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1. ABSTRACT

Members of the MMP (matrix metalloproteinase)
and ADAMTS (a disintegrin and metalloproteinase with
thrombospondin type | motifs) families of enzymes are
capable of cleaving a diverse array of cellular, extracellular
and extracellular matrix substrates, including collagens and
procollagens, proteoglycans, cytokines and cytokine
ligands, chemokines, elastin and von Willebrand factor,
thereby modulating tissue structure and function during
both health and disease. Physiologically relevant roles
attributable to various members of these metalloproteinase
families have been discerned from functional studies
correlating in vitro substrate processing events with
catabolic cleavages occurring in vivo/in situ, and the
consequences thereof. Mechanisms regulating the post-
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translational activities of MMPs and ADAMTSs can clearly
also have an influential impact on cell metabolism and tissue
structure/function, and a number of functional studies have
addressed the contributions of ancillary (non-catalytic)
domains and endogenous inhibitors in this regard. Further
revelations and affirmations of proteinase function, in an in
vivo context, have emanated with the characterization of
genetically manipulated animals misexpressing specific MMPs
or ADAMTSs (or their substrates). An increased
understanding thereby attained for the physiological functions
of MMPs and ADAMTSs, and the means by which their
activities are controlled, may lead to the realization of rational
therapeutic strategies to counteract pathologies associated with
aberrant proteolysis of homeostatic tissue macromolecules.
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Table 1. Human MMP nomenclature and database identifiers.

Gene Symbol* | Other Name(s) MEROPS ID* | Entrez GenelD® | GenBank Locus® | OMIM?®
MMP1 interstitial/fibroblast collagenase | M10.001 4312 NM_002421 120353
MMP2 gelatinase A, 72 kDa gelatinase M10.003 4313 NM_004530 120360
MMP3 stromelysin-1 M10.005 4314 NM_002422 185250
MMP7 matrilysin, PUMP-1 M10.008 4316 NM_002423 178990
MMP8 neutrophil collagenase M10.002 4317 NM_002424 120355
MMP9 gelatinase B, 92 kDa gelatinase M10.004 4318 NM_004994 120361
MMP10 stromelysin-2 M10.006 4319 NM_002425 185260
MMP11 stromelysin-3 M10.007 4320 NM_005940 185261
MMP12 macrophage metalloelastase M10.009 4321 NM_002426 601046
MMP13 collagenase-3 M10.013 4322 NM_002427 600108
MMP14 MT1-MMP M10.014 4323 NM_004995 600754
MMP15 MT2-MMP M10.015 4324 NM_002428 602261
MMP16 MT3-MMP M10.016 4325 NM_005941, 602262
NM_022564
MMP17 MT4-MMP M10.017 4326 NM_016155 602285
MMP19 n.a. M10.021 4327 NM_002429, 601807
NM_022791,
NM_022792
MMP20 enamelysin M10.019 9313 NM_004771 604629
MMP21 n.a. M10.026 118856 NM_147191 608416
MMP23A, CA-MMP M10.037, 8511, 8510 NM_004659, 603320,
MMP23B M10.022 NM_006983 603221
MMP24 MT5-MMP M10.023 10893 NM_006690 604871
MMP25 MT6-MMP M10.024 64386 NM_022468, 608482
NM_022718
MMP26 matrilysin-2, endometase M10.029 56547 NM_021801 605470
MMP27 n.a. M10.027 64066 NM_022122 n.a.
MMP28 epilysin M10.030 79148 NM_024302, 608417
NM_032950

Y(http://www.gene.ucl.ac.uk/nomenclature/); 2( http://merops.sanger.ac.uk/); 3(http://www.nchi.nlm.nih.gov/); n.a., not assigned.

2. INTRODUCTION

Proteolytic processing of cellular, extracellular
and extracellular matrix (ECM) substrates by enzymes
from the MMP (matrix metalloproteinase) (1,2) and
ADAMTS (a disintegrin and metalloproteinase with
thrombospondin type | motifs) (3,4) families of clan MA
peptidases (5) impacts the structural and functional
properties of a variety of tissues during development,
growth, homeostasis and pathology. Molecular analyses
and genome sequencing efforts have revealed the identities
of 23 separate human MMPs and 19 different human
ADAMTSs, notwithstanding variants occurring due to
alternative  mRNA splicing and/or post-translational
processing events (see Tables 1 and 2). Attentive research
efforts are thus engaged with the ongoing challenge of
continuing to unveil the physiological functions of these
proteinases, and determining the mechanisms whereby their
activities are regulated. Results from some of the functional
studies undertaken to address these issues are reviewed
herein, including data from experiments providing
validation for the ability of particular MMPs or ADAMTSs
to cleave substrate(s) in vivo/in situ with coinciding
specificity to that discerned in vitro, findings from studies
designed to elucidate the roles of ancillary (non-catalytic)
domains and endogenous inhibitors in the post-translational
control of MMP or ADAMTS function, and information on
the consequences of modifying MMP or ADAMTS
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expression and/or activity in vivo/in situ. By providing
insights into the pertinent ramifications of MMP and
ADAMTS actions, and the regulation thereof, functional
studies on MMPs and ADAMTSs may help facilitate
rational approaches toward moderating proteinase activity
for therapeutic benefit.

3. PHYSIOLOGICAL SUBSTRATES IDENTIFIED
FOR MMPs

3.1. Collagens

Observations from some of the first functional
studies on MMPs were reported in the early 1960s by Gross
and colleagues, who described an enzymatic activity in
metamorphosing tadpoles which was capable of degrading
helical collagen fibrils (6,7). A collagenase cleavage site
was subsequently identified for collagen types I, Il and Il
at a specific Gly-Leu/Gly-lle bond (see Table 3) located
three-quarters distant from the N-terminus of the
polypeptide chain, which matches the point of initial
collagen proteolysis in vivo (8,9). In humans, this activity is
principally attributed to the actions of the collagenases
MMP-1 (“interstitial” or “fibroblast” collagenase) (10),
MMP-8 (“neutrophil” collagenase) (11,12) and MMP-13
(collagenase-3) (13). Moreover, it has been reported that
Xenopus MMP-18 (collagenase-4) can function in this
capacity (14), and that MMP-2 (gelatinase A) and MMP-14
(MT1-MMP) are also able to exhibit collagenase
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Table 2. Human ADAMTS nomenclature and database identifiers.

Gene Symbol* | Other Name(s) MEROPS ID?* | Entrez GenelD® | GenBank Locus® | OMIM®
ADAMTS1 METH-1 M12.222 9510 NM_006988 605174
ADAMTS2 procollagen | N-proteinase M12.301 9509 NM_014244, 604539
(pNPI) NM_021599
ADAMTS3 n.a. M12.220 9508 NM_014243 605011
ADAMTS4 aggrecanase-1 M12.221 9507 NM 005099 603876
ADAMTS5 aggrecanase-2 M12.225 11096 NM_007038 605007
ADAMTS6 n.a. M12.230 11174 NM_014273 605008
ADAMTS? n.a. M12.231 11173 NM_014272 605009
ADAMTS8 METH-2 M12.226 11095 NM_007037 605175
ADAMTS9 n.a. M12.021 56999 NM_182920, 605421
NM_182921,
NM_020249
ADAMTS10 n.a. M12.2235 81794 NM_030957 608990
ADAMTS12 n.a. M12.237 81792 NM_030955 606184
ADAMTS13 von Willebrand factor-cleaving | M12.241 11093 NM_139025, 604134
protease (VWF-cp) NM_139026,
NM_139027,
NM_139028
ADAMTS14 n.a. M12.024 140766 NM_139155, 607506
NM_080722
ADAMTS15 n.a. M12.025 170689 NM_139055 607509
ADAMTS16 n.a. M12.026 170690 NM_139056 607510
ADAMTS17 n.a. M12.027 170691 NM_139057 607511
ADAMTS18 M12.028 170692 NM_199355, 607512
na. NM_139054
ADAMTS19 n.a. M12.029 171019 NM_133638 607513
ADAMTS20 n.a. M12.246 80070 NM_025003, n.a.
NM_175851

Y(http://www.gene.ucl.ac.uk/nomenclature/); 2(http://merops.sanger.ac.uk/); 3(http://www.ncbi.nlm.nih.gov/); n.a., not assigned.

Table 3. Physiological cleavage sites (human sequence enumeration, except as indicated) identified for MMP substrates

Enzyme(s)

Substrate! (Cleavage Site)

Reference(s)

MMP-1,-2,-8,-13,-14

Collagen I alphal (Gly""-11e"®); Collagen I alpha2
(Gly"™-Leu’); Collagen Il alphal (Gly"®-Leu’"®);
Collagen 111 alphal (Gly

8-13,15-17,20-23

784_)16755%)

MMP-1,-2,-3,-7,-8,-9,-10,-13,-14,-19,-20

Aggrecan (Asn®**-Phe

si2) 32-55

MMP-8,-14 Aggrecan (GIu®**-Ala®™) 36,39
MMP-1,-2,-3,-9,-10 Link Protein (His'*-1le'") 60-63
MMP-13 Fibromodulin (Tyr%-Ala®: bovine) 71

MMP-1,-2,-3,-7,-9,-12,-14,-17 ProTNF-alpha (Ala"-Val'") 75-79
MMP-2,-3,-7,-9,-13 BM-40/SPARC (Glu'**-Leu®®: mouse) 81,82
MMP-2 MCP-3 (Gly*-11e%) 83

! Abbreviations used: TNF, tumor necrosis factor; BM-40, basement membrane-40; SPARC, secreted protein, acidic and rich in

cysteine; MCP-3, monocyte chemoattractant protein-3.

activity in vitro (15-17). Conventionally, MMP-2 (and MMP-
9, or gelatinase B) are considered as gelatinases, enzymes
which degrade denatured collagens, although both MMP-2 and
MMP-9 can degrade native collagens such as types IV and V
(18,19). The determination that MMP-2 (although not MMP-
9) is able to degrade helical collagen types I and Il (15,17)
emphasizes the proteolytic potentiality (and capability) of
extracellular metalloproteinases. Antithetically, collagenases
may also exhibit substrate specificity. Thus, MMP-13 has been
shown to preferentially degrade collagen Il (20-23), the
principal structural collagen of articular cartilage.
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Expression of MMP-13 is upregulated in cartilage and
synovial tissue in association with degenerative joint
diseases such as osteoarthritis and rheumatoid arthritis
(21,24-29), and collagenase-generated collagen 1l cleavage
products colocalize with MMP-13 expression patterns in
osteoarthritic human cartilage (27,30), indicating a major
functional role for MMP-13 in cartilage collagenolysis.

3.2. Aggrecan
In situ catabolism of aggrecan, the major
proteoglycan component of articular cartilage which is vital
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for biomechanical competence of the tissue, results in the
separation of  diffusible, hydrophilic  sulfated
glycosaminoglycan (SGAG)-bearing regions from the N-
terminal hyaluronan-binding G1 domain (reviewed in (31)).
During this process, pernicious cleavage occurs within the
“interglobular domain” (IGD) between G1 and G2, a region
which is susceptible to digestion by a variety of proteolytic
enzymes, including MMPs and ADAMTSs. Numerous
MMPs are capable of endoproteolytic cleavage at Asn**-
Phe®? within the IGD (32-41) (see Table 3), and
proteolytic processing at this site also occurs in vivo. Thus,
aggrecan fragments generated by cleavage at Asn**1-Phe®?
have been purified from, and/or detected in, articular
cartilage (33,42-48), growth plate (49), synovial fluid
samples (46,50,51), intervertebral disc (44,52) and spinal
cord (53). However, while MMP activities appear to
contribute significantly to processing of aggrecan in situ at
sites C-terminal to the IGD (46,54), the involvement of
MMPs in aggrecan IGD catabolism occurs as a
late/secondary event in cartilage degeneration (45,46,54-
56), whereas primary physiological cleavage in the IGD at
Glu*-Ala®* is mediated by the “aggrecanase” activity of
ADAMTS proteinase(s) (see section 4.2.1).

3.3. Link protein

In articular cartilage, link protein (LP) engages in
the formation of ternary complexes with aggrecan and
hyaluronan to stabilize proteoglycan aggregates in the
tissue (57). A truncated isoform of LP (LP3) which is
generated in vivo in human articular cartilage (58,59) has
an N-terminus initiating at Ile’, consistent with scission of
the His'®-1le'” bond which is cleaved in vitro by MMP-1, -
2, -3, -9 and -10 (60-63). MMP-mediated cleavage at His®-
Ile?” does not appear to compromise the ability of LP3 to
bind to hyaluronan, however the further fragmentation of
LP which occurs in cartilage with aging (59,61) indicates
that the molecule can be detrimentally catabolized.

3.4. Elastin

Macrophage infiltration and elastolysis are principal
pathological features of chronic obstructive pulmonary disease
(COPD) and attendant pulmonary emphysema (64). MMP-12
is a potent elastolytic enzyme which is expressed by alveolar
macrophages (65), and while several other MMPs and serine
proteases are capable of degrading elastin, MMP-12 knockout
mice are dramatically less susceptible to emphysema induced
by smoke exposure, and macrophages and lung extracts from
these mice display no elastolytic activity (66,67). The utility of
transgenic animals to evaluate MMP and ADAMTS
functionality in vivo is further discussed in section 9.

3.5. Fibromodulin

Fibromodulin (FM) is a small keratan sulfate-
substituted proteoglycan with a leucine-rich repeat protein
(LRRP) core which binds to collagen types | and Il and is
believed to be influential in organizing collagen fiber
orientation (68-70). In situ catabolism of FM in bovine
cartilage explant cultures results in removal of the N-
terminal tyrosine sulfate-rich region via cleavage of the
Tyr®3-Ala® peptide bond (Tyr®-Thr® in human FM), a site
which is cleaved in vitro by MMP-13 (but not MMP-2, -8
or -9) (71). Moreover, as assessed by neoepitope-Western
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immunoblotting, FM fragments generated by cleavage at
this site are detectable in extracts of MMP-13-treated
bovine articular cartilage (71). Incubation of FM with
recombinant  (C-terminally  truncated) = ADAMTS-4
generates a 29 kDa fragment which also results from
cleavage at Tyr®-Ala® (72). Fragmentation of FM
increases with age in human intervertebral discs (73),
although it remains to be determined whether such
processing involves cleavage of the human FM Tyr®®-Thr®
bond by MMP-13 (or ADAMTS-4).

3.6. Cytokines, cytokine ligands and chemokines:
proTNF-alpha, BM-40/SPARC and MCP-3

In addition to their actions on ECM substrates,
MMPs are also capable of cleaving physiologically relevant
peptide bonds in bioregulatory substrates such as tumor
necrosis factor-alpha (TNF-alpha), BM-40 (“basement
membrane”-40; also termed SPARC and osteonectin) and
monocyte chemoattractant protein-3 (MCP-3).

The membrane bound precursor of TNF-alpha
(proTNF-alpha) is cleaved specifically at Ala’-Val”’ to yield
the soluble cytokine. Whilst the principal activity responsible
for such TNF-alpha ‘shedding’ is attributed to ADAM-17
(“TNF-alpha converting enzyme”, or TACE) (74), nonetheless
MMP-1, -2, -3, -7, -9, -12, -14 and -17 all cleave proTNF-
alpha substrates at Ala™-Val” in vitro, although inhibitor
studies suggest that their role in this capacity in vivo is likely to
be minor (75-79).

BM-40/SPARC, an extracellular calcium- and
cytokine-binding protein (80), is cleaved by MMP-2, -3, -7,
-9 and -13, resulting in enhanced collagen-binding affinity
and potential localization of bound ligands in the ECM
(81). BM-40/SPARC fragments generated by MMP-
mediated cleavage at Glu'®-Leu’” have been
immunodetected in mouse tissues, although processing at
an adjacent site (Leu'®-Leu'®), by an unidentified
proteinase, appears to be more predominant in vivo (82).

Using an “exosite scanning”-yeast two-hybrid
strategy, McQuibban et al. have demonstrated that MMP-2
binds (via its C-terminal hemopexin-like domain) and
cleaves MCP-3 at Gly*lle®, and that MCP-3-MMP-2
complexes and MCP-3 fragments initiating at 1le° are
present in human synovial fluid (83). MMP-2-cleaved
MCP-3 retains receptor binding ability, and can act as a
non-signaling antagonist to dampen inflammation (83). In
addition to providing a novel tool for identifying MMP
substrates (see also section 5.6), these studies also highlight
the potential involvement of proteinase exosites (i.e. non-
catalytic substrate binding sites) (84,85), and/or other
ancillary (non-catalytic) domains (see section 6) in catalytic
specificity/efficiency.

4. PHYSIOLOGICAL SUBSTRATES
FOR ADAMTSs

IDENTIFIED

4.1. Procollagens

Proteolytic removal of the N- and C-propeptides
from fibrillar collagens (i.e. collagens I, 11, I1l, V and XI) is
essential for efficient collagen fibril assembly in vivo. The
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Table 4. Physiological cleavage sites (human sequence enumeration, except as indicated) identified for ADAMTS substrates

Enzyme(s) Substrate (Cleavage Site(s)) Reference(s)

ADAMTS-1 Aggrecan (GIu**-Ala®™, GIu™®*®-Gly™*, Glu'*"*-Leu'®®°, Asn**1-Phe*?) 112,113

ADAMTS-1,-4 | V1 Versican (Glu**-Ala**?); VO Versican (Glu***-Ala™*®) 125

ADAMTS-2 Procollagen | alphal (Pro*®-GIn'®); Procollagen I alpha2 (Ala®-GIn®); 86-91
Procollagen 11 alphal (Ala'®-GIn'®%); Procollagen 111 alphal (Pro**®-GIn'*)

ADAMTS-3 Procollagen Il alphal (Ala™®-GIn'®) 92

ADAMTS-4,-5 Aggrecan (Glu373-AIa374, GIu1545-GIy1546, G|U1714-G|y1715, G|U1819-A|3.1820, 43-48,51-56,103-111
Glul9l9_Leul920)

ADAMTS-4 Ag%%can (Asn®-Phe*?): Brevican (Glu**-Ser®®®: rat); V2 Versican (Glu*®- | 119-123,128
GIn®)

ADAMTS-8,-15 | Aggrecan (G|u373-A|a374) 115,116

ADAMTS-9 Aggrecan (GIu*®°-Ala*®?%); V1 Versican (Glu**-Ala*?) 114

ADAMTS-13 von Willebrand factor (Tyr®2-Met®*?) 130-137

ADAMTS-14 Procollagen | alphal (Pro*®*-GIn'®); Procollagen I alpha2 (Ala”-GIn®) 93

first procollagen N-proteinase identified, ADAMTS-2 (also
referred to as pNPI), cleaves the appropriate Pro-Gln/Ala-
GlIn bond in procollagen type I, 1l or Il chains (see Table
4) which is hydrolyzed during conversion of these
procollagens to mature collagens (86-91). More recently,
ADAMTS-3 has been identified as a procollagen Il N-
proteinase which is preferentially expressed, relative to
ADAMTS-2, in articular cartilage (92). Additionally,
ADAMTS-14, which is highly homologous to ADAMTS-2
and ADAMTS-3, can cleave procollagen | with the
appropriate N-proteinase specificity (93).

Substrate conformation is evidently critical for
procollagen N-proteinase activity, since cleavage is not
observed for denatured or unfolded procollagen type I or 11
(94,95). The N-propeptide of native procollagen | folds
back in a hair-pin configuration and binds to the major
triple helical region of the collagen monomer; following N-
proteinase cleavage, retention of the N-telopeptide in a
hair-pin conformation is essential for appropriate crosslink
formation and collagen fibril assembly (96-99). Thus,
functional regulation of collagen N-proteinase activity by
its substrate can act as part of a ‘quality control’ process,
ensuring optimal collagen fibrillogenesis and organization
(100).

It is also worth noting that MMP-3, MMP-9 and
MMP-14 are able to hydrolyse the procollagen N-
proteinase cleavage site on a recombinant type I1A collagen
N-propeptide fusion protein (101), suggesting that these
enzymes could perform this function in vivo. However,
MMP-3, MMP-9 and MMP-14 appear to have lower
stringency in this regard, since they (as well as MMP-7 and
MMP-13) cleave at several other sites in the collagen Il N-
propeptide and N-telopeptide regions (101,102).

4.2 Hyaluronan-binding proteoglycans
4.2.1. Aggrecan

As discussed in section 3.2, catabolism of
aggrecan in articular cartilage results in the release of
SGAG-bearing fragments from the tissue, and involves
cleavage within the IGD to separate the hyaluronan-binding
G1 domain from the remainder of the molecule. In 1991,
Sandy et al. reported that prominent cleavage of the IGD
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Glu™-Ala®* bond occurs during catabolism of aggrecan in
situ in cartilage explants (103), and similar findings were
further described by other investigators, including the
identification of homologous cleavage sites (see Table 4)
processed in the aggrecan chondroitin sulfate-substituted
region (104,105). Ensuing investigations demonstrated that
aggrecan fragments present in human arthritic synovial
fluids manifest a pre-eminent N-terminal sequence
initiating at Ala®*, resulting from cleavage at Glu*"*-Ala®"*
by a proteolytic activity referred to as “aggrecanase”
(106,107). Subsequent development of monoclonal
antibody BC-3, which specifically recognizes the
aggrecanase-generated catabolic neoepitope $*ARGXX...
(37), was influential in facilitating the ultimate
identification of two proteinases exhibiting this novel
activity, revealed in 1999 by researchers from the DuPont
Pharmaceutical Company following the purification (from
cartilage) and sequence elucidation of ADAMTS-4
(aggrecanase-1) and ADAMTS-5  (aggrecanase-2)
(108,109). To date, these two enzymes appear to be the
most potent aggrecanases, although ADAMTS-1, -8, -9 and
-15 can also exhibit such activity in vitro (110-116) (see
Table 4), as can C-terminally truncated constructs of
ADAMTS-10, -16 and -18 (117).

In addition to their presence in articular cartilage
and synovial fluids (43-48,51,106,107), aggrecanase-
generated aggrecan fragments have also been detected in
intervertebral disc (44,52), tendon (118) and spinal cord
(53), indicating a role for ADAMTS-mediated
aggrecanolysis in a variety of extracellular matrices.
Furthermore, both ADAMTS-1 and ADAMTS-4 are also
capable of (secondarily) cleaving at the aggrecan Asn®*-
Phe®*? bond, a site which is typically associated with MMP
activity ~ (see  section  3.2),  suggesting  that
ADAMTS(s)/aggrecanase(s) per se may also be responsible
for this cleavage specificity in vivo/in situ (113,119).

4.2.2. Brevican and versican

In 1995, Yamada et al. (120) described the
isolation of a C-terminal fragment of brevican from rat
brain generated by cleavage at an “aggrecanase-like” site at
Glu®-Ser*® (corresponding to Glu*8-Ser®” in human
brevican). The N-terminal fragment generated by this



MMP and ADAMTS Functional Studies

cleavage, referred to as “BEHAB” (brain-enriched
hyaluronan-binding protein), increases the invasiveness of
tumor cells growing in vitro and in vivo (121), suggesting
inhibition of ‘brevicanase’ activity as a potential
therapeutic consideration for the treatment of brain tumors.
ADAMTS-4 is able to process brevican at the relevant
‘brevicanase’ cleavage site in vitro (122,123), and
ADAMTS-4 mRNA expression colocalizes with BEHAB
in specific regions of the brain, and in association with loss
of synaptic density (124).

Proteolysis of versican can also be elicited by
ADAMTS family members. ADAMTS-1 and ADAMTS-4
cleave versican isoforms V1/VO at Glu**!-Ala**%/Glu?-
Ala¥® and the N-terminal versican fragments generated
by this cleavage (70 kDa and 220 kDa products from V1
and VO versican, respectively) are present in aorta
(125). Generation of the V1 versican N-terminal 70 kDa
fragment is increased in a graft repair model exposed to
high blood flow, indicating that ADAMTS activity may
be regulated by shear stresses (126) (see also section
4.3). Elucidation of the specific V1 versican N-terminal
70 kDa fragment is also increased during cumulus
matrix expansion and ovulation (127), indicating a role for
ADAMTS proteinase(s) in fertility. ADAMTS-4 can also
effect cleavage of brain versican isoform V2 at Glu*®-
GIn*® (128), a site which is processed in vivo to generate
“GHAP” (glial hyaluronate binding protein), a hylauronan-
binding proteoglycan fragment structurally analogous to
brevican-derived BEHAB.

4.3. von Willebrand factor

Deficiencies in von Willebrand factor (VWF)
cleavage are associated with thrombotic
thrombocytopenic purpura (TTP), a disorder wherein
unusually large vWF multimers in the plasma
agglutinate  circulating  platelets and lead to
microangiopathic hemolytic anemia, thrombocytopenia,
neurological and renal dysfunction, cardiac arrhythmias
and fever (129). Under normal conditions, VWF
multimers undergo limited proteolysis, involving specific
cleavage at Tyr®**-Met®* within the vWF A2 domain by a
“VWF-cleaving protease” (VWF-cp) (130,131). In 2001,
several independent reports converged to identify
ADAMTS-13 as a physiological vWF-cp, and thereby
ascertain that inapt ADAMTS-13 activity is a cardinal
contributing factor in TTP. Thus, Levy et al. (132) utilized
a positional cloning approach to link mutations in the
ADAMTS-13 gene with congenital TTP, while other
independent  laboratories  purified and  sequenced
ADAMTS-13 protein from human plasma and described
the cDNA sequence and structural features of the enzyme
(133-136). Recombinant ADAMTS-13 was further
demonstrated to exhibit appropriate VWF-cp activity in
vitro (137), and it is interesting to note that the
efficiency of cleavage by VWF-cp/ADAMTS-13 is
markedly enhanced by exposure of VWF to chaotropic
agents such as urea or guanidine HCI, or by exposure to
shear stress (as may be encountered in the lumen of
blood vessels), illustrating the importance of substrate
conformation in this process (138-140).
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5. EXAMPLES OF OTHER POTENTIAL
SUBSTRATES FOR MMPs AND ADAMTSs

Numerous other putative substrates for MMPs
and ADAMTSs have been identified based on evidence of
proteolytic fragmentation and/or determination of cleavage
sites following incubations performed in vitro in the
presence of purified/recombinant enzymes. Several
representative examples of these types of studies are
presented in this section to emphasize the value and
importance of ‘fingerprinting’ the specificity (or diversity)
of MMP/ADAMTS activities in this way, thereby
establishing a foundation for increased understanding of
MMP/ADAMTS functionality and for correlating in vitro
activity with physiological processes. For further reference,
comprehensive listings of ECM and bioactive/non-ECM
substrates cleaved by MMPs are highlighted in recent
reviews, i.e. (2,141-143).

5.1. ECM structural/organizing proteins:
decorin, fibrillin and laminin

Various additional ECM proteins have been
identified as potential substrates for MMPs and/or
ADAMTSs. For example, COMP (cartilage oligomeric
matrix protein), a pentameric glycoprotein resident in
cartilage, tendon and ligament, is cleaved in vitro by MMPs
(MMP-1, -3, -9, -13, -19 and -20) and by ADAMTS-4 (but
not ADAMTS-1 or ADAMTS-5), suggesting that these
enzymes may contribute to COMP fragmentation, as has
been observed in human arthritic synovial fluid samples
(41,144,145). COMP can bind to fibronectin and collagen
types I, Il and IX, and is likely to play a role in ECM
organization and structure in vivo (146-148), such that its
degradation could lead to architectural disintegration in a
number of different tissues.

COMP,

The LRRP proteoglycan decorin (DCN) can be
cleaved in vitro by several MMPs as well as by ADAMTS-
4. Multiple fragments of DCN are observed following
incubation with MMP-1, -2, -3, -7 or -9, and a number of
the cleavage sites have been mapped (149), whereas DCN
cleavage by ADAMTS-4 seems to be less extensive (72).
DCN appears to perform a regulatory role in collagen
fibrillogenesis, but is also able to bind and potentially
sequester transforming growth factor-beta (TGF-beta) in
the ECM (150). Incubation with MMP-2, MMP-3 and
MMP-7 resulted in the release of TGF-beta from DCN-
TGF-betal complexes (149), suggesting a mechanism for
MMP-mediated growth factor ‘mobilization’/ ‘activation’.

MMP cleavage sites have also been mapped for
the ECM proteins fibrillin-1 and fibrillin-2, and the
basement membrane component laminin-5. Digestion of
fibrillins by MMP-2, -3, -9, -12, -13 or -14 results in the
disruption of fibrillin-rich microfibrils which impart
elasticity to connective tissues (151). Fibrillin-1 plays an
additional role in regulating TGF-beta activation, through
sequestration of latent TGF-beta complexes in the ECM
(152), such that its proteolysis (i.e. by MMPs) might also
contribute to modulation of growth factor accessibility.
MMP-2 (but not MMP-9) is capable of cleaving the
laminin-5 gamma2 subunit at Ala®®-Leu®® (rat sequence
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enumeration), and this (and similar proteolysis of laminin-5
by MMP-14) induces migration of breast epithelial cells
(153,154), thus implicating a further defined role for
specific MMPs in cancer cell invasiveness, and suggesting
possible targets for oncology therapies (143,155).

5.2. Pericellular and intracellular substrates: CD44,
PAR1, PARP and pericentrin

Closer to the cell surface, MMP-14 can cleave
and ‘shed’ membrane-bound CD44H (156), an isoform of
CD44 which is frequently expressed, along with MMP-14
itself, by many migratory cells and invasive cancer cells
(157,158). CD44 also acts as a hyaluronan receptor on
chondrocytes and other cell types, and can function both in
the assembly and organization of pericellular matrices, as
well as in the uptake and degradation of hyaluronan
(159,160).

The protease-activated receptor (PAR) PAR1 has
also recently been identified as a MMP substrate. PARs are
tethered-ligand G-protein coupled receptors (GPCRs)
which are typically activated by serine proteinases such as
thrombin and trypsin (161). MMP-1, however, also cleaves
the serine proteinase-susceptible Arg*-Ser*? peptide bond
located within the extracellular N-terminal region of PARL,
thereby inducing signaling via exposure of the cryptic
receptor-activating sequence “*SFLLRN and promoting
cancer cell invasion and tumorigenesis (162). Of additional
interest is the observation that PAR1-deficient mice develop
less arthritis severity in an antigen-induced arthritis model than
their wild-type counterparts (163), indicating abrogation of
PAR1 signalling (by preventing, for example, MMP-mediated
cleavage) as a potential therapeutic strategy for treating
inflammatory as well as oncological disorders.

Another novel and emergent theme for MMP
function is proteolytic competency at intracellular sites. For
example, MMP-2 has been localized to the nucleus of cardiac
myocytes, and is capable of in vitro cleavage of poly (ADP-
ribose) polymerase (PARP), an ATP-dependent DNA repair
enzyme (164,165). More recently, it has been reported that
MMP-14 can accumulate in the centrosomal compartment, and
is capable of cleaving the centrosomal protein pericentrin (see
also section 5.6), potentially leading to chromosomal
instability, malignant transformation and cancer (166).

5.3. Cytokines, growth factors and bioactive peptides:
IL-1, CTGF and ET-1

The pro-inflammatory cytokine interleukin-1 (IL-
1) is a potent cytoregulatory inducer of MMP
expression/activity (167,168). In a countereffective manner,
MMP-2 is capable of cleaving the Glu®-Leu® bond of IL-
1beta, and degradation of IL-1beta by MMP-2, as well as
by MMP-1, MMP-3 and MMP-9, results in inactivation of
the cytokine (169). Thus, MMP-mediated ‘inhibition’ of
cytokine activity could act as a control mechanism during,
for example, inflammation and tissue injury, which might
in turn modulate a ‘feedback loop’ of cytokine-stimulated
MMP expression.

Stimulation of angiogenesis by vascular
endothelial growth factor (VEGF) is a key contributing
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factor in a number of physiological and pathological
conditions (170). MMP-1, MMP-3, MMP-7 and MMP-13
(but not MMP-2, MMP-9 or ADAMTS-4) can process
VEGF-bound connective tissue growth factor (CTGF) at
specific cleavage sites, prevalently Met'%-1le!®® to
“reactivate” the in vitro angiogenic activity of the VEGF 5
isoform, thereby potentially contributing to the
induction/progression of inflammatory diseases, diabetic
retinopathy and tumor growth (171).

MMP-2, which is a dominant gelatinase on
arterial smooth muscle cells, also actuates the
vasoconstrictor activity of endothelin-1 (ET-1) by cleavage
of big ET-1 at Gly*-Leu® The bioactive peptide
generated, ET-1[1-32], is more potent than endothelin-
converting  enzyme  (ECE)-generated  ET-1[1-21],
suggesting alternative therapeutic strategies (i.e. MMP
inhibition) for regulating vascular reactivity in pathological
conditions such as allergic inflammation (172).

5.4. Proteinase substrates for MMPs: proMMPs and
ADAMTSs

A number of reports have documented the ability
of active MMPs to cleave proMMPs, thereby contributing
to zymogen activation (see section 6.1). For example,
MMP-3 cleaves at specific sites within the inhibitory
propeptides of proMMP-1, proMMP-8 and proMMP-9,
(173-175), and proMMP-2 can be activated by MMP-14 in
a TIMP-2-coordinated trimeric complex (176,177). Several
other MT-MMPs can also activate proMMP-2, although
cellular activation of proMMP-2 by MMP-15 (MT2-MMP)
is not TIMP-2-dependent (178). Furthermore, other TIMPs,
including TIMP-4, do not support activation of proMMP-2
(179). MMP-14 can also activate proMMP-13 independent
of TIMP-2, in a process which requires interaction(s) with
the MMP-13 C-terminal domain (180,181).

It has also been shown that MMP-2, MMP-8 and
MMP-15 (but not MMP-1, -3, -9, -14, -16 or -17) can
cleave ADAMTS-1 in vitro to generate fragments similar to
those produced in situ during recombinant protein
expression (which are generated predominantly via
cleavage at Ala""-Lys"*® within the spacer domain) (182).
Similar C-terminal processing of ADAMTS-4 by MMP-17
(MT4-MMP) has also been observed (183), wherein
cleavage occurs at specific sites (Thr*®!-Phe®?2 and Lys®*-
Phe®®, located in the cysteine-rich and spacer domains,
respectively) which are also susceptible to autocatalytic
cleavage (184). Such C-terminal truncation can yield
ADAMTS isoforms with altered SGAG/ECM-binding
properties and modified enzymatic activities (see section
6.2), demonstrating the potential combined involvement of
MMPs and ADAMTSs in degradative ‘cascades’, and
suggesting multiple target points in therapeutic strategies
therefor.

5.5. Proteinase inhibitor substrates for ADAMTSs:
alpha 2-macroglobulin and TIMP-4

Alpha 2-macroglobulin, a general endoproteinase
inhibitor, is a substrate for both ADAMTS-4 and
ADAMTS-5, and cleavage of the alpha 2-macroglobulin
“bait region” by these enzymes causes entrapment and
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inactivation of the proteinases (185). Cleavage of alpha 2-
macroglobulin by ADAMTS-4 or ADAMTS-5 occurs at
Met®*°-Gly®*, and while both intact and fragmented forms
of the inhibitor are present in synovial joint fluids (185-
187), neoepitope immunoblotting studies did not detect
ADAMTS-4- or ADAMTS-5-generated alpha 2-
macroglobulin fragments in samples of synovial fluid from
osteoarthritic patients (185), although this may reflect rapid
clearance  of  degradation  products via  the
vascular/lymphatic systems.

Tissue inhibitors of metalloproteinases (TIMPs)
are physiological regulators of metalloproteinase activities
(see section 7), binding tightly to MMPs, for example, in a
1:1 stoichiometric fashion (2,188). It is interesting to
speculate, therefore, that aggrecanase (ADAMTS) activity
in cartilage, which precedes MMP-engendered catabolism
(i.e. collagenolysis), might contribute to disruption of MMP
inhibition via cleavage and inactivation of TIMP(s).
Following incubation with either ADAMTS-4 or
ADAMTS-5, no significant digestion of TIMP-1, TIMP-2
or TIMP-3 is observed. However, TIMP-4 can be cleaved
by ADAMTS-4 (but not ADAMTS-5) in a dose-dependent
manner, generating a 20 kDa TIMP-4 degradation product
resulting from cleavage at Ala'**>-GIn'®* within the C-
terminal “loop 6” domain (189). Pre-incubation of TIMP-4
with MMP-2 blocks cleavage by ADAMTS-4, suggesting
that cleavage within the TIMP-4 C-terminus could disrupt
critical binding interactions with target MMPs.

5.6. Additional strategies for MMP and ADAMTS
substrate identification

Finally in this section, it is worth noting several
other strategies which can be employed to identify and/or
optimize MMP and ADAMTS substrates. For example,
synthetic peptide libraries designed around known cleavage
sites may be generated, and a positional-scanning approach
may be adopted to assess iterative amino acid substitutions,
as has been described for MMP-1, -3, -8, -9 and -26 (190-
195).

Proteolytic cleavage sites have also been
identified for MMP-3, -7, -13 and -14 using substrate phage
display (196-198), which capitalizes on the expression of
random recombinant peptide libraries and bacteriophage-
amplification strategies for extensive (high-throughput)
screening. In a recent applied example of this technology,
the identification of pericentrin as a potential MMP-14
substrate (see section 5.2) was facilitated via determination
of probabalistic cleavage motifs based on substrate phage
display, and hydrolysis of pericentrin sequence-derived
synthetic peptides by MMP-14 at predicted Gly-Leu bonds
(166). Cleavage site motifs for MMP-1, -2, -3, -7, -9 and -
14 have additionally been determined using mixture-based
oriented peptide libraries, which involves pooled sequencing of
digested peptide mixtures to identify optimal P” motifs (i.e.
amino acids C-terminal to the cleavage site), followed by
optimization of P residues (i.e. amino acids N-terminal to the
cleavage site) (199). Cleavage of putative substrates may then
be assessed after mapping such motifs to authentic protein
sequences, as was performed to identify neurocan as a novel
substrate processed by MMP-2 (199).
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In a more physiological setting, isotope-coded
affinity tag labeling has been utilized to identify cleavage
products of cell- or ECM-associated proteins generated
during culture of cells transfected with MMP-14 (79). In
this approach, tryptic peptides from differentially tagged
proteins (i.e. derived from cells transfected with a
catalytically active versus an inactive proteinase contruct)
are identified by mass spectrometry to determine the
identity of the parent substrate. Using this procedure, Tam
et al. identified several previously unreported substrates for
MMP-14, including interleukin-8 (IL-8), proTNF-alpha,
secretory leukocyte protease inhibitor (SLPI), CTGF and
death receptor-6 (DR-6) (79). One significant potential
advantage of this methodology relative to peptide library-
based schemes is the presentation of native substrates to the
proteinases under investigation, since substrate structure
and/or the presence of proteinase-interacting sequences
remote from the actual cleavage site may be critical for
hydrolytic susceptibility.

6. REGULATION OF MMP and ADAMTS
ACTIVITIES BY ANCILLARY (NON-CATALYTIC)
DOMAINS

6.1. MMPs

The post-translational activity of many MMPs
can be regulated by retention of the prodomain via a
“cysteine-switch” mechanism, wherein an unpaired
cysteine residue located within the consensus propeptide
sequence PRCGXPD is coordinated to the active site zinc
(200). Stepwise activation of proMMPs involves sequential
processing and ultimate removal of the prodomain (via
intra- and inter-molecular proteolysis), and can be initiated
by serine proteinases, MMPs (see section 5.4), chemical
agents such as 4-aminophenylmercuric acetate (APMA), N-
ethylmaleimide and SDS, and by alterations in temperature
or pH (201,202). However, the prodomains of MMP-11
(stromelysin-3), MMP-21, MMP-23 (CA-MMP), MMP-28
(epilysin) and all of the membrane-type MMPs (MMP-14, -
15, -16, -17, -24 and -25) end with a furin/proprotein
convertase (PC) recognition/cleavage site (Figure 1).
Consequently, these MMPs are likely to be secreted as
active enzymes (2,203), such that interaction with
endogenous inhibitors (i.e. TIMPs; see section 7) could be
imperative in regulating their activities.

At their C-terminus, most MMPs have a
hemopexin-like domain, structurally configured as a 4-
bladed beta-propeller fold (Figure 1), which plays an
important role in substrate specificity, binding and
subsequent cleavage (2,85). Notably, the hemopexin-like
domain of collagenases is particularly required to degrade
native helical collagens. Thus, C-terminally depleted or
chimeric mutants (generated by hemopexin domain
‘swapping’ with non-collagenolytic MMPs) of MMP-1,
MMP-8 and MMP-13 fail to cleave native collagen;
furthermore, a chimera comprising the catalytic domain of
MMP-3 and the MMP-1 hemopexin domain is
collagenolytically inactive (22,204-208). A major function
associated with collagenase hemopexin domains is the
unwinding of triple-helical collagen to allow hydrolysis of
individual chains. In fact, incubation of type I collagen with
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Figure 1. Domain structure and organization of MMPs. SP,
signal peptide; Pro, propeptide; Cat, catalytic domain;
Hinge, hinge region; Hpx, hemopexin-like domain (4-
bladed beta-propeller fold); Fn, fibronectin-like domain
(fibronectin ~ type ll-like repeats); Fur, furin/PC
recognition/cleavage site (consensus sequence RX(K/R)R);
™, transmembrane domain; GPI, glycosyl
phosphatidylinositol anchor; Cys, cysteine-rich domain; Ig,
immunoblobulin-like domain.

a full-length MMP-1 active site mutant can allow non-
collagenolytic enzymes to digest the molecule, albeit
relatively inefficently, into typical 3/4 and 1/4 fragments
(209). Distinctively, however, the collagen binding and
triple helicase (unwinding) activity of MMP-2 appears to
involve both the hemopexin-like and fibronectin-like
domains, with the latter domain also playing a critical role
in gelatin-binding and gelatinolysis (17,210).

Of further relevant interest, MMPs can undergo
autoproteolytic degradation to separate their catalytic and
hemopexin-like domains, thereby modulating their own
enzymatic capability (65,211-213). Such processing of
MMP-1 and MMP-8, for example, would clearly impact
their collagenolytic potential (211,212), and autocatalytic
‘shedding’ of MMP-14 (involving consecutive cleavages at
Gly®4-Gly?®® and Ala®>-11e?®) effectively inactivates the
enzyme (213), such that autocatalysis may therefore serve
as an additional mechanism regulating physiological MMP
activity.

6.2. ADAMTSs

Akin to MMPs, ADAMTSs are synthesized with
a prodomain that contains an unpaired cysteine, although
there is no evidence to date indicating that ADAMTS
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activities are regulated by a cysteine-switch mechanism.
However, ADAMTSs also have a furin/PC recognition
sequence located at the C-terminus of their prodomains (see
Figure 2), cleavage of which (i.e. in the Golgi) would result
in the secretion of mature, potentially active enzymes
lacking the propeptide region. Such prodomain processing
has been confirmed for ADAMTS-1, -2, -4, -5, -7, -8, -9, -
10, -12 and -13 (91,108,109,114,115,182,184,214-221);
furthermore, ADAMTS-4 colocalizes with furin in the
trans-Golgi, and synthetic furin inhibitors block both
ADAMTS-4 prodomain removal and aggrecanase activity
(215,218). Furin/PC-processed ADAMTS-4 has also been
immunolocalized in growth plate cartilage to areas of active
resorption (220). Interestingly, prodomain retention does
not appear to affect ADAMTS-13 activity (221), although
the ADAMTS-13 prodomain is significantly shorter than
that of other family members (41 amino acids versus
approximately 200 amino acids, respectively). Similarly,
however, a C-terminally truncated ADAMTS-7 construct
retaining most of the prodomain is catalytically active
against alpha 2-macroglobulin (216).

In the extracellular matrix, ADAMTS C-terminal
ancillary domains (see Figure 2) perform functions of
growth factor sequestration and ECM- and substrate-
binding, and can influence enzymatic activity and substrate
specificity. Thus, the C-terminus of ADAMTS-1 binds
VEGF, preventing interaction of the growth factor with its
receptor VEGFR2, thereby defining a mechanism whereby
ADAMTS-1 (as well as ADAMTS-8) exerts anti-
angiogenic effects (222,223). Deletion of ADAMTS-1,
ADAMTS-4, ADAMTS-7 and ADAMTS-9 C-terminal
domains can attenuate association of the proteins with
ECM or soluble sGAGs (72,114,182-184,215,216,224),
and C-terminal truncation also tempers binding and
inhibition of ADAMTS-4 by fibronectin (225). In addition,
truncated isoforms of ADAMTS-4 lacking portions of the
C-terminal cysteine-rich and/or spacer domains exhibit
altered substrate specificity and proteolytic efficiency,
including enhanced cleavage of aggrecan and V1 versican
at Glu*™-Ala®* and Glu**-Ala**?, respectively (72,215),
implicating C-terminal truncation as a mechanism for
ADAMTS-4 ‘activation’. Retention of the thrombospondin
type | repeat (TSR)-1 domain of ADAMTS-4, however,
appears to be requisite for efficient substrate (aggrecan)
binding and proteolysis (226). Nevertheless, while
aggrecanase activity may be potentiated via such enzyme
interactions with aggrecan sGAGs (226-228), it is worth
noting that SGAG-free recombinant aggrecan substrates are
also hydrolyzed (229,230), and that ADAMTS-4 can cleave
a short, sGAG-free synthetic peptide substrate in vitro
(231), although at a substantially higher enzyme:substrate
ratio than that sufficient for effective aggrecanolysis of
native (glycosylated) substrate (115). For ADAMTS-13,
the TSR-1, cysteine-rich and spacer domains are required
for efficient binding and cleavage of VWF under static
conditions in vitro (232-235), however an ADAMTS-13
mutant terminating immediately after TSR-1 (i.e. lacking
the cysteine-rich, spacer and C-terminal TSR domains) is
hyperactive under flow conditions, indicating that C-
terminal domain(s) may negatively regulate physiological
ADAMTS-13 activity (234).
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Figure 2. Domain structure and organization of ADAMTSs. SP, signal

peptide; Pro, propeptide; Fur, furin/PC

recognition/cleavage site (consensus sequence RX(K/R)R); Cat, catalytic domain; Cys, cysteine-rich domain; Dis, disintegrin-like
domain; TSR, thrombospondin type I repeat; Spacer, spacer domain; PLAC, protease and lacunin domain; CUB, cubulin domain;
MUC, mucin-like domain; GON, Caenorhabditis elegans GON-1-like domain.

7. REGULATION OF MMP AND ADAMTS
ACTIVITIES BY ENDOGENOUS INHIBITORS
(TIMPs)

TIMPs (tissue inhibitors of metalloproteinases)
are specific inhibitors of MMPs, and readers are directed to
recent reviews for comprehensive information on this topic
(2,188). All four TIMPs which have been identified (TIMP-
1, TIMP-2, TIMP-3 and TIMP-4) form inhibitory
complexes with most MMPs, wherein the TIMP N-terminal
domain binds the MMP catalytic domain, and the TIMP C-
terminal region interacts with the MMP hemopexin-like
domain. TIMP-3 exhibits additional (selective) inhibitory
activity toward members of the ADAM and ADAMTS
families, including ADAM-10, ADAM-12, ADAM-17,
ADAMTS-4 and ADAMTS-5 (236-240). In fact, the N-
terminal domain of TIMP-3 is a more potent inhibitor of
ADAMTS-4 and ADAMTS-5 than of MMP-1, MMP-2 or
MMP-3 (239), and is able to inhibit aggrecanase-mediated
aggrecan catabolism when added exogenously to cultured
cartilage explants (241). Genetic deletion of TIMP-3,
which is expressed normally in cartilage (242,243),
temporally  exacerbates aggrecan (and  collagen)
degradation in the joint tissues (articular cartilage, menisci)
of knockout mice (244), further suggesting that
ADAMTSs/aggrecanases may be principal physiological
target enzymes of this inhibitor.

8. EFFECTS ELICITED BY SELECTIVELY
AUGMENTING MMP OR ADAMTS ACTIVITIES IN
VIVO/IN SITU

8.1. Cartilage-specific transgenic overexpression of
MMP-13

As discussed in section 3.1, MMP-13 appears to
be a principal collagenase involved in collagen I
proteolysis in cartilage. In order to further evaluate the
actions of MMP-13 in the joint, mice expressing a
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tetracycline-regulated transgene comprising a constitutively
active human MMP-13 construct, controlled by a cartilage-
specific (collagen type 1l) promoter, have been generated
and characterized (245). The enhanced postnatal MMP-13
activity in the cartilage of these mice results in elevated
collagen Il and aggrecan degradation, and cartilage erosion
similar in pathology to that observed in osteoarthritis. In
addition, overexpression of the MMP-13 transgene results
in synovial hyperplasia and proliferation, as may also occur
in osteoarthritis. Pathology more typical of rheumatoid
arthritis (i.e. cellular infiltration, pannus formation),
however, was not observed in the MMP-13 overexpressors.

8.2. Macrophage-specific transgenic overexpression of
MMP-12

In studies conducted to investigate macrophage
involvement in rheumatoid arthritis, Liu et al. observed
elevated MMP-12 expression levels in synovial tissues and
fluids from patients with rheumatoid arthritis relative to
those with osteoarthritis (246). In order to further examine
the hypothesis that MMP-12 intensifies the progression of
rheumatoid arthritis, rabbits expressing a human MMP-12
transgene under the control of a macrophage-specfic
promoter were generated and challenged in an
inflammatory arthritis model. Disease progression was
potentiated in the transgenic rabbits relative to control
animals, leading to proteoglycan depletion and articular
cartilage destruction, suggesting that inhibition of MMP-12
activity could be therapeutically beneficial in treating
inflammatory joint diseases (247,248).

8.3. Exposure of cartilage to exogenous ADAMTS-4 or
ADAMTS-5

In addition to promoting the loss of SGAG-
bearing aggrecan fragments, stimulation of live cartilage
explant cultures with IL-1 or retinoic acid also causes the
release of hyaluronan and hyaladherins (aggrecan G1
domain and link proteins) (249-257), and incubation of
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either live or freeze-killed articular cartilage with
exogenously added recombinant ADAMTS-4 or
ADAMTS-5 elicits similar effects (256). Thus, ADAMTS-
4 and ADAMTS-5 generate G1-TEGE®" (via cleavage at
Glu*™-Ala®* in the aggrecan IGD), and the concomitant
release of SGAG-bearing aggrecan fragments, together with
hyaluronan and functionally competent hyaluronan-binding
G1 domains and link proteins, emphasizes a crucial role for
aggrecan in maintenance of the physical integrity of the
non-collagenous cartilage infrastructure. ADAMTS (and
perhaps MMP) activities in cartilage may therefore perturb
not only aggrecan content, but also the abundance of
aggrecan-tethering molecules (i.e. hyaluronan), thereby
potentially hindering replacement of degraded proteoglycan
aggregate components by newly synthesized molecules.
Aggrecan can also protect the cartilage collagen network
from MMP-mediated damage (258), thus advocating
further the inhibition of aggrecanase activity as a rational
strategy for therapeutic intervention in joint diseases such
as osteoarthritis (see also section 9.2).

9. EFFECTS ELICITED BY SELECTIVELY
ATTENUATING MMP OR ADAMTS ACTIVITIES
IN VIVO/IN SITU

9.1. MMP knockout mice

A number of informative studies on various
MMP-null/knockout (KO) mice have been described, and
these are accentuated in several recent reviews
(143,259,260). As discussed in section 3.4, MMP-12 KO
mice demonstrate reduced susceptibility in a model of
smoke-induced emphysema, and macrophages and lung
extracts from these mice display no elastolytic activity (66,67).
Based on recent results reported for rabbits overexpressing
MMP-12 in vivo (247,248), MMP-12 KO animals may also be
anticipated to demonstrate refractivity in inflammatory arthritis
model(s) (see section 8.2). Notably, MMP-3 KO mice are not
protected in models of inflammatory arthritis or osteoarthritis,
despite the correlative expression of MMP-3 with arthritis
severity which is observed in joint tissues from patients and
animals (261,262). Interestingly, however, the same MMP-3
KOs displayed alterations at their neuromuscular junctions,
with increased levels of acetylcholine receptors, potentially due
to lack of MMP-3-mediated agrin degradation (263).

MMP-14 KO mice exhibit impaired collagen
turnover and are characterized by dwarfism, arthritis, soft
tissue fibrosis, osteopenia and reduced osteocytogenesis
(264,265), while MMP-13 KO mice have recently been
shown to exhibit altered endochondral bone and growth
plate cartilage development (including expansion of the
growth plate hypertrophic zone), as well as increases in
trabecular bone mass (266,267). Comparative analyses
described by Stickens et al. (utilizing MMP-13-null and
MMP-9-null mice) revealed MMP-13 as the dominant
collagenase in cartilage, but substantiated that other
collagenases (i.e. MMP-14) are involved in collagen
turnover in tissues such as bone (266). However, trabecular
bone formation in MMP-13/MMP-9 double KOs was
severely impaired, suggesting that cooperative processing
of collagen by MMP-13 and MMP-9 also contributes to
long bone development (266) .
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In relation to tumorigenesis, metastasis and cancer, KOs for
MMP-2, -7, -9, -11 and -19 exhibit a protective phenotype,
while MMP-8 KO mice display increased skin tumor
frequencies relative to wild-type animals, signifying a
paradoxical protective role for this enzyme in cancer
pathology (143,155,268,269).

9.2. ADAMTS knockout mice

To date, data from four ADAMTS KO mice have
been reported. The phenotypic consequences observed for
ADAMTS-1 KO mice are complex, and indicate a role for
this protein during growth, in female fertility, and during
the development and organization of renal, adipose and
adrenal tissues/organs (270-272). Moreover, the articular
cartilage of ADAMTS-1 KOs does not exhibit reduced
susceptibility to aggrecan catabolism, either in an in vivo
inflammatory model or under in vitro culture conditions
((273), and see below). Mutations in the gene for
ADAMTS-2 result in ineffective procollagen processing to
elicit Ehlers Danlos syndrome type VII C in humans and
dermatosparaxis in cattle (90), and ADAMTS-2 KO mice
recapitulate pertinent phenotypic features of these
disorders, (i.e. severe skin fragility), as well as exhibiting
decreased spermatogenesis and male sterility (274).
Cartilage defects were not observed in the ADAMTS-2
KOs, presumably due to efficient procollagen Il processing
by other procollagen N-proteinase(s) such as ADAMTS-3
(see section 4.1).

More recently, mice with a targeted in-frame
genetic depletion of the catalytic domain of either
ADAMTS-4 (aggrecanase-1) or ADAMTS-5 (aggrecanase-
2) have been generated, and utilized to examine the relative
contributions of these enzymes to articular cartilage
degradation in vivo/in situ (275-277). ADAMTS-4 and
ADAMTS-5 KOs are viable and fertile, with no observable
gross or histologic abnormalities. When challenged in a
surgical model of osteoarthritis, no difference in
progression or severity of disease was observed for
ADAMTS-4 KOs relative to wild-type mice (275),
however there was significant diminution of cartilage
degradation in ADAMTS-5 KOs (276). Similarly, the
articular cartilage of ADAMTS-5 KOs (but not ADAMTS-
4 KOs) is protected in a model of inflammatory arthritis
(277). Furthermore, when cultured ex vivo, articular
cartilage from wild-type and ADAMTS-4 KO mice
responds to catabolic stimuli by releasing aggrecanse-
generated aggrecan fragments, whereas the aggrecan in
equivalent ADAMTS-5 KO mouse cartilage cultures is
spared (275-277). Collectively, these data identify
ADAMTS-5 as a primary candidate for aggrecan
degradation leading to cartilage erosion in degenerative
joint diseases, and suggest that attenuation of ADAMTS-5
activity (i.e. by pharmacologic inhibition) could be
clinically efficacious in the treatment of
osteoarthritis/inflammatory arthritis.

9.3. Transgenic mice expressing mutated MMP or
ADAMTS substrates

In other approaches designed to further assess the
functions of MMPs and ADAMTSs in vivo, transgenic
mice expressing substrates with mutated, proteinase-
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resistant cleavage sites have been studied. Amino acid
substitutions at or near the collagenase cleavage site in the
collagen | alphal chain prevent collagenase-mediated
digestion (278), and mice harboring one such mutation in
the endogenous Coll alphal gene exhibit deficiencies in
tissue remodeling, resulting in dermal fibrosis and collagen
accumulation in postpartum uteri (279). Such phenotypic
changes are associated with aging or collagen-dependent
alterations in tissue architecture, although the development
of collagenase-resistant mutant mice to adulthood is
normal, probably due to sufficient collagen turnover via
novel cleavage at a Gly-Val bond identified in the collagen
I alphal N-telopeptide (279).

Mutations at the MMP- and aggrecanase-
susceptible sites within the interglobular domain of
aggrecan also affect substrate processing in vivo/in situ.
Thus, mutation of the aggrecan sequences *?FFGVG to
¥2GTRVG, and ¥“AGRSV to *NVYSV, block cleavage
following Asn®! or GIu®" by MMPs or aggrecanases,
respectively (280). In transgenic mice, such mutations also
prevent MMP or aggrecanase cleavage at these sites in
vivo, but skeletal growth and development of the animals is
unimpaired (281-283). Interestingly, however, aggrecan
release from the cartilage of aggrecanase-cleavage site
mutants, stimulated in vitro by IL-1 and retinoic acid, is
significantly lower than that observed for wild-type
cartilage explants (282), further corroborating the
contribution of aggrecanase activity to pathological
aggrecan turnover.

10. SUMMATION
PERSPECTIVE

AND THERAPEUTIC

MMPs and ADAMTSs are manifestly capable of
processing and degrading a host of disparate physiological
substrates, and the multifaceted versatility evidenced by
members of these metalloproteinase families emphasizes
their critical roles in governing tissue structure and
metabolism. An increased understanding of the
mechanisms regulating MMP and ADAMTS functionality
also provides important cues to aid in conceptualizing
rational strategies for controlling aberrant proteolysis
associated with multiple pathologies. Potential targets for
therapeutic intervention therefore clearly include not only
the primary MMPs or ADAMTSs themselves, but also
agents contributing to post-translational
activation/modulation of the causative enzymes (i.e. see
section 6). To date, safe and effective small molecule-based
approaches designed to pharmaceutically inhibit deleterious
metalloproteinase activities have not achieved anticipated
success, either through lack of clinical efficacy or due to
side-effects likely associated with broad-spectrum
metalloproteinase inhibition; it may be anticipated,
therefore, that by enhancing potency and selectivity to
improve targeted inhibition of germane MMPs or
ADAMTSs (or their ‘activators’), new inhibitors can be
developed to deliver on the promise of novel treatments for
diseases such as arthritis, cancer and cardiovascular disease
(143,155,284-292). Additional strategic insights may also
evolve with further cogent analyses of native
MMP/ADAMTS inhibitors, such as efforts to selectively
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target specific enzymes with ‘designer’ TIMPs (293-296).
While considerable progress has been made in increasing
our understanding of the functions of MMPs and
ADAMTSs, the myriad of physiological processes which
may be impacted by the members of these proteinase
families remains to be fully disclosed. There is still much to
be learned from future functional studies on these
influential and intriguing biological effectors and
disassemblers.
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