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1. ABSTRACT

Plasma levels of high-density lipoprotein (HDL)
cholesterol are inversely correlated with the incidence of
atherosclerotic cardiovascular disease. The cardioprotective
effects of HDL have been attributed to its role in reverse
cholesterol transport (RCT) and especially the macrophage-
dependent RCT, and also to the antioxidant properties of
HDL as well as its direct effects on endothelial function.
However, few of these effects have been verified in vivo in
humans. With the creation and detailed analysis of
genetically-engineered mice, a solid body of new
information has emerged on the mechanisms controlling
these key antiatherogenic functions of HDL and their
effects on atherogenesis. This article provides a review of
new insights into the molecular mechanisms underlying
these three most studied antiatherogenic functions of HDL
in vivo with a focus on genetically-engineered mice.

2. INTRODUCTION

High-density lipoproteins (HDL) constitute one
of the quantitatively predominant lipoprotein families
present in plasma which contain approximately equal
amounts of lipid and protein. This lipoprotein family is
very heterogeneous in particle size (Stocke’s diameter from
5 to 17 nm), apolipoprotein (apo) composition and density
(which varies between 1.063 g/ml and 1.21 g/ml). HDL
particles are classified, according to the content of their
major apolipoproteins (apos), into those containing apoA-I
(LpA-I) and those containing both apoA-I and apoA-II
(LpA-I/A-II) (1). These predominant HDL fractions
migrate in agarose gels with α-electrophoretic mobility.
Approximately 5 to 15% of apoA-I in plasma is associated
with particles with preβ- electrophoretic mobility. The
origin of this particle is not clear. Several mechanisms have
been proposed, including direct secretion into plasma from



Antiatherogenic role of HDL in genetically engineered mice

1329

hepatocytes or enterocytes, release during interconversion
of α-HDL subpopulations by phospholipid transfer protein
(PLTP), cholesteryl ester transfer protein (CETP), hepatic
lipase (HL), endothelial lipase (EL), or direct interaction of
free apolipoproteins with cell membrane (2).

Clinical and epidemiological studies have
demonstrated an inverse correlation between the concentration
of plasma HDL cholesterol (HDLc) and the incidence of
atherosclerotic cardiovascular disease (3, 4), suggesting that
HDL protects against atherosclerosis. The importance of HDL
is underscored by the increased incidence of atherosclerosis in
patients with familial hypoalphalipoproteinemia (5, 6). Further,
the antiatherogenic capacity of HDL has been well
documented in several studies in transgenic mice and rabbits
(7-12). Nevertheless, the relationship between HDL and
atherosclerosis is complex and has exceptions. For example,
patients with very infrequent genetic alterations which cause
almost total deficiency of HDL do not appear to have a greater
risk of suffering cardiovascular disease than control subjects
(2, 13). This feature has recently been reproduced in animals in
which genes of vital HDL proteins have been specifically
knocked out (14, 15). As an explanation for these
discrepancies, it had been postulated that the relationship
between the concentration of HDLc and cardiovascular disease
might only be secondary to alterations in the metabolism of
lipoproteins rich in triglycerides (2).

Many quantitative trait loci (QTL) have been found
which regulate plasma levels for HDLc. Most of these human
QTL have concordant mouse QTL mapping to homologous
regions, suggesting that many mouse genes involved in HDL
metabolism may also regulate the same traits in humans (16).
However, the significance of these proteins involved in HDL
metabolism is controversial, especially those which would be
determinant in their antiatherogenic action. HDL may mediate
atheroprotection via multiple mechanisms, which include
reverse cholesterol transport (RCT), prevention of LDL
oxidative modification and modulation of endothelial signaling
events. This topic has been the focus of several recent excellent
reviews (17-20). This complexity emphasizes that changes in
HDL function rather than changes in HDLc determine the
antiatherogenicity of HDL. This review presents current views
on the molecular mechanisms underlying these three,
previously-mentioned, most studied antiatherogenic functions
of HDL through the analysis of genetically-engineered mice.

3. HDL AND REVERSE CHOLESTEROL
TRANSPORT (RCT)

3.1. Mechanisms
HDL plays an important role in cholesterol

homeostasis by promoting cholesterol efflux from
peripheral cells and delivering that cholesterol to the liver,
from where it will be partly eliminated through the biliary
pathway, a process termed reverse cholesterol transport
(RCT). Cholesterol efflux from cells is the combined result
of a non-specific and passive efflux as well as a specific
and active process, with the latter being mediated by ATP-
binding cassette (ABC) transporters (2, 21, 22). It is
generally thought that the interaction produced between
prebeta-HDL and ABCA1, or other members of the ABC

protein group, induces cholesterol translocation from the
cytoplasm to the cell membrane (2). Three types of prebeta-
HDL exist. The prebeta1 are the smallest particles and
those which first receive cell cholesterol. After a few
minutes, the cholesterol passes to prebeta2 and prebeta3,
which are particles with increasingly greater size.
Cholesterol in these nascent discoidal particles are then
esterified by lecithin:cholesterol acyltransferase (LCAT).
This esterification process is a key step for maintaining the
gradient of free cholesterol and enabling HDL to be an
acceptor of cholesterol. Finally, cholesteryl esters formed
in HDL can be: i) taken up selectively from HDL after their
binding to the scavenger receptor type BI (SR-BI) in liver,
gonads and adrenal glands, ii) captured by tissues together
with the whole HDL particle, especially in liver and
kidney, and; iii) transferred by CETP to apoB-containing
lipoproteins which are later cleared by the liver via
receptor-dependent pathways such as low-density
lipoprotein receptor (LDLR), very-low-density lipoprotein
(VLDL) receptor and LDLR-related protein (LRP). Genes
and their products involved in HDL-mediated RCT are
shown in Figure 1.

Although the role of many genes in individual
steps in the RCT pathway has been studied in detail (2),
little is known on how these genes regulate cholesterol
efflux through the entire pathway. Various efforts have
been made to quantify overall RCT in genetically-modified
mice. One approach was to quantify overall RCT by
measuring peripheral cholesterol synthesis, which in the
steady state approximates the centripetal cholesterol efflux
to the liver (23-25). Measurements of biliary lipid outputs
or fecal sterol excretion have also been used to determine
the relationship between HDL and the final excretion of
biliary steroids through the liver (26). Recently, the
injection of cationized LDL labeled with [3H]cholesterol
into the rectus femoris muscle and the rate of
[3H]cholesterol loss from the muscle depot was used to
determine RCT in vivo (27). The main obstacle to such
studies has been the inability to specifically estimate RCT
from macrophages, the most important cholesterol-loaded
cells of atherosclerotic lesions (28). A novel approach has
been developed to measure macrophage-specific RCT in
vivo by tracing the reverse [3H]cholesterol transport from
macrophages to feces in mice (29). Of note, a recent report
demonstrated that the increase in fecal sterol excretion
mediated by liver X receptor (LXR) is independent of
biliary cholesterol excretion in mdr2 P-glycoprotein
knockout mice, suggesting the existence of an alternative
RCT pathway through the intestine (30). A complete list of
the pivotal genes involved in HDL metabolism and their
effects on HDLc, RCT and atherosclerosis in genetically-
engineered mice is shown in Table 1.

3.2. Genes and their products involved in RCT

3.2.1. Apo A-I
The pivotal role of apoA-I in the regulation of HDL
metabolism is highlighted by the changes of HDLc in
genetically modified mouse models. In mice, transgenic
and somatic overexpression of apoA-I has a protective role
against atherosclerosis (7-9, 31), and even induces the
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Figure 1. A schematic diagram of RCT from macrophages to feces in vivo. Nascent partially-lipidated prebeta-HDL particles
acquire free cholesterol (FC) from peripheral cells by adenosine triphosphate-binding cassette transporter (ABC) A1. FC is
converted into cholesteryl ester (CE) within the HDL particle by the enzyme lecithin-cholesterol acyltransferase (LCAT). The
scavenger receptor class-BI (SR-BI) and ABCG1 may also facilitate the cholesterol efflux process from these cells to mature
HDL. Hepatic lipase (HL) or endothelial lipase (EL) can hydrolyze HDL triglyceride (TG) and phospholipids, thereby
remodeling larger HDL particles into smaller ones, which can then be catalyzed via the kidney. Lipoprotein lipase (LPL)
contributes to HDL biogenesis by generating phospholipids and surface apolipoproteins that can be acquired by HDL. The liver
can take selectively HDL-associated cholesteryl ester via SR-BI and excrete it into bile as free cholesterol (FC) or bile acids.
HDL-CE can also be transferred to apoB-containing lipoproteins by the action of CE transfer protein (CETP) and returned to the
liver through the low-density lipoprotein (LDL) receptor (LDLR) or the LDL related protein (LRP). PLTP=phospholipids
transfer protein; CM=chylomicron; rCM= remnant chylomicron; VLDL=very-low-density lipoprotein; IDL=intermediate-density
lipoprotein.

regression of preexisting lesions (32). Consistently,
overexpression of apoA-I in mice resulted in an increased
cellular cholesterol efflux capacity of plasma, the first step
of RCT (2, 33). These data suggested that stimulated
production of apoA-I enhanced RCT and protected from
atherosclerosis. However, overexpression of apoA-I in
mice does not perturb the net centripetal flow of cholesterol
from peripheral tissues to the liver (23, 24). Further, no
evidence of increased loss rate of [3H]cholesterol from a
muscle depot was found in human apoA-I transgenic mice
(34). The tracing of reverse [3H]cholesterol transport from
macrophages to feces in mice overexpressing apoA-I has
provided direct evidence of a major antiatherogenic
mechanism for apoA-I (29). Thus, while apoA-I does not
bear a simple relationship with overall centripetal RCT, it is
certainly rate-limiting for macrophage-specific RCT in
vivo. One probable mechanism of action is the
enhancement of the macrophage ABCA1-mediated

cholesterol efflux produced by increased free apoA-I.
Further, several recombinant peptides with aminoacid
sequences that mimic the structure of apoA-I have
antiatherogenic effects in mice (35-37) and the apoA-I
mimetic peptide D-4F enhanced cholesterol efflux from
macrophage cell cultures and macrophage-specific RCT in
vivo (38). Interestingly, the injection of apoA-I into mice
also resulted in increased ABCA1 protein levels in
macrophages and liver (39). ApoA-I knockout mice did not
develop more atherosclerosis than controls (15); however,
an increase was observed in atherosclerosis susceptibility in
apoA-I-deficient hypercholesterolemic mice (apoA-
I/LDLR double knockout mice and apoA-I knockout mice
overexpressing human apoB-100) (40, 41). These data
support the concept that the increase in apoA-I prevents
atherosclerosis, but its deficiency does not necessarily favor
atherosclerosis development unless other risk factors exist
(2). The relationship between apoA-I deficiency and RCT
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Table 1. Modification of HDL-related genes in experimental mice. Effects on HDLc, RCT, antioxidant activity and
atherosclerosis
Gene  Modification HDLc Centripetal

RCT
RCT
from
muscle
depot

Biliary lipid
excretion

Macropha
ge-specific
RCT

Antioxidant
activity

Atheroscleros
is

Referenc
e

Human apoA-I Transgenic Increased Unchange
d

Increased Decreased 7, 34, 208

Human apoA-I Adenovirus-
mediated
overexpression

Increased Unchanged Increased 24, 29

Mouse apoA-I Knockout Decreased Unchanged Decrease
d

Unchanged Decreased Unchanged or
Increased

15, 25,
40-43,
213

Mouse apoA-
II

Transgenic Increased Decreased Increased 51, 68

Human apoA-
II

Transgenic Decreased Unchanged Decreased Increased 52, 54, 69

Human apoA-
IV

Transgenic Increased Unchange
d

Increased Decreased 76, 77,
245

Human
ABCA1

Transgenic Increased Increased Decreased 86, 91

Mouse
ABCA1

Knockout Decreased Unchanged Unchanged 92, 94

Mouse
ABCA1

Macrophage-
specific
inactivation

Unchanged Decreased Increased 95

ABCG1 Adenovirus-
mediated
overexpression

Decreased Increased 102

Mouse HL Knockout Increased Unchanged Decreased 120, 121
Human LCAT Transgenic Increased Unchanged Increased,

decreased or
unchanged

131-135

LCAT Adenovirus-
mediated
overexpression

Increased Unchanged Increased 24, 239

LCAT Knockout Decreased Decreased Increased or
decreased

136-138

Simian CETP Transgenic Decreased Unchanged Unchange
d

Increased 23, 145,
147

Human CETP Transgenic Decreased Unchanged Increased 24, 148
Human PLTP Transgenic Decreased Increased Decreased Increased 154, 157,

160
Mouse PLTP Knockout Decreased Increased Decreased 156, 249
Human SR-BI Transgenic Decreased Unchanged Increased Decreased 24, 178-

180, 183
Mouse SR-BI Knockout Increased Decreased Increased 172-174
Human PON1 Transgenic Unchanged Increased Decreased 227, 228
Mouse PON1 Knockout Unchanged Decreased Increased 224, 225
Human PAF-
AH

Adenovirus-
mediated
overexpression

Unchanged Increased Decreased 230, 231

Human sPLA2 Transgenic Decreased Decreased Increased 243

is uncertain. Plasmas of apoA-I knockout mice have half-
normal cholesterol efflux capacity, and lack of apoA-I in
knockout mice results in a delay in [3H]cholesterol loss
from a localized depot in vivo (42). However, centripetal
cholesterol efflux and net steroid excretion were not
appreciably changed in apoA-I knockout mice (25, 43),
whereas there have been no reports on macrophage-specific
RCT in these mice.

ApoA-I Milano (apoA-IM) is a naturally
occurring-mutant of apoA-I that has been identified in a
number of subjects in Northern Italy where it is associated
with low HDLc (44). The apolipoprotein A-IM is a
molecular variant of apoA-I characterized by an arginine-
to-cysteine substitution at position 173 (45). Reconstituted
HDL (rHDL) containing the ApoA-IM dimer were
significantly more efficient in promoting cholesterol efflux

from macrophages than the corresponding particle
containing wild-type apoA-I, thus supporting an active role
of the dimer in the first step of RCT (46). Consistently,
infusion of apoA-IM in hypercholesterolemic apoE-
deficient mice reduced the plaque lipid and macrophage
content of aortic root atheromas (47, 48). Further, ApoA-
IM improved endothelial dysfunction which was associated
with mobilization of aortic cholesterol (49). Recently, a
pilot clinical study also demonstrated a significant
regression of atherosclerosis in human coronary arteries
after ApoA-IM infusion (50). An important drawback of
this study is the lack of a direct comparison between wild-
type apoA-I and apoA-IM.

3.2.2. Apo A-II
Overexpression of mouse apoA-II has been found

to be pro-atherogenic (51). Human apoA-II transgenic mice
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have also generally been found to display increased
atherosclerosis susceptibility, but exclusively when fed an
atherogenic diet (52-54) or when cross-bred with apoE-
deficient mice (apoE knockout) and fed a regular chow diet
(55). The apoA-II locus has been suggested as an important
genetic determinant of HDLc concentration, even though a
major species-specific difference exists between the effects of
mouse and human apoA-II (56-59). There is now some
consensus that LpA-I is more active than LpA-I/A-II in
cellular cholesterol efflux (56). ApoA-II exerted a negative
effect on SR-BI-specific binding (60, 61) and on cholesterol
selective uptake in some (60, 62), although not all, reports (61).
Further, the level of apoA-II in HDL from apoA-II transgenic
and apoA-II knockout mice was inversely correlated with
HDL binding and selective cholesteryl ester uptake by both
SR-BI and CD36 scavenger receptors (63, 64). Plasma from
human apoA-II transgenic mice stimulated cholesterol efflux
from ABCA1-expressing J774 macrophages (65), but
decreased efflux from SR-BI-expressing Fu5AH hepatoma
cells (65-67). Thus, a pro-atherogenic mechanism of apoA-II
overexpression could involve reduced RCT (56, 59). However,
overexpression of murine or human apoA-II in transgenic mice
maintains effective cholesterol efflux from macrophages and
macrophage-specific RCT in vivo (68, 69), suggesting that SR-
BI-independent pathways (70, 71) may contribute to the
enhanced uptake of HDL-derived cholesterol found in the liver
of apoA-II transgenic mice and maintain RCT in vivo (63, 69).

3.2.3. Other proteins
ApoA-IV is synthesized mainly in the intestine

and is associated with HDL (72). One of the main
metabolic functions assigned to apoA-IV is that related to
RCT. ApoA-IV is a potent activator of LCAT (73) and
plasma from human apoA-IV transgenic mice can promote
macrophage cholesterol efflux (74). Further,
overexpression of murine or human apoA-IV in transgenic
mice confered significant protection against atherosclerosis
(75, 76). However, overexpression of human apoA-IV
protected against atherosclerosis in apoE knockout mice
without increases in HDLc (76), and high plasma levels of
human apoA-IV did not enhance [3H]cholesterol
mobilization from a muscle depot in vivo (77). These
results suggested that apoA-IV could protect against
atherosclerosis by mechanisms that are independent of
RCT (see section 4.2.7).

Several groups have demonstrated that
transplantation of wild-type bone marrow or selective
expression of a human apoE transgene in macrophages
reduce atherosclerosis in apoE knockout mice (78-80).
Since apoE expressed by macrophages in apoE knockout
mice is too low to reduce hypercholesterolemia, the
protection against atherosclerosis is likely to be due to
apoE production by macrophages in the arterial wall
leading to increased cholesterol efflux from these cells (2).
However, the contribution of apoE to overall and
macrophage-specific RCT in vivo remains to be
established.

It has been shown recently that apoM knockout
mice accumulated cholesterol in large HDL particles and
this markedly reduced cholesterol efflux from macrophages

to apoM-deficient HDL compared to normal HDL (81).
Accordingly, overexpression of apoM in LDLR knockout
mice protected against atherosclerosis when the mice were
challenged with a cholesterol-enriched diet (81), suggesting
that apoM is important for the formation of prebeta-HDL
and could protect against atherosclerosis by mechanisms
that are dependent of RCT.

An interesting study has demonstrated a role of
caveolin-1 in regulating HDL metabolism. C57BL/6J mice
were injected with adenoviruses encoding either caveolin-1
or green fluorescent protein together with a transactivator
adenovirus (82). In caveolin-1 overexpressing animals,
plasma HDLc levels were found to be approximately 2-fold
elevated, as compared with control animals. Consistently,
caveolin-1 inhibits DiI-HDL uptake mediated by SR-BI in
primary cultures of hepatocytes (82). In addition, caveolin-
1 expression increased the secretion of apoA-I in cultured
hepatocytes and apoA-I plasma levels in mice (82).
However, the effects of caveolin-1 on overall and
macrophage-specific RCT are unknown.

3.2.4. ATP-binding cassette transporter A1 (ABCA1)
The ABCA1 has been identified as the defective

molecule in Tangier disease, a rare disorder characterized
by cholesterol accumulation in the reticuloendothelial
system and markedly reduced HDLc levels (83-85). Several
studies have determined that liver and intestine play a
major role in the maintenance of plasma HDL levels and
the biogenesis of nascent partially lipidated HDL particles,
the main acceptors of cholesterol by ABCA1-mediated
efflux from peripheral tissues (86-90). Overexpression of
ABCA1 in liver and peripheral macrophages of transgenic
mice resulted in increased HDLc levels and reduced
atherosclerosis (86, 91). These transgenic mice presented a
significant rise in the net hepatic delivery of exogenous
radiolabeled cholesteryl ether HDL and biliary cholesterol
excretion, indicating that activation of the ABCA1
transporter may facilitate RCT (86). However, no obvious
effect on overall RCT in ABCA1 knockout mice was
observed despite the expected absence of HDL.
Hepatobiliary cholesterol transport was not impaired in
ABCA1 knockout mice (92), and the increased
hepatobiliary and fecal cholesterol excretion upon
activation of the LXR was independent of ABCA1 (93).
Further, the expected increase in atherosclerosis in ABCA1
knockout mice was not observed (94). Recently,
experiments in which ABCA1 was selectively inactivated
in macrophages have provided a clue to these
inconsistencies. Selective inactivation of ABCA1 in
macrophages markedly enhanced aortic atherosclerosis in
hyperlipidemic strains of mice in absence of any changes in
plasma HDL levels (95). One possible explanation is that
the excessive uptake of cholesterol by ABCA1-deficient
macrophages in the artery wall could not be compensated
by the ABCA1-mediated efflux in these mice. In favor of
this, we found a reduced RCT from cholesterol-loaded
ABCA1-deficient macrophages to feces in ABCA1
knockout mice (Calpe-Berdiel et al., unpublished results).
These studies also indicate that macrophage cholesterol,
although important for atherosclerosis, does not provide a
significant proportion of HDLc (95). Consistently, liver-
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specific ABCA1-knockout mice presented decreased levels
of HDLc (96).

3.2.5. Other ATP-binding cassette transporters
ABCG1 is primarily expressed in both

macrophages and endothelial cells. It is upregulated in
response to cholesterol loading in the macrophage (97-99).
ABCG1 can promote cholesterol efflux from vascular cells
to HDL (100, 101). ABCG1-deficient mice exhibited a
massive accumulation of neutral lipids and phospholipids
in hepatocytes and in macrophages within multiple tissues
following administration of a high-fat, high- cholesterol
diet, with no effects on plasma HDL. ABCG1 transgenic
mice were protected from this accumulation (101).
Overexpression of ABCG1 in the liver of mice using
recombinant ABCG1 vectors resulted in decreased plasma
HDL levels and increased biliary cholesterol excretion
(102). Therefore, these results suggest a potential role for
ABCG1 as a mediator of cholesterol efflux from
macrophages to mature HDL in some tissues and in overall
RCT.

ABCG4 is also important in the process of
cholesterol efflux (100), however taking into account that
ABCG4 is highly expressed in brain (103), its role in RCT
is considered uncertain.

3.2.6. Lipoprotein lipase (LPL)
LPL is bound to the endothelial surface and is

abundant in adipose tissue and muscle. This enzyme
hydrolyzes chylomicron and VLDL-associated triglycerides
to provide fatty acids to tissues as an energy source (104).
The general characteristics of this protein are usually
analyzed in relation to the metabolism of particles rich in
triglycerides. Nevertheless, LPL activity is also essential
for HDL production from triglyceride-rich lipoprotein
catabolism. Overexpression of LPL in transgenic mice
increases HDLc (105). Conversely, LPL knockout mice
had severe hypertriglyceridemia and reduced HDLc (106,
107) and adenovirus-mediated expression of LPL in LPL-
deficient mice is necessary and sufficient to promote HDL
maturation (108). This is probably due to the fact that LPL
acts on chylomicrons and VLDL, changing their
cortex/core ratio, and these lipoproteins tend to recover
their primitive relationship by breaking off pieces of cortex
that will float in the density range of HDL. On the other
hand, initial evidence established that LPL increases HDL-
associated cholesteryl ester by hepatic and extrahepatic
cells in vitro (109-111). In this regard, expression of human
LPL in muscle of transgenic mice reduced plasma HDLc
and increased the catabolism of HDL-associated cholesteryl
ester (112), suggesting that LPL may facilitate RCT
through the HDL-pathway in vivo. In contrast, macrophage
LPL expression has been shown to enhance aortic lesion
formation, probably by promoting lipoprotein
internalization and lipid accumulation by macrophages
(113, 114). The effects of LPL on overall and macrophage-
specific RCT are unknown.

3.2.7. Hepatic lipase (HL)
HL is an enzyme belonging to the same family as

LPL, and mainly hydrolyzes IDL and HDL-associated

phospholipids and triglycerides. HL knockout mice showed
increased HDLc and decreased selective uptake of HDL-
cholesteryl ester (115). Liver overexpression of HL in
transgenic mice decreased HDLc, induced the formation of
smaller HDL particles and reduced atherosclerosis (116,
117). Further, overexpression of human HL enhanced the
plasma clearance of HDL cholesteryl ester (118). These
studies show that HL have a substantial impact on HDL
metabolism in vivo and may play a central role in RCT in
vivo. Apart from the role of HL in HDL metabolism,
macrophage-specific HL expression may enhance aortic
lesion formation by promoting lipoprotein internalization
(119), thereby providing a potential explanation for the
reduced atherosclerosis of HL/apoE double knockout mice
(120). Only one work studied the relationship between HL
and RCT in vivo. The deficiency of HL in knockout mice
had no impact on the availability of lipoprotein-derived
liver cholesterol for biliary secretion (121). Nevertheless,
the effects of HL on macrophage-specific RCT have not
been specifically addressed.

3.2.8. Endothelial lipase (EL)
EL is a member of the triglyceride lipase gene

family and is more effective at hydrolyzing lipids from
HDL than LPL and HL (122, 123). Liver overexpression of
EL mediated by adenoviral gene transfer reduced HDLc
and apoA-I in mice (124). Overexpression of EL in
transgenic mice moderately reduced HDLc (125). Hepatic
overexpression of EL increased the uptake of apoA-I from
labeled HDL (126), suggesting that EL may facilitate late
RCT events. Conversely, EL-deficiency in knockout mice
and antibody inhibition of EL resulted in increased HDLc
(125, 127, 128) and mouse EL inhibition increased HDL
particle size and reduced HDL phospholipid turnover (127).
However, aortic lesion area was reduced in EL/apoE
double knockout mice despite a concomitant increase in
apoB-containing lipoproteins (129). Those authors
observed a decrease in macrophage content in the arterial
wall of EL knockout mice and inhibition of monocyte
adhesion ex vivo (129), suggesting alternative mechanisms
by which EL may regulate atherogenesis. Further studies
on the role of EL in RCT are required.

3.2.9. Lecithin:cholesterol acyltransferase (LCAT)
LCAT has been hypothesized as a potential

therapeutic target for raising HDLc and modulating RCT
(5, 13, 130). Adenovirus-mediated expression of LCAT in
hamsters increased bile cholesterol excretion (131). In
contrast, overexpression of LCAT in mice did not stimulate
centripetal cholesterol efflux from any extrahepatic tissues
or increase bile cholesterol and total bile acid excretion (24,
131). Overexpression of LCAT in transgenic mice has
produced conflicting results on susceptibility to
atherosclerosis (132-134), possibly because the
antiatherogenic effects of LCAT require CETP activity
(135). Either enhanced or reduced atherosclerosis was also
shown in LCAT knockout mice despite an HDLc
deficiency (136-138). Studies of RCT in LCAT deficiency
have not been conducted. LCAT expression exerts various
effects on lipoprotein metabolism, such as antioxidant
activity (see section 4.2.5) and altered levels of apoB-
containing lipoproteins, which may influence
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atherosclerosis development (13, 130). It will thus be
necessary to perform overall and macrophage-specific RCT
analyses in the appropriate animal models to gain further
insight into the role of LCAT in RCT and atherosclerosis.

3.2.10. Cholesteryl ester transfer protein (CETP)
The action of CETP results in a heteroexchange

between HDL cholesteryl ester and VLDL- or
chylomicron-triglycerides (139). Overexpression of human
or simian CETP in transgenic mice, which naturally lack
this activity, reduced HDLc (140-142) and increased preβ-
HDL (143). The finding of a downregulation of LDLR
expression in CETP transgenic mice was indicative of
increased RCT to the liver (144). However, the magnitude
of centripetal cholesterol from the periphery to liver was
not altered in simian and human CETP transgenic mice (23,
24). Further, high levels of CETP in these mice did not
enhance [3H]cholesterol removal from a muscle depot but
may act on extracellularly-located cholesteryl ester (145).
The role of CETP in atherogenesis has mainly been studied
in mice and has been shown to be complex (146). The
introduction of human or primate CETP transgene in mice
resulted in increased early aortic atherosclerotic lesions in
response to an atherogenic diet (147, 148). Conversely, the
expression of CETP transgenic mice in
hypertriglyceridemic apoCIII transgenic or in LCAT
transgenic mice reduced the area of atherosclerotic lesions
(135, 148). Whether these differences can be explained by
differential effects on macrophage-specific RCT or other
HDL-related antiatherogenic properties remains unknown.

It is unclear whether humans with genetic CETP deficiency
are protected from atherosclerotic cardiovascular disease or
not (20, 149). However, several strategies have recently
emerged to inhibit CETP and increase HDLc (13, 20). The
CETP inhibitor torcetrapib was tested in humans and a 50-
100% increase in HDLc was observed (150). JTT-705,
another CETP inhibitor, was also proved to effectively
increase HDLc in humans and rabbits (151, 152) and
reduce atherosclerosis in rabbits (152). However, data on
the anticipated reduction in atherosclerosis in humans, such
as carotid intima media thickness or coronary atheroma
volume, have yet to be reported.

3.2.11. Phospholipid transfer protein (PLTP)
PLTP facilitates the transfer of phospholipids

between triglyceride-rich lipoproteins and HDL during
lipolysis by LPL and modulates HDL size and composition
(13, 153). Overexpression of human PLTP in transgenic
mice lowers HDLc (154). Despite these low HDLc levels,
these transgenic mice have increased generation of preβ-
HDL and prevent macrophage cholesterol accumulation
(154). However, PLTP knockout mice also showed low
levels of HDLc (155). These intriguing observations may
be explained by the reduced apoB-containing lipoproteins
found in PLTP knockout mice and a loss of transfer of all
major phospholipid classes from VLDL to HDL (155, 156).
Two recent studies investigated the effect of increased
PLTP activity on removal of cholesterol from the body of
mice. Overexpression of human PLTP in transgenic mice
increased biliary bile acid and increased the amount of
fecal bile acids (157). The decrease in HDLc found in these

transgenic mice may have been caused by accelerated
clearance of HDL cholesteryl esters by the liver, as
demonstrated with adenovirus-mediated overexpression of
PLTP (158). Therefore, these results suggested that raised
PLTP activity may have antiatherogenic effects via an
enhanced RCT. However, PLTP transgenic mice showed
increased atherosclerosis (159, 160). Conversely, PLTP
deficiency reduced atherosclerosis in ApoB-transgenic and
ApoE knockout mice (156). This may be related to reduced
apoB production (13, 156) as well as reduced oxidant stress
(see section 4.2.7).

3.2.12. Scavenger receptor-BI (SR-BI)
SR-BI is known to mediate the selective binding and bi-
directional flux of cholesterol and other lipids between
HDL and cells (161-164), particularly in hepatocytes and
steroidogenic cells (165, 166). SR-BI is also expressed in
macrophage foam cells in atherosclerotic plaques,
endothelial cells, Kupffer cells in the liver and a variety of
other cell types (163, 164, 167). The importance of SR-BI
in HDL metabolism has been established by SR-BI gene
manipulation in mice (163, 168, 169). SR-BI knockout
mice presented increased HDLc levels, reduced selective
HDLc clearance (170, 171), decreased bile cholesterol
concentration and impaired biliary cholesterol secretion
(172-174). Conversely, hepatic overexpression of SR-BI
using recombinant adenovirus-mediated gene transfer or in
transgenic mice resulted in decreased plasma levels of
HDLc (175, 176), enhanced HDL cholesteryl ester
clearance (175, 177, 178) and increased biliary cholesterol
(176, 178, 179). These results suggested a critical role of
hepatic SR-BI expression in RCT by controlling the
utilization of HDLc for biliary secretion. However,
overexpression of SR-BI did not affect centripetal
cholesterol efflux from extrahepatic tissues to liver (24).
Further, bile acid pool size and composition, fecal bile acid
excretion and liver sterol synthesis were not affected in SR-
BI knockout mice (174). It is not clear whether this lack of
effect on centripetal and liver sterol synthesis was the result
of compensatory pathways to maintain hepatic and
extrahepatic cholesterol levels (24, 174). Whether SR-BI
might facilitate biliary cholesterol secretion directly by
mediating hepatic uptake of HDL cholesteryl ester or by
participating in biliary cholesterol secretion from the
canalicular membranes remains to be determined (174).
Experiments in SR-BI transgenic and knockout mice have
demonstrated the antiatherogenic activity of SR-BI (180,
181). Loss of SR-BI expression, in an apolipoprotein E-
deficient background, accelerated the onset of
atherosclerosis (172) and led to premature cardiovascular
dysfunction (172, 182). Hepatic overexpression of SR-BI
markedly reduced atherosclerosis in mice prone to the
disease (180, 183). As mentioned above, expression of SR-
BI in foam cells in the arterial wall may promote the initial
step of macrophage-specific RCT (184). In favor of this,
selective elimination of SR-BI expression in bone marrow-
derived cells in LDLR knockout mice resulted in increased
diet-induced atherosclerosis (185). In addition, SR-BI may
facilitate RCT by enhancing the clearance of apoB-
containing lipoproteins (175, 177, 186, 187). Interestingly,
SR-B1 may change its functional role when serum amyloid
A (SAA) is present. Thus, SAA-containing HDL isolated
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Figure 2. Current model of HDL antioxidant/anti-inflammatory action against atherosclerosis. Circulating LDL is transported
through the endothelium and can be retained by proteoglycans in the subendothelial space. Trapped LDL may undergo oxidative
modification triggered by hydroperoxides and free radicals derived from cell metabolism and enzymes such as lipooxigenases
and myeloperoxidases. Oxidized LDL contains oxidized lipids, especially phospholipids, with proinflammatory effects that elicit
a series of inflammatory responses in macrophages and endothelial cells. In addition, macrophages take up oxidized LDL in a
process that converts them into foam cells, the hallmark cell of atherosclerosis. HDL has antioxidant and anti-inflammatory
effects that may limit this process at several points. HDL inhibits the oxidative modification of LDL, and is able to inactivate
proinflammatory oxidized lipids through its associated enzymes. HDL also inhibits the expression of endothelial chemotactic and
cell adhesion proteins, thus reducing the infiltration of monocytes into the artery wall.

from mice overexpressing SAA through adenoviral gene
transfer had little effect on HDL binding to SR-BI but
decreased selective cholesteryl ester uptake (188).

4. ANTIOXIDANT AND ANTI-INFLAMMATORY
ACTIONS OF HDL

4.1. Mechanisms
In addition to its important role in promoting

RCT, HDL is believed to protect against atherosclerosis by
inhibiting the oxidative modification of low-density
lipoproteins (LDL). Increasing evidence suggests that LDL
oxidation plays a primary role in the initiation and
progression of atherosclerosis. LDL trapped in the
subendothelial space of the artery wall are subjected to
oxidative modification via by-products of the
lipooxygenase and myeloperoxidase pathways (189) and,
probably, other prooxidant molecules derived from cell
metabolism. Specifically, oxidation of arachidonic acid-
containing phospholipids of LDL has been shown to yield
specific proinflammatory products that elicit immune
response in the arterial wall, including the induction of
adhesion molecules and monocyte chemoattractants that
facilitate foam cell formation (189). The in vivo proof of a
role for the lipooxygenase pathway was provided by the
generation of 12/15-lipooxygenase knockout mice. Deficiency
of 12/15-lipooxygenase in an apoE- and LDLR-null
background led to significantly less lipid peroxidation and
decreased atherosclerosis (190-192). On the other hand, mouse

models overexpressing 12/15-lipooxygenase have been shown
to have increased lipid peroxidation and atherosclerosis (193,
194). HDL has been shown both to protect LDL against
oxidation and to attenuate the biological activity of oxidized
LDL. These antioxidant and anti-inflammatory properties of
HDL have been attributed to the various proteins associated
with HDL. Although antioxidant properties have been ascribed
to apoA-I and apoA-II (195), it is currently believed that a
significant part of HDL antioxidant properties are related to
their associated enzymes: paraoxonase 1 (PON1) (196-198),
PON3 (199, 200), platelet-activating factor acetylhydrolase
(PAF-AH) (201) and LCAT (202) (see Figure 2 for a view of
this hypothetical anti-atherogenic mechanism). Indeed, some
of these enzymes have been found to be altered in
atherosclerosis-susceptible strains of mice (203). A complete
list of the pivotal genes involved in HDL antioxidant activity in
genetically-engineered mice is shown in Table 1.

4.2. Genes and their products involved in antioxidative
and anti-inflammatory actions of HDL

4.2.1. Apo A-I
In addition to its well-known role in RCT,

already discussed, several studies indicate that apoA-I can
inhibit various steps in the accumulation of oxidized lipids
that promote inflammation and lead to atherosclerotic
lesions. ApoA-I is able to remove oxidant LDL molecules
protecting it from its oxidative modification, as shown by
in vitro testing and by infusion of apoA-I in mice or human
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(204). HDL is a major carrier of plasma lipid
hydroperoxides in both mice and in humans (205), which
are cleared faster by hepatocytes than non-modified lipids
(206, 207), suggesting a key role of  HDL in the
metabolism of oxidant molecules. Isolated HDL from
human apoA-I transgenic mice consistently prevents the
oxidative modification of LDL more than HDL of control
mice (208). These features may be an indication of a role of
apoA-I in immunity, as HDL is one of the major blood
components that bind to bacterial lipopolysaccharide (LPS)
(209), and high HDL levels protect animals from LPS-
induced septic shock (210). ApoA-I mimetic peptides
reduced atherosclerosis when administered to apoE
knockout mice and this effect was linked both to enhanced
RCT and reduced lipid oxidation, independently of plasma
cholesterol levels (35, 211). These studies suggest that
synthetic peptides, such as native apoA-I, may act as anti-
inflammatory agents in HDL (212). In addition to its ability
to remove oxidant molecules from LDL and decrease the
activity of hydroperoxides, it is believed that the main
antioxidant/anti-inflammatory function of apoA-I is the
transport and stabilization of antioxidant enzymes in HDL
(195). These enzymes include PON1 and PAF-AH.
Variability in PON activity correlates with HDLc and
apoA-I, and this may reflect the stabilization of PON1 by
apoA-I in the HDL particle. In apoA-I-deficient mice,
PON1 was reduced by more than 60% and PON level was
restored when these mice were injected with adenoviruses
encoding human apoA-I (213). Conversely, human apoA-I
transgenic mice showed increased PON1 and PAF-AH
activities (214), supporting previous in vitro findings
suggesting that PON activity is stabilized in the presence of
the apolipoprotein, although apoA-I is not necessary for
PON1 association with HDL (215). Of note, increases in
apo A-I and HDL cholesterol inhibit foam cell formation in
apo E–deficient/human apo A-I transgenic mice at a stage
following lipid deposition, endothelial activation, and
monocyte adherence, without increases in HDL-associated
PON (216). In accordance with these findings, phospho-
Akt, phospho-ERK1/2, and TGF-beta2 expression was
increased in the aorta of human apoA-I transgenic mice
compared with apoA-I-knockout mice (217). Further,
phospho-Smad2/3 expression, the transcription factor
activated by TGF-beta, was increased in transgenic mice
(217). Thus, the results of the present work suggest a novel
target for the antiatherosclerotic effect of HDL.

4.2.2. Apo A-II
HDL isolated from murine apoA-II transgenic

mice was unable to protect against LDL oxidation by
vascular cells (68), and this impaired ability to protect LDL
against cell-mediated oxidation was attributed to lower
PON activity in HDL particles of apoA-II transgenic mice.
Similar results were found in a line of mice overexpressing
human apoA-II with impaired HDL protection against
oxidative modification of apoB-containing lipoproteins
(54). In these transgenic mice, a decrease in apoA-I levels
and PON and PAF-AH activity was related to this
impairment and possibly contributed to their increased
atherosclerosis susceptibility (54). The displacement of
apoA-I and PON from HDL by human apoA-II could
explain, at least in part, the decreased level of these

proteins in this animal model (54) and, also, why PON is
mostly found in HDL particles with apoA-I but without
apoA-II. It has also been shown that substituting the central
domain of apoA-I by a segment of human apoA-II in
transgenic mice in an apoE-null background enhances
oxidative stress and impairs the protection of HDL against
LDL oxidative modification, without altering the plasma
capacity of inducing cholesterol efflux (218). These studies
suggest that apoA-II exerts, at least part of, its pro-
atherogenic effect by counteracting the antioxidant
properties of HDL (54, 68). Nevertheless, another line of
independently-generated human apoA-II transgenic mice
was reported to have HDL displaying a relatively increased
protection against VLDL oxidative modification despite
decreased HDLc, PON and PAF-AH (219). The reasons for
this discrepancy are unclear.

4.2.3. Paraoxonase (PON)
PON1 is a calcium-dependent ester hydrolase

(220) that catalyzes the hydrolysis of organophosphates and
oxidized phospholipids (196, 221), including PAF (222).
PON has been demonstrated to protect LDL against
oxidation, reverse the biological effects of oxidized LDL
and preserve the function of HDL by inhibiting its
oxidation (223). These findings were confirmed in vivo in
PON1-deficient mice. PON1 knockout mice exhibited no
detectable plasma PON activity, and HDL from PON1-null
mice was unable to protect LDL against oxidation in
cultured cells of artery wall (224). In addition, PON1-null
mice fed an atherogenic diet or crossed with apoE knockout
mice showed increased atherosclerosis (225). Additionally,
LDL freshly isolated from PON1/apoE double knockout
mice had higher levels of biologically-active phospholipids
and their HDL failed to protect LDL against oxidation
(225). PON1 may also reduce oxidative stress in
macrophages, as described in studies with PON1 knockout
mice (226). Conversely, PON1 transgenic mice presented
increased PON activity in their HDL particles without
altering their composition or size, and isolated HDL from
these mice was more resistant to lipid peroxidation
compared with HDL from their control littermates (227).
HDL isolated from human PON1 transgenic mice exhibited
an enhanced ability to protect LDL against oxidation (227).
Moreover, comparing with their control littermates, human
PON1 transgenic mice developed significantly smaller
lesions in both C57BL6 and apoE-null backgrounds (228).
Further, human PON was also expressed in macrophages
and reduced macrophage and aortic oxidative status (229).
This may also explain their attenuated atherosclerosis
development (229). These studies corroborate the
hypothesis that PON1 protects against atherogenesis and it
is an important contributor to the antioxidant capacity of
HDL.

4.2.4. Platelet activating factor acetylhydrolase (PAF-
AH)

PAF-AH is a type VIIA phospholipase associated
with HDL in mice that hydrolyzes the acetyl moiety of the
sn-2 position of PAF and, also, oxidizes phospholipids with
short-chain acyl moieties in the sn-2 position. To date, no
PAF-AH knockout or transgenic mice have been
developed, but some studies have used somatic gene
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transfer. Adenoviral gene transfer of human PAF-AH in
apoE knockout mice reduced macrophage homing to
endothelium by decreasing oxidative stress (230). Also,
intravenous administration of an adenovirus directing a
liver-specific expression of human PAF-AH in apoE-
deficient mice resulted in decreased oxidized lipoproteins,
inhibition of injury-induced neointima formation and
spontaneous atherosclerosis (231). Using this approach,
human PAF-AH bound to all mouse lipoproteins and
protected them from oxidation, thereby decreasing lipid
oxidation and preserving HDL functions (232). Transfer of
PAF-AH into skeletal muscle in apoE-deficient mice was
also associated with a reduced extent of atherosclerosis
(233). ApoE knockout mice presented reduced levels of
PAF-AH and this was concomitant with increased levels of
circulating oxidized phospholipids (203). Apparently, PAF-
AH could act in cooperation with PON in LDL protection
against oxidative modification, as suggested by the fact that
PON1 knockout mice presented impaired HDL protection
against LDL oxidation despite normal PAF-AH activity
(224). In contrast, a growing number of epidemiological
studies in humans suggest that increased PAF-AH is an
independent predictor of cardiovascular events (234, 235).
This may be related to the close association of PAF-AH
with atherogenic dense LDL particles (236, 237). The PAF-
AH-mediated formation of noxious bioactive lipid
mediators has been proposed to explain this potentially
proinflammatory role of PAF-AH in humans (235).
Therefore, functional evaluation of PAF-AH in mice is
hindered by the predominant association of PAF-AH with
HDL, thereby protecting LDL from oxidative modification
and atherosclerosis development.

4.2.5. Lecithin:cholesterol acyltransferase (LCAT)
Although the main known function of LCAT is

cholesterol esterification, a role of LCAT in hydrolyzing
oxidized polar phospholipids generated during lipoprotein
oxidation has also been described (202, 238). Transient
LCAT overexpression was associated with decreased
oxidative stress and atherosclerosis in LDLR knockout and
leptin-deficient (ob/ob) double-mutant mice (239), thus
supporting an antioxidant role of LCAT in vivo. Further,
LCAT function in HDL metabolism is also important for
maintaining its antioxidant/anti-inflammatory potential,
since LCAT-targeted disruption in mice was associated
with HDL deficiency, leading to dramatic reductions in
apoA-I, PON and PAF-AH  (240). However, the oxidative
stress found in LCAT-deficient mice was paradoxically
reversed in apoE knockout mice, possibly due to
redistribution of PON to apoB-containing lipoproteins
(138).

4.2.6. Type IIa secretory phospholipase (sPLA2)
Several studies suggested the implication of

sPLA2, an HDL-associated protein, in atherogenesis.
C57BL/6 mice, which are commonly used to study
atherosclerosis, have a point mutation in the sPLA2 gene
that renders the enzyme nonfunctional (241). When
C57Bl/K mice, with intact sPLA2 were crossed with apoE
knockout mice, the resulting apoE-null sPLA2+/+ mice
showed no difference in atherosclerosis susceptibility
compared the double knockout mice (242). In contrast,

human sPLA2 transgenic mice showed reduced HDLc and
dramatically increased atherosclerotic lesions on both low-
fat and atherogenic diets. In addition, oxidized
phospholipids levels were increased and HDL from
transgenic mice showed decreased PON levels failing to
protect LDL from oxidation (243). Specific overexpression
of sPLA2 in macrophages also resulted in accelerated
atherogenesis associated with in vivo oxidative stress,
without affecting systemic sPLA2 activity or lipoprotein
metabolism (244). These observations indicate that
overexpression of the active enzyme in macrophages
promotes atherosclerosis in hypercholesterolemic mice,
suggesting that local expression of the enzyme in the artery
wall might be atherogenic.

4.2.7. Other factors related to oxidative and anti-
inflammatory protection of HDL

In addition to the role of apoA-IV in RCT, it has
been suggested that apoA-IV acts in vivo as an antioxidant in
human apoA-IV transgenic/apoE knockout mice thereby
decreasing the progression of atherosclerosis (245). Further,
apoA-IV knockout mice exhibited a significantly greater
inflammatory response to 3% dextran sulfate sodium (DSS)
acute colitis and this greater susceptibility to DSS-induced
inflammation was reversed upon exogenous administration of
apoA-IV to knockout mice (246). This anti-inflammatory
effect likely involves the inhibition of P-selectin-mediated
leukocyte and platelet adhesive interactions (246). These
results provide the first direct support for the hypothesis that
apoA-IV is an endogenous anti-inflammatory protein.

A subset of HDL-PON particles in humans is
associated with a unique protein termed "clusterin" or apoJ
(247). Further, apoJ-deficient mice showed an accelerated
development of immune complex lesions localized to the
mesangium and induced by unilateral nephrectomy-induced
hyperfiltration (248). These results support the hypothesis that
apoJ/clusterin modifies immune complex metabolism and
disposal.

PLTP could also have actions on HDL
antioxidant/anti-inflammatory properties. Hence, it has
been described that HDL from PLTP knockout mice had
improved anti-inflammatory properties and reduced the
ability of LDL to induce monocyte chemotactic activity
(249), and this could explain, at least in part, the reduced
atherosclerosis in PLTP knockout mice. In favor of this,
adenovirus-mediated PLTP overexpression in apoE
knockout mice resulted in increased atherosclerotic lesions
and autoantibodies against oxidized apoB-containing
lipoproteins (250), and overexpression of human PLTP in
transgenic mice induced a dose-dependent increase in
atherosclerosis and a decrease in PON and PAF-AH
activities, despite reduced apoB-containing lipoproteins
(160). Taken together, these studies support the concept
that PLTP activity has negative effects on antioxidant
defense against atherosclerosis.

5. NITRIC OXIDE-MEDIATED EFFECTS OF HDL
ON ENDOTHELIUM

In addition to RCT and the antioxidative and anti-
inflammatory properties of HDL, other actions have been
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postulated to explain the antiatherogenic role of HDL.
These include anticoagulant, antiaggregant and
profibrinolytic activities that are mediated by the different
components of HDL (17, 251, 252). However, most of
these studies were performed in vitro (17, 252). Recent
studies in both cultured cells and mice indicate that HDL is
an autonomous protective factor for endothelium. Early
endothelial dysfunction in atherosclerosis is characterized
by a decrease in nitric oxide (NO) bioavailability and
increased affinity for leukocytes, which is accompanied by
increased apoptosis of endothelial cells in subsequent
stages. Native HDL has been found to activate endothelial
nitric oxide synthase (eNOS) in cultured endothelial cells,
thus stimulating NO release (253, 254). In mice, exogenous
native HDL produces vascular relaxation and this response
is blocked by pre-treatment with nitro-L-arginine methyl
ester (L-NAME), an eNOS antagonist (253). Heterologous
expression studies with Chinese hamster ovary cells have
revealed that SR-BI mediates the effects of HDL on eNOS
activity (253). Thus, transient transfection of CHO cells with
eNOS caused a significant increase (four-fold) in enzyme
activity only when cultured cells stemmed from animals stably
transformed with murine SR-BI (253). Vascular NO-
dependent relaxation was only produced in isolated aortas of
wild-type mice, but not in those of homozygous SR-BI
knockout mice (253). Further, the response of eNOS to HDL
in isolated plasma membranes is blocked by antibodies
directed to apoA-I and SR-BI, but not to apoA-II, suggesting
that HDL activates eNOS through an SR-BI interaction in a
process that requires apoA-I binding (253). Further studies
have revealed that the HDL-induced eNOS activation seems to
be brought about by tyrosine and PI3 kinases, which
eventually mediate human eNOS phosphorylation at serine
1177 by Akt kinases (255). Analysis of the lysosphingolipid
receptor S1P3 knockout mice has demonstrated that S1P3 acts
as a functional HDL receptor and has suggested that the
vasodilatory effects of the HDL-associated lysophospholipids
are mainly mediated by this receptor in cooperation with SR-
BI (256, 257).

6. SUMMARY AND PERSPECTIVE

HDL metabolism and its relationship with
atherosclerosis is a complex topic. Epidemiological studies
have demonstrated that increased HDL is a protective factor
against atherosclerotic cardiovascular disease. In contrast,
familial hypoalphalipoproteinemia is associated with varying
but usually increased atherosclerotic vascular disease.
Significant advances have been produced by the development
and detailed analysis of genetically-engineered mice. Recent
studies suggest that macrophage-specific RCT induction may
be more related to atherosclerosis than total RCT. Further, it is
increasingly evident that the antioxidant function of HDL
constitutes a major antiatherogenic protective HDL property.
Inhibition of LDL oxidation by HDL may be attributed to the
presence of PON and PAF-AH, which prevent LDL oxidation.
Further, the antioxidant properties of HDL are related to the
presence of apoA-II and apoA-IV and the action of other
enzymes such as LCAT, PLTP and sPLA2.

ApoA-I, the main apolipoprotein of HDL, has
clear effects on RCT, protection against LDL oxidative

modification and NO-dependent vasorelaxation. It is
therefore not surprising that great efforts have been made to
identify agents that can upregulate apoA-I expression or
mimic its effects. Hence, one possibility of treating or
preventing atherosclerotic cardiovascular disease would be
to administer native or mutated apoA-I (such as apoA-I
Milano) or mimetic peptides, as demonstrated in mouse
models of atherosclerosis and, more recently, in humans.
Experiments with genetically-modified mice also suggest
that overexpression of pivotal genes in RCT, such as
ABCA1 and SR-BI, exerts atheroprotective effects in mice.
However, the role of apo A-II, apoA-IV, apoE, ABCG1,
LPL, HL, EL, LCAT, CETP and PLTP on RCT or
atherosclerosis remains a matter of debate or has not been
proved to be antiatherogenic. An important lesson from
these experiments is that disruption of RCT or antioxidant
properties of HDL may result in atherosclerosis in the
presence of either decreased, increased or unchanged
HDLc.

It is therefore reasonable to believe that
accumulated knowledge on HDL metabolism and its
relationship with atherosclerosis in mice, though
incomplete, holds promise for future therapeutic
intervention in humans. The next decade could thus witness
major advances in the development of therapeutic strategies
that exploit the antiatherogenic properties of HDL.
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