels is consistent with studies showing
overexpression of MMP-9 using an adenoviral vector,
increases intravascular thrombi formation in porcine
coronary arteries after balloon injury; the effect being
inhibited by TIMP-1 (258). In mice, the level of MMP
expression in atherosclerotic lesions also depends on
genetic backgrounds. C3H/HeJ mice deficient in ApoE
show increased MMP-2 and MMP-12 levels in their aortas
and macrophages when compared to ApoE-deficient
C57B1/6 mice. While MMP-9 activity levels in the aortic
tissues are comparable in these mice, MMP-9 activity is
higher in the macrophages of C3H/HeJ mice (259).
Although C3H/HeJ mice develop smaller atherosclerotic
plaques than C57B1/6 mice, the outer elastic tunics are
more disrupted, eroded, and fragmented than in C57B1/6
mice (259). These studies show MMP-related genetic
differences play important roles in the development of
pathophysiological defects.

7.1.2. Restenosis
Balloon angioplasty followed by stent

implantation is a common procedure used to restore blood
flow, particular coronary blood flow. Unfortunately there is
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a 25-40% reoccurrence of symptoms within 6 months
because of restenosis by VSMC migration and intimal
hyperplasia (260, 261). Therefore, development of
therapies directed toward preventing restenosis would be of
great value.

Many studies have focused on VSMC migration
and growth and the synthesis and turnover of ECM within
the intima because these are key characteristic features of
restenosis after balloon angioplasty (262-264). Using a
double injury model in rabbits, Li et. al. (265) reported
increases in both MMP-2 and MMP-9 levels and cell
proliferation in stented vessels. MMP-2 activity
increases in the days following balloon injury and
correlates positively with increases in the degree of
collagen degradation and VSMC migration (237, 266).
In patients, blood collected from the coronary sinus
show increases in MMP-2 levels within 4 hr of balloon
angioplasty with no change in TIMP-2 levels (267) and
MMP-9 levels increase significantly within coronary
sinus blood collected immediately after 60 seconds of
balloon expansion (268). Increases in MT1-MMP
protein levels and active MMP-2 (with no change in
proMMP-2 protein levels) also occur in the tunica media
in response to balloon-induced vascular injury and these
increases depend on phosphatidylinositol 3-kinase
signaling (247). Inhibitors of phosphatidylinositol 3-
kinase prevent the increase in MT1-MMP and MMP-2
activity and blocks VSMC migration and neointimal
hyperplasia (247). MMP-3 may also play an important
role in restenosis. MMP-3 degrades many ECM
components and activates other secreted proMMPs
(269-271). MMP-3 is prevalent in human plaque
material and is expressed by both macrophage foam
cells within plaques and intimal VSMCs (223, 225,
272). MMP-3 levels quickly rise and VSMC migration
and proliferation ensues following mechanical injury of
VSMCs. These effects are inhibited by MMP-3
antisense oligonucleotides (273). TIMP-2 gene transfer
also inhibits VSMC migration and delays neointimal
development in balloon-injured rat carotid arteries (274)
further supporting the idea that MMP activity plays an
integral role in neointimal development after
angioplasty.

Studies suggest the intimal hyperplastic
response due to stent implantation is greater than that of
balloon angioplasty alone. In rabbit iliac vessels, MMP-9
mRNA levels rapidly increase after vascular injury but they
are almost twice as high in stented vessels than in those
subjected to balloon angioplasty alone (275). Moreover,
active MMP-9 is detected within 1 day after injury but only
in the stented vessels where it remains elevated for up to 60
days. In contrast, active MMP-2 is first detect 7 days after
balloon angioplasty with or without stenting and remains
elevated for up to 60 days (275). Moreover, cell
proliferation is nearly 50% greater in stented vessels,
mostly in cells surrounding the border of the stent,
compared to those subjected to balloon angioplasty alone
(265). These data suggest the vascular response to stent
implantation is different from balloon angioplasty alone, at
least with regard to MMP-2 and MMP-9 activities.

Several different approaches have been used to
try and prevent restenosis including the use of stents
delivering immunosuppressive drugs (e.g., rapamycin,
cyclosporine, sirolimus, etc.), anti-inflammatory drugs
(e.g., dexamethasone), anti-proliferative drugs (e.g.,
paclitaxel), tyrosine receptor kinase inhibitors, and MMP
inhibitors. Marimastat and GM6001, both non-selective
synthetic MMP inhibitors, block restenosis in stented
vessels without changing cell proliferation or intimal
collagen content (265, 276). In culture, the migration and
proliferation of rat aortic smooth muscle cells is inhibited
by Batimastat, a non-selective synthetic MMP inhibitor
(277). However, Batimastat does not significantly influence
the degree of neointimal thickening following stenting of
atherosclerotic porcine femoral arteries (278). In primates
with genetic propensities for developing atherosclerosis,
the non-selective synthetic MMP inhibitor, RO113-2908,
also fails to prevent intimal thickening and restenosis in
response to angioplasty (279). These conflicting results
regarding the effectiveness of MMP inhibitor treatment
may stem from the use of different animal models or
differences in the ability of each synthetic MMP inhibitor
to effectively block specific MMPs (e.g., MMPs versus
ADAMs having MMP-like activity). In addition, VSMC
heterogeneity and embryological origin may generate
different injury reactions and responses to MMP inhibitor
treatments (280, 281).

Recent studies suggest blocking alphaV beta3
integrin signaling inhibits neointimal hyperplasia and
restenosis by altering MMP levels. An antibody antagonist
to the beta3 integrin subunit decreases proMMP-9,
proMMP-2, and active MMP-2 levels and inhibits VSMC
migration in injured rat carotid arteries compared to
untreated injured vessels without changing TIMP-1 and
TIMP-2 levels (282). In a balloon injury model, either
Batimastat or alphaV beta3 integrin-inhibitory peptides can
inhibit neointimal formation but they are much more
effective in preventing constrictive remodeling of balloon
injured vessels when combined (283). Moreover, the
degree of restenotic inhibition correlates with a decrease in
MMP activity (283). In vitro, a cyclic peptide antagonist
for the alphaV integrin subunit blocks migration of VSMCs
and this effect is accompanied by decreases in focal
adhesion kinase activity and MMP-2 secretion (284). Not
only does alphaV beta3 integrin signaling increase MMP-2
synthesis in some cells (285), this integrin also binds
proMMP-2 enabling proMMP-2 activation and provides a
mechanism by which cells can localize MMP-2 activity to
particular regions of its cell surface (286). This suggests at
least two possible routes by which alphaV beta3
antagonists could inhibit neointimal hyperplasia, i.e.,
preventing proMMP binding, activation, and directed
proteolysis, and/or decreasing MMP synthesis induced
through the alphaV beta3-signaling cascade.

The use of endogenous MMP inhibitors has
shown promise in limiting restenosis and neointimal
thickening in animal models. Neointimal formation is much
more pronounced after vascular injury in TIMP-1-deficient
mice (250). Local overexpression of TIMP-1 in virally-
transfected VSMC cells of balloon-injured rat carotid
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arteries decreases the number of VSMC found with the
intima and inhibits neointimal hyperplasia (287-291). A
peptide-targeted adenovirus encoding TIMP-1 also inhibits
restenosis induced by balloon endothelial denudation in
rabbits (292). In addition, adenoviral delivery of TIMP-1
into ApoE-deficient mice fed a high-fat diet reduces
atherosclerotic lesion size, reduces the number of
macrophages in the lesions, and increases the collagen,
elastin, and VSMC alpha-actin content of the tunica media
(293). Adenoviral delivery of TIMP-2 at the time of
balloon-induced injury also inhibits VSMC migration into
the intima and attenuates neointimal thickening in rat
carotid vessels (274). These studies suggest that
manipulating TIMP levels may offer a better therapeutic
approach to limiting restenosis after angioplasty than non-
selective synthetic MMP inhibitors.

Late graft failure occurring because of
neointima formation and subsequent atherosclerosis
complicates the use of autologous saphenous vein or
internal thoracic arterial grafts in coronary bypass surgery.
Overexpression of either TIMP-2 or TIMP-3 via an
adenoviral system prevents neointimal formation and
VSMC cell migration in organ cultures of saphenous vein
graphs (294). Similarly, overexpression of TIMP-1 in
human saphenous vein explants inhibits neointimal
formation by more than ~50% (295). However, only TIMP-
3 prevents this from occurring in vein-to-carotid artery
grafts in vivo (296). The mechanisms behind graft failure
are further complicate by the fact the vessels taken from
different regions have inherently different of levels MMPs
and extracellular MMP-inducing proteins (297). With a
better understanding of these differences and appropriately
manipulating the MMP-to-TIMP stoichiometry, we may be
able to reduce the incidence of graft failure.

7.2. MMPs and Aneurysms
Aneurysms may be considered as a pathological

type of expansive remodeling and MMPs play a major role
in aneurysm formation. Tissue remodeling is a prominent
feature of degenerating vascular walls and the loss of
structural integrity is associated with a decrease in collagen
and elastin content (298, 299). Studies in MMP-deficient
mice show MMPs play key roles in the development of
aneurysms. MMP-2- and MMP-9-deficient mice do not
develop aneurysms under experimental conditions that
normally induce aortic aneurysms in wild-type mice (300,
301). Loss of MMP-9 and MMP-12 gene expression in ApoE-
deficient mice also protects against atherosclerotic-related
media thinning and ectasis (249). Interestingly, re-infusion of
active macrophages or bone marrow transplants from wild-
type mice into MMP-9-deficient mice re-establishes the
development of aneurysms in these deficient mice (300, 301).

In humans, the MMP content in the regions of
aneurysms is much higher compared to healthy vessels and
likely contributes to the decrease in collagen and elastic
content of the vascular tunic in these regions (302-309).
Plasma levels of MMP-9 are also higher in patients with
aortic aneurysms (310-312). Genetic polymorphisms in the
MMP-9 promoter also suggest differences in MMP-9
activity within the vessels comprising the circle of Willis

thereby leading to increased susceptibility to intracranial
aneurysm formation (313). Studies are ongoing to
determine if MMP-9 and other MMP polymorphisms might
serve as useful diagnostic tools for aneurysms (256, 311).

TIMP-1-deficient mice exhibit aortic medial
ruptures and disrupted elastic fibers and much of the MMP
activity is associated with macrophages found within the
media (314). In ApoE-deficient mice, deletion of TIMP-1
gene reduces plaque size but increases the potential for
aneurysm formation (315). In contrast, local overexpression
of TIMP-1 prevents aortic aneurysm degeneration and
rupture in a rat model (316). As TIMP-1 is an effective
inhibitor of MMP-9 activity, this suggests a miss-balance
between MMP-9 activity and TIMP levels plays a key role
in the development of aneurysms.

While non-selective synthetic MMP inhibitors
have been relatively ineffective in preventing
atherosclerosis, studies suggest synthetic MMP inhibitors
may be more useful in preventing the formation or slowing
the progression of aneurysms. In femoral-arteriovenous
shunt models that stimulate flow-mediated enlargement of
iliac vessels, MMP-2 activity increases in iliac vessels within 3
days and the degree of iliac enlargement is attenuated by
synthetic MMP inhibitors (317-320). Aneurysmal dilation and
aortic medial elastin destruction usually occurring in LDL-
receptor-deficient mice or induced by brief endothelial elastase
treatment, is also attenuated by MMP inhibitors (248, 299,
321, 322). Doxycycline, an antibiotic and nonspecific inhibitor
of MMPs, has no significant effect on development of
atherosclerosis in LDL-receptor-deficient mice but markedly
decreases the frequency of aortic aneurysm formation in these
mice (323). Doxycycline also inhibits aneurysm development
in experimentally-induced aneurysm models at concentrations
within the dose range used in humans as an antibiotic (324).
Doxycycline decreases levels of both latent and active forms of
MMP-2 and MMP-9 released from explants of human aortic
aneurysm vessels (325) but only MMP-9 levels decrease in
aneurysm tissues taken from patients receiving preoperative
treatment with doxycycline (but it has little or no effect on
MMP-2, 326). Doxycycline is well tolerated by patients even
after prolonged treatment and is capable of reducing the higher
MMP-9 plasma levels found in patients with small
asymptomatic abdominal aortic aneurysms, back to normal
(327). Recently, it has been shown that a derivative of
doxycycline lacking antibiotic characteristics but retaining
MMP inhibitory activity, still inhibits VSMC migration into
the intima and prevents intimal thickening in a rat carotid
injury model (328). Therefore, doxycycline and other MMP
inhibitors offer some promise as possible therapeutic agents for
preventing or treating aneurysms.

7.3. MMPs and Progressive Heart Failure
In response to hypertension, elevated ventricular

wall stress, or injury, the heart attempts to functionally
compensate by remodeling. One of the earliest responses to
an acute myocardial infarction or unstable angina is an
increase in the expression and activity of MMP-1, MMP-2,
and MMP-9 (329-333). MMP-2, MMP-13, MT1-MMP,
and TIMP-2 levels are also up-regulated in congestive heart
failure (334, 335). The type of overload (i.e., pressure
overload versus volume overload) associated with
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hypertension and congestive heart failure have differential
effects on MMP and TIMP expression within the
myocardium (336). MMPs (e.g., MMP-9) are usually
expressed at low levels in normal myocardium but are up-
regulated with acute pressure and volume overloads and
eventually return to baseline levels with chronic pressure
and volume overloads (337). MMP-3 levels increase with
acute volume and chronic pressure overloads (337) while
MMP-1 levels decrease with volume overload but do not
change with pressure overload (337). Interestingly,
unloading the heart with a ventricular-assist device also
down-regulates MMP levels and increases TIMPs levels in
human heart tissue biopsies (338). Hence, levels of specific
MMPs and MMP inhibitors expressed within the heart
depend on the type of overload it is experiencing.

The increases in active MMPs levels associated
with cardiac overloading remain elevated for several days
(337, 339). Spontaneously hypertensive rats exhibit
significant left ventricular hypertrophy, dilation, increase
chamber compliance, and eventually succumb to
congestive heart failure by 9-13 weeks. During the early
phase, significant elevations in MMP activity occur in both
spontaneously hypertensive rats and in chronic overload
models of hypertension (334, 340-343). This is followed by
a loss of collagen content and integrity and eventually leads
to progressive heart dilation (344-346). In response, cardiac
fibroblasts increase the deposition of several ECM
components including collagen type-I, collagen type-III,
collagen type-IV, collagen type-VI, fibronectin, and
laminin and cardiac myocyte increase their actin content
(347, 348), all in an attempt to compensate for the dilation
(349-352). While these compensatory events are somewhat
effective at first, after several weeks, right and left
ventricular hypertrophy recommences even though
collagen levels and activity of some MMPs (particularly
MMP-2) return back to normal (353, 354). Without any
intervention, this hypertrophy continues and the heart
eventually fails when again, MMP levels become elevated
and myocardial fibrosis increases (342, 354). In both
spontaneous hypertensive rat models and chronic overload
models, transition into the decompensation (failure) phase is
slowed by treatment with MMP inhibitors if given before this
phase begins (340, 341). Synthetic non-selective MMP
inhibitors also limit left ventricular dilation and reduced wall
stress during development of congestive heart failure in
experimental porcine models (355). In addition, the degree of
ECM degradation in the ventricular walls is less in the MMP
inhibitor-treated animals (355). MMP inhibitors also attenuate
left ventricular dilation after induction of myocardial infarcts in
mice (356). Unfortunately, loss of MMP activity or treatment
with MMP inhibitors delays infarct healing (357).

Disruption of the normal equilibrium between
ECM synthesis and degradation plays a major role in
cardiac remodeling and pathophysiology. Constitutive
expression of human MMP-1 in the hearts of mice (there is
no MMP-1 gene homolog in mice, 358) results in a 20%
mortality rate within 6 months and a loss of interstitial
collagen associated with compensatory cardiac hypertrophy
(359). After experimentally-induced myocardial infarction,
MMP-9- and MMP-2- deficient mice exhibit less left

ventricular enlargement and cardiac rupture than wild-type
mice (357, 360, 361). Loss of TIMP expression is also
associated with progression of heart failure (362, 363).
Deletion of either the TIMP-1 or TIMP-3 gene results in
the development of left ventricular dilation and
hypertrophy (362, 364) and accelerates post-myocardial
infarct remodeling (365). These studies suggest that TIMPs
are necessary for limiting MMP activity under normal
conditions and show that many of the detrimental changes
observed with angina and myocardial infarction are likely
due to a shift favoring increased MMP activity.

8. PERSPECTIVES

It is obvious MMPs and their inhibitors play
important roles in cardiovascular development and
progression of cardiovascular disease. Much has been
learned regarding the spatial and temporal changes in
MMPs and their activities during the development and
progression of cardiovascular disease. However, there is
profound lack of understanding regarding the precise
relationship between MMP and MMP inhibitors and the
cause and effect of these diseases. For example, are the
observed changes in MMP levels responsible for the
development of cardiovascular disease or are they
secondary consequences of the disease process? If changes
in MMP activity are the cause, what are the targets or initial
consequences of this activity and how do the various cell
types in the affected areas respond? How does this translate
into functional pathological changes within the organ? The
functional roles for MMPs during embryonic development
and the development cardiovascular diseases are generally
attributed solely to the catalytic properties of MMPs. Little
attention has been given to the possibly that other domains
within MMPs and MMP inhibitors might have important
functional properties or consider that bioactive peptides
generated from their own turnover might have roles in
these processes. The importance of these considerations are
evident from recent studies showing TIMP-2 inhibits
angiogenesis independently from its MMP inhibitor
function (111, 114) and that naturally-generated peptide
fragments of MMP-2 lacking catalytic activities block
angiogenesis (366).

Important clues to the onset and development of
cardiovascular disease and therapeutic intervention will
stem from work investigating the role MMPs and TIMPs
during embryonic development. Many of the same basic
biological processes necessary for establishing a
functioning cardiovascular system in utero are recapitulated
during the development of cardiovascular disease. For
instance, the decision as to whether a blood vessel becomes
an artery or vein during development and the subsequent
functional alterations, mimic the remodeling events
occurring during adult vascular pressure overloading and
expansive remodeling in response to vascular stenosis.
Angiogenic responses to chronic cardiac ischemia require
the same basic cell-biological steps as takes place during
embryonic angiogenesis. Determining the functional and
responsive differences in VSMCs with different
embryological origins may elucidate why vascular grafts
from taken from different regions have different MMP and
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MMP inhibitor characteristics and respond differently when
used in coronary bypasses. Using genetically-modified
animals with altered MMP and TIMP stoichiometries,
genetically-modified domains, and temporal and tissue-
specific alterations in MMP expression will greatly
enhance our understanding of the complex interplay
between cells and tissues mediated by these molecules.
Identification of new polymorphisms within genes of
MMPs, TIMPs, and their transcriptional regulators and
studying their effects on cardiovascular development and
disease will help us better understand the etiological basis
of these diseases and provide invaluable diagnostic tools.

Even with our current limited understanding,
experimental and clinical studies indicate that by managing
MMP and MMP inhibitor levels, we will be able to
someday prevent or delay the detrimental changes
accompanying cardiovascular disease. But before effective
therapeutic agents can really be developed, we need a much
better understanding of the cause and effect relationship
between MMPs and congenital cardiovascular defects and
cardiovascular diseases.
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