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1. ABSTRACT  
 

In the past 5-10 years the evolution of 
micromanipulation-assisted fertilization for the treatment of 
severe male infertility was marked by the introduction of 
new technical support, refinement of diagnostic methods 
for the evaluation of sperm developmental potential, and 
development of new treatment regimens for the newly 
discovered abnormalities. The new technical support 
involves the use of non-contact laser technology to assist 
micromanipulation for fertilization, the evolution of 
polarized microscopy-based optical systems to non-
invasively detect the position of the meiotic spindle in 
living human oocytes, and the development of high-
magnification optical systems for a better morphological 
selection of spermatozoa to be used for fertilization. 
Diagnostic approaches were enriched by commercial 
availability of kits for the analysis of sperm DNA integrity,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

leading to the definition of sperm nuclear DNA damage as 
a distinct cause of male infertility, and by the development 
of tests, based on heterologous ICSI, for detection of sperm 
failure to activate oocytes. Several treatment options for 
these conditions have been proposed and are currently 
being tested in larger-scale trials. Some technical 
improvement was also achieved in the field of in vitro 
maturation of germ cells from men with in vivo maturation 
arrest, but only a modest clinical improvement resulted 
from their application. As to the risk for the offspring, 
recent data are rather reassuring. Except for the risk of 
transmission of genetically based infertility, no 
straightforward evidence for a health risk derived from 
these techniques has been provided. Nevertheless, caution 
is necessary, particularly concerning the eventual increase 
in genomic-imprinting abnormalities. 
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2. INTRODUCTION 
 

Micromanipulation-assisted fertilization has 
revolutionized the treatment of severe male infertility over 
the past 15 years. Not only has it made possible assisted 
reproduction with the patient’s own gametes in cases of 
extremely severe male factor which previously required the 
recourse to sperm donation, but it also brought about 
conceptual changes in our understanding of fertilization-
related biological events and opened new fields of research 
aimed at the treatment of cases in which mature 
spermatozoa are completely absent in the patient’s testis. It 
was noted that fertilization often failed even when a 
spermatozoon was present in the oocyte cytoplasm. This 
observation drew the attention of researchers to the 
complex issue of oocyte activation and led to the definition 
of yet unknown pathological conditions in which infertility 
was due to the lack or insufficiency of oocyte-activating 
factors in spermatozoa or to a failed or abnormal response 
of the oocyte to sperm-derived activating factors. 
 
 The possibility of using immature (epididymal or 
testicular) spermatozoa, and even less mature germ cells for 
micromanipulation-assisted fertilization opened the 
question about the relationship between germ cell nuclear 
and cytoplasmic maturity, on the one hand, and fertilizing 
ability and developmental potential of the resulting embryo 
on the other hand. It has been shown that nuclear 
immaturity is often associated with nuclear DNA damage 
which, however, can be present in mature spermatozoa of 
some men, too. Clinical consequences of this condition and 
possibilities of their alleviation have been studied. 
 Finally, technical progress in the field of 
microscopic analysis and micromanipulation of living cells, 
namely the introduction of computer-assisted polarized 
microscopy (Polscope) systems, of non-contact laser 
micromanipulation devices, and of high-power optical 
systems, brought about new possibilities in the selection of 
gametes to be used for micromanipulation-assisted 
fertilization and in the management of some particular 
cases in which standard manipulation procedures failed. 
 
 This paper updates the current options for the 
treatment of severe male infertility by micromanipulation-
assisted fertilization taking into account these new 
developments. 
 
3. NEW DEVELOPMENTS IN MICROMANIPULATION-
ASSISTED FERTILIZATION TECHNIQUES AND 
THEIR USE IN MALE INFERTILITY MANAGEMENT  
 
3.1. New technical support 

Since the publication of the last version of this 
review (1), new technical possibilities emerged, namely in 
the fields of laser-assisted manipulation, microscopy and in 
vitro culture. The introduction of non-contact laser-
mediated manipulation devices has made it possible to 
perform ICSI through a pre-drilled opening in the zona 
pellucida, thus making the manipulation more oocyte-
friendly, which is of importance in some special cases. 
New optical systems introduced to micromanipulation 
assisted fertilization include the Polscope and the high-

power magnification Nomarski optics. The former enables 
avoidance of the oocyte chromosome region during 
injection, and the other facilitates the selection of 
spermatozoa to be injected according to finer structural 
analysis as provided by the conventional systems. Finally, 
new in vitro culture systems have been proposed for in 
vitro maturation of immature germ cells from patients with 
maturation arrest. 
 
3.1.1. Laser-assisted ICSI 

Laser-assisted ICSI has been first described in 
2001, when it was used in a couple with four previous ICSI 
failures because of poor oocyte survival resulting in a 
clinical pregnancy (2). A similar case report was published 
one year later (3). These pilot studies were followed by 
larger clinical series which confirmed the suitability of 
laser-assisted ICSI in cases of inherent oocyte fragility (4, 
5, 6). Moreover, in addition to reducing the risk of post-
ICSI oocyte death, an improvement of day 2 embryo 
quality, facilitation of blastocyst hatching and an increase 
in the clinical pregnancy rate were reported in sibling 
oocytes randomly allocated to conventional or laser-
assisted ICSI (6). 

 
 In spite of these encouraging results the 
indication criteria for the use of laser-assisted ICSI still 
remain to be defined in a more precise and reproducible 
manner, since the use of the laser technique represents an 
additional workload associated with the ICSI procedure and 
the clinical benefit of this ICSI modification in the general 
patient population has not been demonstrated. 
 
3.1.2. The use of Polscope system for meiotic spindle 
visualization in living oocytes 

Polscope is a computer-assisted polarization 
microscopy system with which the oocyte meiotic spindle 
can be visualized in living oocytes on the basis of its 
birefringence (7). It permits the analysis of the meiotic 
spindles of oocytes subjected to ICSI and was first 
described in this function in 2001 (7, 8). It was shown that 
the prognosis of oocytes in which meiotic spindle cannot be 
easily visualized by Polscope after ICSI is compromised (7, 
8, 9, 10, 11). The ease with which the oocyte meiotic 
spindle can be visualized by Polscope may depend on the 
duration of in vivo action of HCG on the maturing oocyte, 
since a spindle was imaged in a significantly higher number 
of oocytes from ≥38 h after HCG administration compared 
with those in the <38 h group (11).  

 
Further studies have addressed the potential 

predictive value of the actual position of the spindle with 
regard to the first polar body in ICSI-subjected oocytes (9, 
10). The predictive value of the spindle position remains a 
controversial issue because no relationship was found in 
one of these studies (9), whereas the other showed that high 
degrees of misalignment between the meiotic spindle and 
the first polar body predict an increased risk of fertilization 
abnormalities (10).  
 

Quite recently Polscope was used to evaluate 
optical qualities of the zona pellucida; this analysis 
suggested that high-quality oocytes, associated with 
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conception cycles in ICSI, show a higher magnitude of 
light retardation by the zona pellucida as compared to 
oocytes used in non-conception cycles (12). 
 
3.1.3. The use of high-magnification sperm selection 

In conventional ICSI both sperm selection and 
injection are performed with the use of Hofman modulation 
contrast optics and the objective of x20, leading to an 
overall optical magnification of about x400 (13). It was 
suggested recently that ICSI outcomes may be improved by 
selecting spermatozoa with the use of higher-powered 
optical systems (14). To this end a system using Nomarski 
interference contrast optics with a x100 oil-immersion 
objective and a secondary magnification system, leading to 
a total magnification of x6000, was developed (14).  
 

A prospective controlled study, performed in 
couples with male infertility and at least two previous 
failed ICSI attempts, showed that ICSI with spermatozoa 
selected with this high-magnification optical system 
resulted in a significantly higher pregnancy rate as 
compared with conventional ICSI (15). A subsequent 
study, performed by the same group, showed that higher 
implantation and pregnancy rates were achieved by ICSI 
when at least some morphologically normal spermatozoa 
could be selected with this high-power system as compared 
to cases in which only morphologically abnormal 
spermatozoa were available (16). 
 

These observations have suggested that high-
magnification ICSI may be the treatment of choice in cases 
of repeated conventional ICSI failures caused by a paternal 
effect on embryo development. Two types of paternal 
effect have been recognized, an early paternal effect which 
becomes manifest as early as the pronuclear zygote stage 
and is usually not associated with increased sperm nuclear 
DNA fragmentation, and a late paternal effect which does 
not impair embryo growth and morphology during three 
days post-fertilization and is mostly associated with 
elevated sperm nuclear DNA fragmentation (17, 18, 19). 
Work is in progress to compare the benefits of high-
magnification ICSI in each of the two types of paternal 
effect. 
 
3.1.4. In vitro culture systems for germ cell in vitro  
maturation  

At the time at which the first edition of this 
review (1) was written the first in vitro culture system with 
which human male germ cell maturation arrest could be 
overcome was developed (20, 21). The first childbirths 
after transfer of embryos conceived with in vitro matured 
late spermatids in patients with post-meiotic maturation 
arrest at the round spermatid stage and in one patient with 
meiotic maturation arrest at the primary spermatocyte stage 
were subsequently achieved with the use of this system 
(22). The feasibility of obtaining healthy offspring from 
oocytes fertilized with spermatids developed in vitro from 
primary spermatocytes has been confirmed in the mouse 
model (23). The system used in humans was a relatively 
simple one and was based on culture of isolated segments 
of dissected seminiferous tubules at 30°C in a commercial 
culture medium destined for incubation of human gametes 

supplemented with high concentrations of FSH and 
testosterone (20, 21). It was speculated that the 
maintenance of the original cellular associations between 
germ cells and their supporting Sertoli cells was a key to 
success because it allowed the Sertoli cells to support germ 
cell differentiation and to protect the differentiating germ 
cells from programmed cell death in response to stimuli 
received by FSH and testosterone, respectively (21). This 
avoided the use of an exogenous supporting cell layer 
which was demonstrated to be required in animal models if 
germ cells were separated from Sertoli cells at the outset of 
in vitro culture (24). However, it appears that some 
developmental controls, normally exerted by Sertoli cells 
upon germ cells, were released in this in vitro system 
because virtually all of the in vitro matured spermatids took 
atypical forms; the elimination of these control processes 
might be the main reason why the in vitro differentiation 
progressed at a markedly accelerated path (some primary 
spermatocytes developed to elongated spermatids within 48 
hours of culture) as compared with in vivo conditions (20, 
21). 
 
 Further study showed that  the efficacy of in vitro 
maturation of germ cells from patients with maturation 
arrest can be increased by further increasing FSH 
concentration in culture medium up to 50 IU/l (25). 
However, the early belief that germ cell in vitro maturation 
will rapidly develop to a highly efficient and routinely used 
treatment option did not come true (reviewed in 26). The 
main problem hampering fertilization outcomes with germ 
cells from men with maturation arrest is not so much germ 
cell immaturity but rather the basic pathological condition 
underlying the maturation arrest. Germ cells from men with 
maturation arrest have often fragmented DNA in their 
nuclei, a condition resulting from programmed cell death 
(apoptosis) activated in the testis to remove these blocked 
cells from the seminiferous tubules (27). Even though in 
vitro culture exerts a negative pressure against apoptotic 
germ cells and decreases the risk of inadvertently injecting 
a cell with fragmented nuclear DNA into the oocyte (28), it 
may not overcome functional abnormalities disturbing early 
embryo development and implantation which are associated 
with maturation arrest. 
 
 Based on the observation that in vitro incubation 
of testicular biopsy samples facilitates the selection of late 
spermatids and spermatozoa devoid of nuclear DNA 
damage (28), this technique was tested with success in 
cases in which a limited number of spermatozoa could be 
found in the testis, but most testicular germ cells had 
fragmented DNA (29, 30). In fact, as comparing with 
different types of maturation arrest, it was this latter 
indication in which in vitro culture of testicular germ cells 
achieved the best clinical outcomes (31).  
 
 More recently, an alternative in vitro maturation 
system, in which isolated human germ cells, detached from 
their supporting Sertoli cells, are cultured on a monolayer 
of Vero cells or human fibroblasts (32). As compared with 
the previously described system, relying on the 
preservation of the original germ-Sertoli cell association, 
this new system appeared to be more efficient in terms of 



Micromanipulation-assisted fertilization   

108 

the percentage of germ cells from men with in vivo 
maturation arrest that resumed meiosis and post-meiotic 
differentiation in vitro, but the clinical efficacy, in terms of 
ongoing pregnancy and delivery rates, remains to be 
determined (33).  
 
4. NEW DEVELOPMENTS IN THE DIAGNOSIS AND 
TREATMENT OF GENETIC AND EPIGENETIC 
DEFICIENCIES OF THE MALE GAMETE 
 
4.1. Sperm chromatin defects and DNA fragmentation 

Elevated percentage of spermatozoa whose 
nuclear DNA is subject to fragmentation, similar to that 
resulting from programmed cell death in somatic cells, 
occurs in some men and is suspected to reduce fertility and 
to compromise assisted reproduction outcomes (18, 34, 35, 
36, 37, 38, 39, 40 41). Different techniques have been 
developed to assess the degree of sperm nuclear damage. 
Sperm chromatin structure assay (SCSA) (42, 43), terminal 
deoxyribonucleotidyl transferase-mediated dUTP nick-end 
labelling (TUNEL) assay (44, 45) and single cell gel 
electrophoresis (Comet assay) (37, 38) are currently the 
three most widely used ones. 
 

To interpret and correlate data obtained with each 
of these three techniques, it is important to be aware of the 
existence of essential conceptual differences between 
SCSA, TUNEL and Comet assays, each of which reveals 
different aspects of sperm chromatin damage. Hence, 
according to the technique used, different cut-off values for 
clinically relevant extent of sperm DNA fragmentation 
have been proposed (reviewed in 46). Moreover, even with 
the same technique, results obtained in different 
laboratories may differ because of variability of laboratory 
factors influencing the assessment protocol and criteria of 
interpretation (47). Notwithstanding, with a few exceptions 
(48), most studies performed so far concord in that the 
establishment of a full-term pregnancy by assisted 
reproduction is compromised if the percentage of DNA-
fragmented spermatozoa in the ejaculate, as detected by 
TUNEL, is high (reviewed in 49). A similar relationship 
has been reported  for SCSA (50). 
 
 The first efficient treatment of male infertility 
due to sperm nuclear DNA fragmentation implied the use 
of surgically retrieved testicular spermatozoa for ICSI (46). 
The rationale of this approach was based on previous 
observations which showed that sperm DNA damage is 
basically produced after the release of spermatozoa from 
the seminiferous tubules, suggesting that testicular 
spermatozoa can be expected to have less damaged DNA as 
compared with ejaculated spermatozoa (51). More recently, 
oral antioxidant treatment with high doses of vitamins C 
and E (1 g of both daily during 2 months) has been shown 
to markedly reduce the percentage of DNA-fragmented 
spermatozoa in the ejaculate (52), and satisfactory clinical 
pregnancy rates were reported after ICSI with ejaculated 
spermatozoa in patients in whom this effect was observed 
(49). However, sperm DNA damage was insensitive to 
antioxidant treatment in some men for whom the recourse 
to testicular sperm retrieval for ICSI was thus indicated 
(52).  

 An alternative approach to the treatment of male 
infertility due to sperm nuclear DNA damage was 
suggested recently by a group that pioneered the use of 
ICSI with spermatozoa morphologically selected with the 
use of a high-magnification, computer-assisted optical 
system (14, 15, 16). With the use of this technique small 
vacuoles, not detectable with magnifications currently 
employed for conventional ICSI, can be detected in the 
head of some spermatozoa, and avoiding the injections of 
such spermatozoa to oocytes was reported to increase 
significantly clinical pregnancy rate (16). It can be 
hypothesized that these vacuoles represent regions of 
incompletely condensed sperm chromatin where sperm 
nuclear DNA is less protected against oxidative damage, 
which is the main cause of sperm nuclear DNA 
fragmentation (53), as compared with DNA embedded 
within highly condensed chromatin regions. Accordingly, 
spermatozoa with intra-nuclear vacuoles may still have 
intact DNA, but they would be at a higher risk of suffering 
DNA damage in pathological conditions leading to 
excessive production of reactive oxygen species in the male 
genital tract. Preliminary observations, indicating that the 
use of high-magnification ICSI improves significantly 
clinical pregnancy rate in couples with high sperm nuclear 
DNA fragmentation as compared with a previous attempt 
using conventional ICSI (54), corroborate this hypothesis. 
 
4.2. Deficiency of oocyte-activating factors 

Complete fertilization failure or severely 
impaired fertilization rate after ICSI is a rare condition if 
motile spermatozoa can be selected for injection. However, 
it occurs in 2–3% of ICSI cycles (55), repeatedly in most of 
them, and is mainly due to lack of oocyte activation (56, 
57). This has been noted for the first time in patients with 
round-headed spermatozoa (globozoospermia) although 
spermatozoa of these men fertilize normally after ICSI in 
about one half of these cases (58). However, complete or 
nearly complete fertilization failure after ICSI can also 
occur in patients with morphologically normal spermatozoa 
(58, 59, 60, 61).  
 
 The observations that most of human oocytes that 
failed to fertilize after ICSI can be ‘rescued’ by an artificial 
increase of free intracellular calcium ion concentration with 
the use of a ionophore (62) and that a virtually normal 
pattern of calcium signals can be restored in such oocytes, 
possibly owing to the presence of sub-threshold quantities 
of oocyte activating factors in the spermatozoa injected 
(63), were at the origin of clinical attempts at boosting 
fertilization with calcium ionophores in patients with 
previous complete or near-complete fertilization failures. 
After the first report describing a successful pregnancy and 
delivery after intracytoplasmic sperm injection (ICSI) and 
assisted oocyte activation with ionophore A23187 after 
ICSI in a globozoospermic patient  (64), this method was 
validated by other groups achieving ongoing pregnancies 
and births in patient with defective sperm oocyte-activating 
activity both associated and not associated with 
globozoospermia (58, 59, 60, 61, 65, 66). 
 

Failed oocyte activation is mostly a consequence 
of defective calcium signalling after sperm deposition in 
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oocyte cytoplasm (67). Hence, other methods increasing 
calcium concentration in the oocyte cytoplasm during or 
after ICSI can also overcome oocyte-activation 
deficiencies. In addition to the use of ionophores, this can 
be achieved by electrical stimulation of sperm-injected 
oocytes (68) or by simple modifications of the ICSI 
techniques, increasing the intensity or duration of calcium 
influx from external medium to oocyte cytoplasm during 
ICSI (58, 61). All these methods have been reported to 
work in cases of oocyte-activation defects and led to the 
establishment of ongoing pregnancies. A larger, multi-
centre prospective study is needed to compare the clinical 
efficacy and safety of these different assisted oocyte 
activation methods.  
 

An animal test using heterologous ICSI with the 
patient’s spermatozoa to mouse, hamster, rabbit or bovine 
oocytes (69, 70, 71) can be used to evaluate the oocyte-
activating potential of spermatozoa and to decide whether 
the recourse to a special method to boost oocyte activation 
after ICSI is required.  
 
4.3. Deficiency of the sperm centriole 

In some cases repeated ICSI failures are 
suspected to be due to a defective function of sperm 
centriole (18, 72, 73, 74, 75). Defects of centriole function 
as nucleation sites for zygote’s microtubule organizing 
regions can be suspected in cases in which oocytes become 
fertilized, but the two pronuclei fail to establish a close 
apposition and to enter syngamy. This functional 
abnormality can be revealed by a heterologous ICSI test 
using bovine oocytes and cytochemical visualization of 
microtubuli in newly formed asters with the use of 
antibodies against acetylated - and ß-tubulins (75).  
 
 Whether techniques relying on 
micromanipulation-assisted fertilization can be of help in 
these cases still remains to be evaluated. Centriolar 
abnormalities are often associated with subtle 
morphological alterations of the sperm head-tail junction, 
and pronuclear alignment followed by syngamy was 
achieved in a case of previous complete syngamy failure by 
carefully avoiding sperm with obvious anomalies of the 
connecting piece to be used for ICSI (75 ). However, out of 
three cycles performed in this way only two yielded a 
pregnancy and both pregnancies resulted in a pre-clinical 
abortion (75). A question arises whether the newly 
described technique of high-magnification ICSI (see the 
section 3.1.3) would be of help in these cases. 
 
5. CLINICAL EFFICACY 
 

The introduction of new diagnostic, microsopic 
and micromanipulation methods in the past years has 
improved clinical efficacy of assisted reproduction in some 
types of severe male infertility. Major improvements have 
been achieved in cases of severe teratozoospermia and high 
degrees of sperm nuclear DNA fragmentation. Some 
improvement was also made in the treatment of germ cell 
maturation arrest, although the efficacy remains low in 
comparison with the former two indications. 

5.1. Management of severe teratozoospermia 
Several studies have reported a lack of 

association between the degree of teratozoospermia and 
ICSI outcomes (76, 77, 78). This observation can be 
explained by the selection of normal-appearing 
spermatozoa to be used for ICSI which is a rule in most 
laboratories. In extreme cases, however, in which no 
morphologically normal spermatozoa could be found, 
lower pregnancy and implantation rates were reported as 
compared with those in which at least some 
morphologically normal spermatozoa were used for ICSI 
(13). Even though morphologically abnormal spermatozoa 
may fertilize oocytes, the resulting embryos often fail to 
implant or are aborted because of chromosomal 
abnormalities which are linked to sperm morphological 
deformities (79).  

 
Moreover, some spermatozoa which would be 

considered as normal with the use of the current optical 
magnification employed in conventional ICSI would be 
classified as abnormal if higher magnifications were used. 
This can explain the beneficial effects on implantation and 
pregnancy rates reported with the use of high-magnification 
sperm selection (15, 16). Similar to conventional ICSI, 
clinical outcomes of this high-magnification ICSI are better 
when at least a few morphologically normal spermatozoa 
can be selected (16). 
 
 These data suggest that the use of high-
magnification ICSI could hardly help those cases in which 
all spermatozoa available for ICSI are classified  as 
morphologically abnormal already with the use of 
conventional magnifications. On the other hand, the high 
magnification can be expected to improve outcomes in 
cases in which many spermatozoa bear subtle 
morphological abnormalities which would not be 
recognized in the conventional ICSI setting. Further study 
is needed to determine the frequency of such cases in the 
population of infertile patients in which ICSI is indicated.  
 
5.2. Management of high degree of sperm DNA 
fragmentation 

Elevated percentages of spermatozoa with 
damaged DNA in the ejaculate do not necessarily predict 
assisted reproduction failure (48). However, most studies 
found a negative correlation between the degree of sperm 
nuclear DNA fragmentation and the chance of pregnancy 
although there is a lack of consensus as to the cut-off 
values (see Section 4.1). Recently it was reported that 
elevated percentages of TUNEL-positive (80) and SCSA-
positive (81) spermatozoa are negatively correlated with in 
vitro blastocyst development. Furthermore, increased 
figures of sperm nuclear DNA fragmentation were found in 
couples with recurrent pregnancy loss (40) This is in 
agreement with the assumption that spermatozoa with DNA 
fragmentation can still fertilize an oocyte but that when 
paternal genes are "switched on," further embryonic 
development stops, resulting in failed pregnancy (37, 41, 
82, 83, 84).  
 
 A recent study has reported high pregnancy 
(44.4%) and implantation (20.7%) rates in patients with at 
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least two previous non-conception ICSI cycles and elevated 
percentage of TUNEL-positive spermatozoa in the 
ejaculate in a subsequent ICSI attempt performed with 
testicular spermatozoa (46). Moreover, similar high success 
rates (48.2% pregnancy rate and 19.6% implantation rate) 
were achieved by ICSI with ejaculated spermatozoa after 2 
months of oral antioxidant treatment (1 g vitamin C and 1 g 
vitamin E daily) in patients who showed a significant 
decrease in the percentage of TUNEL-positive spermatozoa 
after this treatment (49). 
 
 Preliminary data suggest that the application of 
high-magnification ICSI (see section 3.1.3) may also 
substantially improve clinical outcomes of ICSI in patients 
with sperm nuclear DNA damage (54). Further research is 
needed to define the patient groups for which each of the 
three above approaches would be the most suitable.  
 
5.3. Management of maturation arrest 

In spite of the improvement owing to the 
application of germ cell in vitro maturation systems with 
which in vivo maturation arrest can be overcome (see 
section 3.1.4), the chance of ongoing pregnancy and birth 
after injection of the resulting late spermatids to oocytes 
remains low (1-10% depending on the type of maturation 
arrest and on the female partner’s age). These low success 
rates contrast with relatively high efficacy of fertilization 
with immature or in vitro matured germ cells reported in 
animal experiments (85). This difference can be explained 
by the fact that the animal experiments were performed 
with germ cells from healthy animals as opposed to the 
human clinical data obtained with germ cells recovered 
from patients suffering from different underlying 
pathological conditions, mostly of unexplained aetiology 
(31). Unless the pathological mechanisms leading to 
testiculopathies underlying maturation arrest in humans are 
defined, and appropriate therapies of the causative factors 
are discovered, no substantial progress can be expected. 
 

6. HEALTH HAZARDS FOR THE OFFSPRING 
 

In the last edition of this review (1) potential 
hazards of micromanipulation-assisted fertilization in cases 
of severe male infertility were outlined, but all of them 
were merely hypothetical. In the meantime some new data 
emerged, as nicely reviewed by Retzloff and Hornstein 
(86). However, the major conclusion of this review was 
that, although there remains some uncertainty, the 
overwhelming majority of studies are reassuring in their 
findings of no specific increased risk for the offspring. 
 

In 1996, Reijo et al. (87) found that 13% of 89 
men with nonobstructive azoospermia have microdeletions 
on the long arm of the Y chromosome in the DAZ cluster 
of genes. This suggests that these abnormalities may easily 
be incorporated into the genome of the male offspring of 
ICSI. It remains to be determined whether the sons of 
fathers with Y chromosome microdeletions will have the 
same “reproductive phenotype” and thus require these same 
procedures themselves once they reach maturity. 
 
 Transmission of chromosomal abnormalities, 
whose risk is two-fold to twelve-fold increased in infertile 

men (86) to offspring is another subject of concern. In fact, 
a significant increase in the incidence of sex chromosome 
abnormalities has been demonstrated in children conceived 
by ICSI as compared to general population (88, 89), 
presumably mainly due to transmission of paternal 
chromosomal aberration, whose frequency is known to be 
increased in infertile men (90, 91, 92, 93, 94) and to be 
negatively correlated with sperm concentration and 
particularly with the percentage of normal forms (95). De 
novo karyotypic abnormalities, unrelated to abnormalities 
in the male, are less frequent, but they exist (96) and may 
be produced by some factors related  to the ICSI procedure 
(97). 
 

 In spite of isolated case reports on specific 
congenital malformation and developmental abnormalities 
after ICSI, there is probably no significant increase in these 
pathological conditions in the overall ICSI offspring 
population (86). However, one large, well-designed study 
on the risk of major birth defects after ICSI (98) as well as 
the reports of imprinting defects, mainly the cases of 
Beckwith-Wiedemann syndrome (99, 100, 101) and 
Angelman syndrome (102) are cautionary in this regard. It 
is reassuring that there appears to be no increase in 
malformations of any specific organ system (86). 
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