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1. ABSTRACT

Biological  techniques such as  Array-
Comparative genomic hybridization (CGH), fluorescent in
situ hybridization (FISH) and affymetrix single nucleotide
pleomorphism (SNP) array have been used to detect
cytogenetic aberrations. However, on genomic scale, these
techniques are labor intensive and time consuming.
Comparative genomic microarray analysis (CGMA) has
been used to identify cytogenetic changes in hepatocellular
carcinoma (HCC) using gene expression microarray data.
However, CGMA algorithm can not give precise
localization of aberrations, fails to identify small
cytogenetic changes, and exhibits false negatives and
positives. Locally un-weighted smoothing cytogenetic
aberrations prediction (LS-CAP) based on local smoothing
and binomial distribution can be expected to address these
problems. LS-CAP algorithm was built and used on HCC
microarray profiles. Eighteen cytogenetic abnormalities
were identified, among them 5 were reported previously,
and 12 were proven by CGH studies. LS-CAP effectively
reduced the false negatives and positives, and precisely
located small fragments with cytogenetic aberrations.
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2. INTRODUCTION

Amplification and deletion of genetic regions
frequently contribute to tumorigenesis. Characterization of
DNA copy-number changes is important for understanding
pathogenesis mechanism and diagnosis of cancer (1).
Cytogenetic profiling techniques such as CGH have been
used to detect cytogenetic abnormalities on a whole
genome. However, the application of CGH is restricted by
its mapping resolution, while higher resolution techniques,
such as Array-CGH, FISH and affymetrix SNP, are labor-
intensive and time-consumptive on a genome scale (2-10).

Besides directly biological detecting techniques
mentioned, cytogenetic abnormalities can also be identified
indirectly through predicting regional gene expression
biases using microarray profiles, because these regional
biases are mainly caused by chromosomal gain or loss. In
genetic regions with amplification or deletion, the copy-
numbers of genes would increase or decrease.
Correspondingly, quantity of genes hybridized on the slide
also would increase or decrease when competing with the
reference, and the genes would be up or down-regulated.
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Compared with the average level of differentially
expression genes (DEs) on genomic scale, which is
recognized as being caused by random factors,
cytogenetically  aberrational regions have  higher
proportions of DEs. The algorithms that can identify the
regional gene expression biases are appropriate for
identifying cytogenetic aberrations using microarray data,
and CGMA is such a technique. Through analyzing gene
expression profiles, CGMA had been used to predict
cytogenetic abnormalities in HCC and proven to be similar
to CGH in identifying cytogenetic aberrations (2, 11).
CGMA predicted chromosomal abnormalities via
organizing gene expression data by genetic mapping
location and scanning for regional gene expression biases,
in which a disproportionate number of genes change in the
same relative direction. Despite its advantage in identifying
genetic abnormalities indirectly, CGMA algorithm had
several disadvantages. First, it could not precisely locate
the regional gene expression biases; second, it might fail to
identify some relatively small pieces of loss or gain, and
would produce false negatives if the numbers of down-
regulated and up-regulated genes happen to be the same or
similar in different cytogenetic abnormalities regions
within the same chromosomal arm; and third, it might
produce false positives as the statistic was just for testing
the difference of proportions.

Local smoothing combined with binomial
distribution theory expects to solve the problems mentioned
above. Local smoothing is a useful method for curve
fitting: the original data points are always noisy and
inaccurate, so, during smoothing process, each point is
estimated by neighboring data points defined within the
span (the size of slide-window), and so the smoothed
values are more accurate and resistant to outliers. Methods
for estimating the smoothing values include averaging,
weighted-averaging, linear polynomial regression, and
quadratic polynomial regression. The main advantages of
smoothing methods are its robust estimation for data points
and flexibility of model, so it has wide applications in
curve fitting (12, 13). Multiple span moving binomial test
based on smoothing theory has recently been used to
identify genetic abnormalities, such as IR-CGMA
algorithm. (14).

We developed a new approach, which was called
locally un-weighted smoothing cytogenetic aberrations
prediction (LS-CAP), for predicting cytogenetic
abnormalities by moving the slide-window smoothly along
the chromosome and testing the difference between the
DEs rates of locally chromosomal region and
corresponding population rates on genomic scale. LS-CAP
approach was performed on 104 HCC microarray profiles,
and the results showed that, compared with CGMA, LS-
CAP approach had advantages in flexibility in choosing
slide-window size and standard for identifying DEs,
sensitivity in predicting and accuracy in locating of
relatively small pieces of cytogennetic changes with
independent statistic for down and up-regulated DEs, and
effectiveness in reducing false negatives and positives of
prediction. The comparison leaded us to conclude that LS-
CAP could be a powerful tool for identifying cytogenetic
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aberrations using microarray data, and might be a useful
alternative to Array-CGH and FISH techniques.

3. ALGORITHMS
CGMA algorithm predicts frequent cytogenetic
aberrations using microarray data through setting up the

following statistic for each chromosomal arm.

_2x-n

Vn

7 (1)

in which, x denotes the number of up (or down) regulated
genes on the chromosomal arm; n denotes the sum of up
and down-regulated genes on the arm. The cytogenentic
aberrations in one chromosomal arm have statistical
meaning with the Z score being greater than 1.96 or less
than -1.96. Statistically, if we take x as the number of up-
regulated genes, the arm is recognized having
amplifications in the significant level of 0.05 when
7 >1.96; on the contrary, if x is the number of down-
regulated genes, the arm is considered having deletions in
the significant level of 0.05 when 7z < -1.96.

CGMA algorithm is simple and useful except two
aspects of disadvantages: (1) It sets up Z statistic for testing
the difference of proportions between up and down-
regulated genes in all DEs on the chromosomal arm, not the
difference of DEs rates between sample and population,
then two problems may be rendered. First, if amplification
and deletion both occurred on one same chromosomal arm,
however, in different genetic regions, it is probable that,
despite the biological meaning of the amplification and
deletion, Z is not statistically significant, and CGMA can’t
identify these cytogentical abnormalities. Second, if rates
of up and down-regulated genes on one chromosomal arm
are all low and there are no essential amplifications and
deletions, but the difference between the proportion of up
and down-regulated genes in all DEs on the chromosomal
arm might be statistically significant (\2\21.96)‘

Consequently, a conclusion will be drawn in light of
CGMA that the corresponding chromosomal arm having
amplifications or deletions. (2) As CGMA algorithm is
based on one whole chromosomal arm, it is difficult to
identify the small pieces of gains or losses and locate
cytogenetic aberrations precisely.

In our research, an elaborate algorithm named
LS-CAP to identify the cytogenetic abnormalities was
developed, which kept the advantages of CGMA: it set up
independent statistic for up and down regulated genes, and
the statistic was used to test the difference of rates between
sample and population, not the proportions of up and down-
regulated genes in all DEs; Additionally, LS-CAP
addressed the issues over CGMA algorithm: local
smoothing method was used to identify relatively small
pieces of regional gene expression biases and locate these
aberrations precisely.

Detailed procedures of LS-CAP algorithm are as
following:
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1. All genes are mapped and sorted according to their
locations on chromosomes.

2. A standard for identifying DEs is built. Many methods
have been used to identify DEs, from the simple forms of
fold change, t-test, regularized t-test to more complex
ones, such as SAM and random variance model (15-23).
Fold change method was used in this paper for its
simplicity, and different standards for fold change (1.8,
1.9, 2.0, 2.1, 2.2) were compared.

3. Compute population rates of down and up-regulated

genes on genomic scale 77, and 7T, .

7, ="a r ="
«a T YN e T N

In which, 71, and 71, denote the total numbers

2

of down-regulated genes and up-regulated genes of all
chromosomes in the study, and the N denotes the total
number of genes measured in the study. Population rates,
7, and x,, are defined as the rates of differentially

expressed genes on the genome scale, which are recognized
as differential expression caused just by random factors,
and act as standard for comparing with sample rates.

4. For one chromosomal arm j,

L. Compute sample down and up-regulated rates p, and

D,,; for each position in the chromosomal arm centered by
gene 1 within the slide-window. Here, the local region used
to calculate p, and p,. on chromosome is called slide-

window, and the number of genes included in the slide-
window is called the size of slide-window or span, denoted

as L, and NV, () refers the number of genes on the
chromosomal arm j.

Uli—0.5L,i+0.5L .

( i %H,O.SLSISNU,—O.SL 3)

_JU(0,i+05L)

2 0.5L+i’0<i<0‘5L

U(i—O.SL N, )
> 1Y) - i .
/Mj)+0.5L—i’M/J 0SL<i<Ny

In which, U ( ) refer the number of up-regulated genes in
the slide-window centered by gene i on chromosomal arm j.

Formula for p is similar, with u() replaced by p()-

II. Compute the statistic Z 4 and Zm.. Binomial theory

was used to test the rate difference between sample and
population with null and alternative hypothesis

being p. =T and p; # 7T respectively. The restrain,

np and n(1-p) are both greater than 5, were satisfied in the
paper.
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We denote Z 4 as the z score statistic for up-

regulated genes, where, p . is the proportion of up-

regulated genes for the chromosomal region centered by
gene i, 77, is the corresponding population rate caused just

by chance, and p, denotes the number of genes in the slide-

window. Similarly, Equation (5) generates the LS-CAP
statistic z, for down-regulated genes.

Moving gene i one by one, a pair of Z values, 7

ui

and 7z , for each position on chromosomes are acquired.
i

When span is equal or larger than the number of genes on a
whole chromosomal arm, the paired Z values on that arm
would be all the same, then we defined the algorithm as
LSW-CAP (locally un-weighted smoothing cytogenetic
aberrations prediction based on whole chromosomal arm).
Otherwise, when span is smaller than the number of genes
on a whole chromosomal arm, we define the algorithm as
LSS-CAP (locally un-weighted smoothing cytogenetic
aberrations prediction based on slide-window).

5. Set up statistically significant standard as 7 =1.96
(P=0.05), and regions with Z >1.96 are identified as
regional gene expression biases, for example, the region
will be considered having amplifications if 7z >1.96,

because the difference between rates of up-regulated genes
in the region and corresponding population rate is beyond
the range caused just by chance. Similarly, the region will
be considered having deletions if Z,>196-

4. IMPLEMENTION

4.1. Data

Primary HCC is a common cancer and the fourth
leading cause of death from caner wide (24). Here we
applied LS-CGMA approach on HCC profiles dataset.
Normalized, log-transformed gene-expression data for 104
HCC samples and 76 corresponding non-cancerous liver
gene expression profiles were obtained from the Stanford
Microarray Database (http://genome-www5.stanford.edu)
(25, 26).

Our aim was identifying cytogenetic aberrations of
HCC tissue relatively to correspondingly normal liver
tissue, however, indirect design was used in the experiment
in which the common reference (pooled cell-line) was
implemented. To compare gene expression levels of HCC
with those of surrounding non-cancerous tissue, the HCC
gene expression data were mathematically transformed into
levels relative to the corresponding normal tissue, in stead
of the original reference of pooled cell-line. Since the
reference sample in the two experiments were same, the
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resulting new logarithm ratio for each gene, tumor verse
normal (T/N), was estimated.

log (R) =loea (7 ) = 1o (! )~ toea (Y7 ) ©

in which, logz(%’] and logz( %J were log-transformed

HCC and non-cancerous tissue ratios respectively, with
pooled cell-line as common reference. If an HCC sample
did not have a corresponding non-cancerous sample, the
global mean of the non-cancerous tissue gene expression
ratios were used.

The results of mapping genes to get their genetic
locations were achieved through SOURCE tool (http://genome-
www35.stanford.edu/cgi-bin/source/sourceBatchSearch) with
identifiers as GeneBank Accession, ClonelD and UniGene
Name. Totally, 17238 genes had been located (with a few
genes locating at multiple chromosomal regions). For the
number of genes in Yq (only 14) and Yp (only 6) were
insufficient for LS-CAP approach, these two chromosomal
arms were excluded in subsequent analysis. The actual number
of genes in analysis was 17218.

4.2. LSW-CAP analysis and results

We started from LSW-CAP algorithm, the special
and simplest form of LS-CAP. Like CGMA, the LSW-CAP
algorithm was also based upon each whole chromosomal arm,

and a pair of statistics for down and up-regulation, Z a(j) and

Zu( j)» Wwere obtained for each arm j. Under LSW-CAP

analysis on 104 HCC samples, Gene expression biases for each
chromosomal arm were shown in Figure 1 and 2. To estimate
the expression biases comprehensively from multiple samples,
the following two procedures were processed: (1) Calculated
average log-expression ratio for each gene on 104 samples,
and performed LSW-CAP analysis using the average, the Z-
values based on the average were shown as the most right
columns in Figure 1 and 2, labeled as ‘AVERAGE’. (2)
Calculated the proportion of Z >1.96 in 104 samples for each
arm, the results were shown as ‘proportion (Z>1.96)
columns, and the arms were labeled with red if significant gene
expression biases occurred for at least 1/3 of all the samples.

The larger the sample rate of DEs for each
chromosomal arm was, the higher the corresponding Z
statistic was. Difference between the sample and population
rates was considered statistically significant when it was
beyond the range of variation caused by random factors,
and the corresponding chromosomal arm was concluded to
be genetic changed, gain or loss of chromosomal fragment
occurred in light of which statistic being lager than 1.96,

Z ;) or Z,(;)- Arms in which at least 1/3 of 104 HCC

samples were statistically significant included -4q (lost in
68.27% of tumor samples), -8p (50.96%), -13q (43.27%), -
9p (34.62%), -6q (33.65%), -12p (33.65%), -17p (33.65%),
+1q (gained in 80.77% of samples), +6p (49.04%), +8q
(49.04%), +17q (36.54%) and +20q (34.62%). 4q and 1q were
typical down-regulated and up-regulated biases, respectively.
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The bar graphs at the bottom of Figure 1 and 2 gave the
detailed expression profile for all genes on the arm 4q and 1q,
respectively. With 2.0 for fold change, the proportions of down

regulated genes (IOgZ(F atio)s—l) on arm 4q (p=0.0742,

7=10.2965) and up regulated genes (logz(r atzo)zl) on arm
1q (p=0.0855, Z=5.3004) were obviously higher than those of
the average level on genomic scale, which were 0.0395 and
0.0203, respectively. Therefore, LSW-CAP was specially
suited for exploring genetic abnormalities from the standpoint
of the whole chromosomal arm, and had distinctive statistic
compared with CGMA.

Included in the set of HCC samples were several
cases in which multiple tumor nodules were removed from
the same patient. In some of the cases such as HK63, HK64
and HK66, different nodules from the same patient had
related gene expression profiles, whereas in other cases
such as HK65, HKS85, tumors from the same patient had
distinctive profiles. Clustering and correlation analysis
based on Z statistic have been performed and the resulted
dendrograms are shown in Figure 2 and Figure 3.

The dendrogram (Figure 2) of hierarchical
clustering confirmed the similarity relationship between gene
expression profiles, in which, samples from patients HK65
(HK65.1, HK65.2 and HK65.4) and HK85 (HKS85.1 and
HKS85.2) were each separated by other samples, whereas the
samples from other patients were adjacently distributed. The
gene expression patterns observed in tumor nodules HK65.2
and HK65.4 were more similar to each other than either was to
the pattern observed in HK65.1, the same relationship were
also found in LSW-CAP-predicted cytogenetic profiles.
Results of p53 immunohistochemical staining and Southern
analysis suggested that HK65.2 and HK65.4 arose from the
same clone, whereas HK65.1 was distinctly different from that
of HK65.2 and HK65.4. LSW-CAP identified 8 common
genetic aberrations in all the three samples from HK67. In
addition to those (+19q, -15q, -16p, -19p) identified by CGH
and CGMA, LSW-CAP also identified aberrations in +1q,
+6p, -8p and -16q. Besides, five aberrations (+5q, +2q, -4q, -
12q, -21q) were found in HK67.2 and HK67.3 though not in
HK67.1, among them only +5q and +2q were identified by
CGMA. Although the correlation coefficients of the tumors
from patient HK67 were all high, the coefficient between
HK67.2 and HK67.3 was higher than that with HK67.1. Taken
together, the LSW-CAP results confirmed the hypothesis that
HK67.1 was the primary tumor nodule and HK67.2, HK67.3
tumor nodules probably were divergent HK67.1 subclones,
and additional distinct cytogenetic changes had occurred for
HK67.2, HK67.3 nodules during tumor progression. Tumor
nodules from patient HK85 showed different expression
profiles and distinct HBV integration sites. Similarly, the
tumors from patient HK85 also showed distinct LSW-CAP-
predicted cytogenetic profiles, reflecting the independent
transforming mechanism (11, 25). All these results also
indicated that Z statistic in the LSW-CAP algorithm was
capable of extracting the information of microarray profiles
correctly, the analysis results based on Z statistic of LSW-CAP
algorithm were accordant with results of the direct analysis
on expression profiles analysis and related biological
detections.



Identification of cytogenetic aberrations in hepatocellular carcinoma

&
a (2)
u proportion
< (z5=1,98)
1 01635
1q 0.0315
E 0. 0585
20 0,082
3 0.0
Iq 00577
dp  006T3
dq o8
Sp 0,082
Sq 0,087
Op  0.040
fiq 13
7 0.omw
¥y 0.0481
Bp =
Bq  0.00%
op .34
Bq 0.8
10p 0085
Wa 0.1
Hp 0. 1823
11q 0,15
i2p 0.3
139 0,082
13gq 4
Ha 0, 1827
15a  0.0769
Hep  0.1Th
Ve 0. 2596
7is b
ITg  0.009%
18p 002
8 01346
op 01050
1o 0, 0877
20p 00192
209 0.00%
21g  0.209
22q  0.1250
0. 4385
o 0.0481
1
0 dq(AVERAGE
=1
-2
(2
Jreportion
(I)=1.96)
L
19 o
2p o
2 o
I o
3 o
03
4y o
5 @
5 g
o 04
o 0
™ e
T4 0.2
& q
B b 4%
Gp 0.0
B 0
10e @
109 o
g g
i1qg o
1Zp b
129 0
139 0
149 @
169 0.1
16p o
16q g
T8  oo%
rq  o%
15p @
18q o
g o
0q g7
0p o
209 o
214 0.0y
22q 0
» 0
n o
2
1
0 1q(AVERAGE)
-1
3 2

Figure 1. Z statistics of down and up regulated genes for each chromosomal arm in 104 HCC samples (subplot A and B). For
subplot A, (1) Each block of the Z-statistic profile (left-top) gave the graphic information of down regulated genes on
corresponding sample and chromosomal arm. Red blocks indicated higher proportion of down regulated genes compared with the
average level, black ones indicated non-significantly different proportion, and green ones indicated lower proportion of down
regulated genes; the column labeled as ‘AVERAGE’ indicated the average level of down regulated genes proportion among 104
HCC samples. (2) Each value in column ‘proportion ( Z >1.96)’ (right-top) indicated the proportion of Z >1.96 in 104 samples
for the arm, the values were labeled with red if the proportions were greater than 1/3. (3) Bar graph (bottom) indicated detailed
gene expression level (log z(ratio)) for all genes on chromosomal arm 4q according to their genetic mapping locations. The notes

for subplot B are same.

4.3. LSS-CAP analysis and results

Two parameters needed to be set up in LSS-CAP
algorithm, the slide-window and the standard for
discriminating differentially expressed genes. The size of
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slide-window was a crucial parameter for LSS-CAP, which
affected the outcome of predicting. Smaller the span was,
more sensitive the variation of predicted Z-curve was, and
higher the false positive rate caused by a random factor
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Figure 2. Dendrogram of hierarchical clustering for partial correlated samples using Z statistic. Dendrogram of hierarchical
clustering was constructed with Pearson correlation and average linkage, and variables used here were Z statistic of down
regulated genes proportions (left half with blue header) and up regulated genes proportions (right half with red header) for all
arms. Additionally, samples from different patients were labeled with headers of different colors (second column from the most
right). Samples from patients HK65 and HK85 were each separated by other samples, whereas the samples from other patients

were adjacently distributed.
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Figure 3. Pairwise Pearson correlation coefficients for partial correlated samples using Z statistic. The pairwise Pearson
correlation coefficients were in the range [-0.1, 1], and the legend could be seen at the left-bottom. Samples from same patients
were labeled with same color for the headers, and the color of cross point indicated the strength of correlation and its direction.

was. On the contrary, bigger the span was more stable the
variation of predicted Z-curve was, and more robust against
the influence of random factors the algorithm was.
Different sizes of span between 100 and 300 had been
tested in this study according to biological knowledge and
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the results suggested that the span between 150 and 250
was appropriate for our data. Additionally, the calculating
method for the chromosomal arm ends (within 0.5span
from the end) was detailed in ALGORITHMS. As to the
standard for discriminating DEs, different fold changes
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Figure 4. (a) Z statistic distributions along the whole genome with different parameters combinations. For rows, span were 150,
200 and 250, respectively; for columns, fold change were 1.9, 2.0, 2.1, respectively. The pieces with Z >1.96 were recognized as
statistically significant. (b) Zoom in of z statistic for up-regulation with span=200, fold=1.8. The horizontal axis was different
chromosomes (separated with vertical dashed lines); the vertical axis was z statistic; horizontal dashed line correspond
significance level (z=1.96). (c) Zoom in of z statistic for down-regulation with span=200, fold=2.2.

(1.8, 1.9, 2.0, 2.1, and 2.2) were tried, and the results were on the whole range of arms, all the other regional gene
generated with a little difference. For example, biases 17p were expression biases occurred on only part of the chromosomal
identified upon the fold change of 1.8, but not upon 2.0. To try arms, such as the newly found regional biases on
to make a proper and comprehensive interpretation of the Z chromosomes 15q(+), 12q(+), 22q(+), 9p(-), 12p(-) and 14q(-).
statistic, we plotted Z statistic for different setups of span and 17 cytogenetically abnormal regions had been identified
standard for discriminating DEs as shown in Figure 4. Usually, significantly with span being 200 and fold change being 2.0,
common biases identified by different combinations of including 7 gains and 10 losses; the precise localizations of
parameters were convincing. cytogenetic aberrations which were showed to be similar to

that of IR-CGMA algorithm were listed in table 1 (14).
Cytogenetic aberrations, such as amplification and

deletion, could be located precisely using LSS-CAP (Figure 5). Some of the regions have been proven to be
Compared with CGMA and LSW-CAP, LSS-CAP not only associated with HCC in the previous studies. For example,
gave the arms in which the gene expression biases occurred, gains on chromosomes 1q and 8q were showed to be involved
but also the extra details of each chromosomal arm. Except the in the genesis of HCC, while loss on chromosome 4q was linked
biases occurred on arms 4q and 1g, on which biases occurred to increased aggressiveness of established tumors (11, 25).
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Figure 5. Details for presumably gene expression biases regions predicted by LSS-CAP with 200 genes for span and 2.0 for fold
change. Every subplot gave the detailed information for each presumably loss or gain. The regions with Z being above 1.96 were
significant. Except 1q and 4q, on which biases occurred on whole chromosomal scale, all the others occurred on only part of the
chromosomal arm. The arm 17p was also displayed here because it could be found meaningful with other standards for fold

change.

Table 1. Precise localization of cytogenetic aberrations

Loss Gain

1p 1p31-1p34 1q 1q12-1q44
4q 4q11-4q35 6p 6pl1-6p22
6q 6q21-6q27 8q 8q13-8q24
8p 8p21-8p23 17q 17q12-17q23
13q 13q14-13q34 20q 20q11-20q13
16q 16q11-16922 12q 12q13-12q21
17p 17p11-17p13 22q 22q12-22q13
9 9p11-9p24 15q 15q11-15q24
12p 12p12-12p13

14q 14922-14q32

Here, the simplest model of data was detailed.
For more complicated model, data of two and above
groups, we should discriminate whether each gene being
differentially expressed or not with multiple testing
approaches such as t test, F test, SAM and random variance
model, and then perform LSS-CAP analysis.

5. DISCUSSIONS

The HCC cytogenetic aberrations resulting from
different approaches including CGH, CGMA, LSW-CAP
and LSS-CAP were compared (table 2). CGMA identified
13 cytogenetic aberrations totally, among them 10 regions
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had been proven by CGH. Among the 3 additional regions
found by CGMA, one was proven by LSS-CAP, but the
other two regions had been tested having no significant
difference between sample and population rates with LSW-
CAP and LSS-CAP approaches, and we concluded that
they might be false positives of CGMA prediction. 1p and
69, which had been proven to be losses by CGH, had not
been identified by CGMA, whereas they have been
successfully identified as losses by LSS-CAP, therefore
CGMA might produce false negatives. Compared with
LSS-CAP, CGMA can’t identify the relatively small pieces
of amplifications or deletions. LSW-CAP approach was
also based on each whole chromosomal arm, but with
distinctive testing method, therefore, though it couldn’t
identify the relatively small pieces of amplifications or
deletions, just like CGMA, it successfully reduced the false
positives as we expected: the 10 gains and losses detected
by LSW-CAP were all proven by CGH. LSS-CAP
approach has combined the local smoothing with binomial
distribution theory for testing the difference of rates
between sample and population, so it identified all the 12
cytogenetical changes detected by previous CGH studies,
11 regions proven by CGMA prediction, and 5 relatively
small pieces of regional gene expression biases that have
not been found in previous studies. LSS-CAP always gave
more detailed information, such as the locations of small
pieces of losses and gains occurred, though some of them
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Table 2. Comparison of CGH, CGMA and LS-CAP on HCC

Gain Loss
Methods 1q |6p I8q [17q 0q |12q [15q P2q [5q [19q |tp FBq Jéa [Bp [13p [6p [17p Pp |12p |l4q
CGH [ ] (] [ [ ] (] o (0] O ) (0] L] [ ] [ ] (] [ ] [ ] (] ) (0] O
CGMA ® L] (] ® L] o O (o) (] ® [0 (] O L] (] ® (] O O O
LSW-CAP o (] (] ® L] O O (o) O O (o) o o (] o O (] O O O
LSS_CAP (20()’2) [ ] (] [ ] [ ] (] [ ] [ ] (] o (0] (] [ ] [ ] (] [ ] [ ] O [ ] [ ] o

o identified, o unidentified.

Table 3. Differentially expressed genes proven to be correlated with HCC in previous studies and their expression levels in HCC

Gene Symbol Locus Fold change
GPC3,glypican 3 Xq26.1 18.66
AFP alpha-fetoprotein precursor® 4ql1-q13 3.23
FOXM1,forkhead box M1? 12p13 291
CCNA2,cyclin A® 4q25-g31 2.50
LC27,lysosomal-associated transmembrane protein 4 beta’ 8q22.1 245
PCNA,cyclin-dependent kinase inhibitor 1A 20pter-p12 2.20
EGR1,early growth response 1 5q31.1 -5.94
IGFBP3,insulin-like growth factor binding protein 3 Tpl13-p12 -5.01
ANG,angiopoietin 1 isoform b’ 14q11.1 -3.43!
PTGS?2, prostaglandin-endoperoxide synthase 2 precursor® 1925.2-q25.3 | -3.36
p28,proteasome 26S non-ATPase subunit 10 isoform 17 1p35.1 227"
FGL1,fibrinogen-like 1 precursor® 8p22-p21.3 -2.19
COPEB,core promoter element binding protein 10p15 -2.09

genes whose regulation directions were inconsistent with previous studies; ~ genes in cytogenetic aberrations.

might be naturally dense regions of differentially expressed
genes or caused by other factors in experiments.

IR-CGMA also identified similar abnormalities
in HCC, such as -1q, -4q, -8q, +8q, -13q, -16q, -17p and
+17q (12).

In this study, 978 differentially expressed genes
were identified for fold change above 2.0, including 336 up
regulated genes and 642 down regulated ones. Among
these genes, 498 (50.92%) were at the LS-CAP-predicted
biases regions. Genes associating with HCC proven in
previous studies have been found through milano program
(http://milano.md.huji.ac.il.  The program  performs
automatic searches in PubMed or the GeneRIF collection
for articles containing co-occurrences of search terms with
a list of genes), and the results listed in table 3. 9 of the 13
genes associating with HCC were at the gene expression
biases regions, therefore there was a higher proportion of
abnormally expressed genes associating with HCC locating
on cytogenetic aberrations than on normal regions, and the
proportion difference between cytogenetic aberrations and
normal regions was statistically significant (P=0.0262). 11
of the 13 genes have the same regulation directions as in
the relating studies (27-37). The other two genes, ANG and
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P28, were down regulated which were inconsistent with
previous studies (38, 39). Variation among experiments
might contribute to that, but in this paper we found that the
two genes were all at down regulated biases regions, so the
genetic deletions of the chromosomal arms might also
partially contribute to that.

6. CONCLUSIONS

In this study, LS-CAP algorithm was developed
based on locally un-weighted smoothing theory and applied
to predict cytogenetic aberrations in HCC with gene
expression microarray data. Two types of LS-CAP
approaches had been built: LSW-CAP constructed
independent statistics for rates of down and up regulated
genes based on each whole chromosomal arm, whereas
LSS-CAP constructed independent statistics on given size
of chromosomal fragment. LSW-CAP was similar to
CGMA but having distinctive statistic in the model;
However, LSS-CAP had quite some outstanding features:
constructed independent statistic for down and up regulated
genes capable of reducing the false negatives and false
positives of CGMA prediction, flexibly and thoroughly dug
into gene expression data simply through an expansive
setup of slide-window and fold change, precisely located
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the gene expression biases regions on chromosomal arms,
and sensitively identified small pieces of losses or gains
that could not be acquired with CGMA and LSW-CAP. On
the other side, LS-CAP had two major limitations: (1)
Based on genomic scale gene expression microarray, the
algorithm was not applicable to analyze the microarray data
when the number of genes on a chromosomal arm was
relatively small. (2) In addition to cytogenetic aberrations,
the major reason for biases, there might be other unknown
reasons contributing to biases such as epigenetics and
random factors. These factors might cause small pieces of
regional gene expression biases, but the chance was very
little and the results could still provide clues for further
researches.

LS-CAP can be used to analyze several types of
experimental data. (1) For single profile, the experiment
must be directly pairwise designed, so LS-CAP prediction
can be used directly, but the only method for identifying
differentially expression genes are fold change. (2) For
multiple profiles, discriminate the differentially expressed
genes in two or multiple groups with statistical test
methods and perform LS-CAP prediction, or, perform LS-
CAP prediction for each single profile first and then
integrate the results.

FISH and Array-CGH are considered to be the
major high-throughput and high-resolution techniques for
detecting genetic aberrations. However, they are labor-
intensive and time-consumptiv. In this study, we found that
LS-CAP can successfully predict cytogenetic aberrations
with gene expression microarray data, which means when
we do studies on identifying differentially expressed genes,
genes clustering or pattern recognizing with gene
expression microarray data on genome scale, we can also
identify genetic abnormalities using these data without
additional works on FISH or Array-CGH. From all the
aforementioned advantages, LS-CAP could potentially be a
powerful alternative for FISH and Array-CGH.

6. ACKNOWLEDGEMENT

This research is supported by a project 30371422
from the National Natural Science Foundation of China,
and also a part of grant 2002AA272002 from the National
High Technology Research and Development Program of
China (863 Program).

7. REFERENCES

1. Kallioniemi A, O. P.Kallioniemi, D. Sudar, D. Rutovitz,
J. W. Gray, F. Waldman & D. Pinkel: Comparative
genomic hybridization for molecular cytogenetic analysis
of solid tumors. Science 258, 818-821 (1992)

2. Haddad R, K. A. Furge, J. Miller, J. Schoumans, B.
Haab, B. The, L. Barr & C. Webb: Genomic profiling and
c¢DNA microarray analysis of human colon adenocaicinoma
and associated peritoneal metastasis reveals consistent
cytogenetic and transcriptional aberrations associated with
progression of multiple metastases. App! Genomics
Proteomics 1, 123-134 (2002)

1320

3. Huang J, W. Wei, J. Zhang, G. Liu, G. R. Bignell, M. R.

Straton, P. A. Futreal, R. Wooster, K. W. Jones & M. H.

Shapero: Whole genome DNA copy number changes

identified by high density oligonucleatide arrays. Hum

Genomics 1, 287-299 (2004)

4. Hughes T. R, C. J. Roberts, H. Dai, A. R. Jones, M. R.
Meyer, D. Slade, J. Burchard, S. Dow, T. R. Ward, M. J
Kidd, S. H. Friend & M. J. Marton: Widespread
aneuploidy revealed by DNA microarray expression
profiling. Nat Genet 25, 333-337 (2000)

5. Marchio A, M. Meddeb, P. Pineau, G. Danglot, P.

Tiollais, A. Bernheim & A. Dejean: Recurrent

chromosomal abnormalities in hepatocellular carcinoma

detected by comparative genomic hybridization. Genes

Chromosomes Cancer 18, 59-65 (1997)

6. Phillips J. L, S. W. Hayward, Y. Wang, J. Vasselli, C.

Pavlovich, H. Padilla-Nash, J. R. Pezullo, B. M. Ghadimi,

G. D. Grossfeld, A. Rivera, W. M. Linehan, G. R. Cunha &

T. Ried: The consequences of chromosomal aneuploidy on

gene expression profiles in a cell line model for prostate

carcinogenesis. Cancer Res 61, 8143-8149 (2001)

7. Pinkel D, R. Segraves, D. Sudar, S. Clark, I. Poole, D.

Kowbel, C. Collins, W. L. Kuo, C. Chen, Y. Zhai, S. H.

Dairkee, B. M. Ljung, J. W. Gray & D. G. Albertson: High

resolution analysis of DNA copy number variation using

comparative genomic hybridization to microarrays. Nat

Genet 20,207-211 (1998)

8. Pollack J. R, C. M. Perou, A. A. Alizadeh, M. B. Eisen,

A. Pergamenschikov, C. F. Williams, S. S. Jeffrey, D.

Botstein & P. O. Brown: Genome-wide analysis of DNA

copy-number changes using cDNA microarrays. Nat Genet

23, 41-46 (1999)

9. Pollack J. R, T. Sorlie, C. M. Perou, C. A. Rees, S. S.

Jeftrey, P. E. Lonning, R. Tibshirani, D. Botstein, A. L.

Barresen-Dale & P. O. Brown: Microarray analysis reveals

a major direct role of DNA copy number alteration in the

transcriptional program of human breast tumors. PNAS 99,

12963-12968 (2002)

10. Virtaneva K, F. A. Wright, S. M. Tanner, B. Yuan, W.

J. Lemon, M. A. Caligiuri, C. D. Bloomfield, A. Chapelle

& R. Krahe: Expression profiling reveals fundamental

biological differences in acute myeloid leukemia with

isolated trisomy 8 and normal cytogenetics. PNAS 98,

1124-1129 (2001)

11. Crawley J. J & K. A. Furge: Identification of frequent

cytogenetic aberrations in hepatocellular carcinoma using

gene-expression microarray data. Genome Biol 3,

research0075.1-0075.8 (2002)

12. Cleveland W. S: Robust locally weighted regression

and smoothing scatterplots. Journal of the American

Statistical Association 74: 829-836 (1979)

13. Cleveland W. S & S. J. Devlin: Locally weighted

regression: an approach to regression analysis by local

fitting. Journal of the American Statistical Association 83,

596-610 (1988)

14. Furge K. A, K. J. Dykema, C. Ho & X. Chen:

Comparison of array-based comparative genomic

hybridization with gene expression-based regional

expression biases to identify genetic abnormalities in

hepatocellular carcinoma. BMC Genomics 6, 67 (2005)

15. Alizadeh A. A, M. B. Eisen, R. E. Davis, C. Ma, 1. S.

Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X.



Identification of cytogenetic aberrations in hepatocellular carcinoma

Yu, J. L. Powell, L. Yang, G. E. Marti, T. Moore, J. J. Hudson,
L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T.
C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke,
R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P.
O. Brown & L. M. Staudt: Distinctive types of diffuse large B-
cell lymphoma identified by gene expression profiling. Nature
403, 503-511 (2000)

16. Baldi P & A. D. Long: A Bayesian framework for the
analysis of microarray expression data: regularized t-test and
statistical inferences of gene changes. Bioinformatics 17, 509-
519 (2001)

17. Cui X & G. A. Churchill: Statistical tests for differential
expression in cDNA microarray experiments. Genome Biol 4,
210 (2003)

18. DeRisi J. L, V. R. Iyer & P. O. Brown: Exploring the
metabolic and genetic control of gene expression on a genomic
scale. Science 278, 680-686 (1997)

19. Lonnstedt T & T. Speed: Replicated microarray data.
Statistica Sinica 12, 31-46 (2002)

20. Tusher V. G, R. Tibshirani & G. Chu: Significance analysis
of microarrays applied to the ionizing radiation response.
PNAS 98: 5116-5121 (2001)

21. Wong N, P. Lai, S. W. Lee, S. Fan, E. Pang, C. T. Liew, Z.
Sheng, J. W. Y. Lau & P. J. Johnson: Assessment of genetic
changes in hepatocellular carcinoma by comparative genomic
hybridization analysis: relationship to disease stage, tumor size,
and cirrhosis. Am J Pathol 154, 37-43 (1999)

22. Wright G. W & R. Simon: A random variance model for
detection of differential gene expression in small microarray
experiments. Bioinformatics 19, 2448-2455 (2003)

23. Yang 1. V, E. Chen, J. P. Hasseman, W. Liang, B. C.
Frank, S. Wang, V. Sharov, A. 1. Saced, J. White, J. Li, N. H.
Lee, T. J. Yeatman & J. Quackenbush: Within the fold:
assessing differential expression measures and reproducibility
in microarray assays. Genome Biol 3, research0062.1-0062.12
(2002)

24. Beasley R. P: Hepatitis B virus. The major etiology of
hepatocellular carcinoma. Cancer 61, 1942-1956 (1988)

25. Chen X, S. T. Cheung, S. So, S. T. Fan, C. Barry, J.
Higgins, K. M. Lai, J. Ji, S. Dudoit, O. L. N. Irene, R. Matt, D.
Botstein & P. O. Brown: Gene expression patterns in human
liver cancers. Mol Biol Cell 13, 1929-1939 (2002)

26. Sherlock G, T. Hernandez-Boussard, A. Kasarskis, G.
Binkley, J. C. Matese, S. S. Dwight, M. Kaloper, S. Weng, H.
Jin, C. A. Ball, M. B. Eisen, P. T. Spellman, P. O. Brown, D.
Botstein & J. M. Cherry: The Stanford Microarray Database.
Nucleic Acids Res 29, 152-155 (2001)

27. Cheng A. S, H. L. Chan, K. F. To, W. K. Leung, K. K.
Chan, C. T. Liew & J. J. Sung: Cyclooxygenase-2 pathway
correlates with vascular endothelial growth factor expression
and tumor angiogenesis in hepatitis B virus-associated
hepatocellular carcinoma. Int J Oncol 24, 853-860 (2004)

28. Gramantieri L, D. Trere, P. Chieco, M. Lacchini, C.
Giovannini, F. Piscaglia, A. Cavallari & L. Bolondi: In human
hepatocellular carcinoma in cirrhosis proliferating cell nuclear
antigen (PCNA) is involved in cell proliferation and
cooperates with P21 in DNA repair. J Hepatol 39, 997-
1003 (2003)

29. Hao M. W, Y. R. Liang, Y. F. Liu, L. Liu, M. Y. Wu &
H. X. Yang: Transcription factor EGR-1 inhibits growth of
hepatocellular carcinoma and esophageal carcinoma cell
lines. World J Gastroenterol 8, 203-207 (2002)

1321

30. Huynh H, P. K. Chow, L. L. Ooi & K. C. Soo: A
possible role for insulin-like growth factor-binding protein-
3 autocrine/paracrine loops in controlling hepatocellular
carcinoma cell proliferation. Cell Growth Differ 13, 115-
122 (2002)

31. Kalinina O. A, S. A. Kalinin, E. W. Polack, I
Mikaelian, S. Panda, R. H. Costa & G. R. Adami: Sustained
hepatic expression of FoxMI1B in transgenic mice has
minimal effects on hepatocellular carcinoma development
but increases cell proliferation rates in preneoplastic and
early neoplastic lesions. Oncogene 22, 6266-6276 (2003)
32. Kremer-Tal S, H. L. Reeves, G. Narla, S. N. Thung, M.
Schwartz, A. Difeo, A. Katz, J. Bruix, P. Bioulac-Sage, J.
A. Martignett & S. L. Friedman: Frequent inactivation of
the tumor suppressor Kruppel-like factor 6 (KLF6) in
hepatocellular carcinoma. Hepatology 40, 1047-1052
(2004)

33. Liu X. R, R. L. Zhou, Q. Y. Zhang, Y. Zhang, Y. Y.
Jin, M. Lin, J. A. Rui & D. X. Ye: Structure analysis and

expressions of a novel tetratransmembrane protein,
lysosoma-associated protein transmembrane 4 beta
associated with hepatocellular carcinoma. World J

Gastroenterol 10, 1555-1559 (2004)

34. Masaki T, Y. Shiratori, W. Rengifo, K. Igarashi, M.
Yamagata, K. Kurokohchi, N. Uchida, Y. Miyauchi, H.
Yoshiji, S. Watanabe, M. Omata & S Kuriyama: Cyclins
and cyclin-dependent kinases: comparative study of
hepatocellular carcinoma versus cirrhosis. Hepatology 37,
534-543 (2003)

35. Sung Y. K, S. Y. Hwang, M. K. Park, M. Farooq, I. S.
Han, H. 1. Bae, J. C. Kim & M. Kim: Glypican-3 is
overexpressed in human hepatocellular carcinoma. Cancer
Sci 94, 259-262 (2003)

36. YanJ, Y. Yu, N. Wang, Y. Chang, H. Ying, W. Liu, J.
He, S. Li, W. Jiang, Y. Li, H. Liu, H. Wang & Y. Xu. LFIRE-
I/HFREP-1, a liver-specific gene, is frequently downregulated
and has growth suppressor activity in hepatocellular
carcinoma. Oncogene 23, 1939-1949 (2004)

37. Yoshida S, K. Kurokohchi, K. Arima, T. Masaki, N.
Hosomi, T. Funaki, M. Murota, Y. Kita, S. Watanabe & S.
Kuriyama: Clinical significance of lens culinaris agglutinin-
reactive fraction of serum alpha-fetoprotein in patients with
hepatocellular carcinoma. Int J Oncol 20, 305-309 (2002)
38.FuX.Y,H. Y. Wang, L. Tan, S. Q. Liu, H. F. Cao & M. C.
Wu: Overexpression of p28/gankyrin in human hepatocellular
carcinoma and its clinical significance. World J Gastroenterol
8:638-643 (2002)

39. Mitsuhashi N, H. Shimizu, M. Ohtsuka, Y. Wakabayashi,
H. Tto, F. Kimura, H. Yoshidome, A. Kato, Y. Nukui & M.
Miyazaki: Angiopoietins and Tie-2 expression in angiogenesis
and proliferation of human hepatocellular carcinoma.
Hepatology 37, 1105-1113 (2003)

Abbreviations: CGH: comparative genomic hybridization;
FISH: fluorescent in situ hybridization; SNP: single
nucleotide pleomorphism; CGMA: Comparative genomic
microarray analysis; HCC: hepatocellular carcinoma; DEs:
differentially expression genes; LS-CAP: locally un-
weighted smoothing cytogenetic aberrations prediction;
LSW-CAP: locally un-weighted smoothing cytogenetic
aberrations prediction based on whole chromosomal arm;



Identification of cytogenetic aberrations in hepatocellular carcinoma

LSS-CAP: locally un-weighted smoothing cytogenetic
aberrations prediction based on slide-window

Key Words: Cytogenetic Aberration, Tumor, Neoplasis,
Cancer, Carcinoma, Hepatoma, Hepatocellular Carcinoma,
cDNA Microarray, Comparative Genomic Microarray
Analysis, Smoothing Theory

Send correspondence to: Dr He Xian Min, Department of
Health Statistics, Second Military Medical University, 800
Xiangyin Road, Shang Hai, 200433, P. R. China, Fax:
+86-21-2507-1486, Tel: 86-21-2507-0419, E-
mail:hxmine@hotmail.com, hxmine@sina.com

http://lwww.bioscience.org/current/vol11.htm

1322



