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1. ABSTRACT 
 

Fully grown mammalian oocytes resume meiosis 
as a consequence of rises in gonadotropin levels at the mid-
cycle. The increase of cyclic adenosine 3’,5’-
monophosphate (cAMP) and the activation of protein 
kinase A (PKA), protein kinase C (PKC) and mitogen-
activated protein kinase (MAPK) in cumulus cells are 
required for gonadotropins-induced meiotic resumption of 
oocytes. The various actions of cAMP activated by follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) 
also include meiosis activating sterol (MAS), gonadal 
steroid hormones and epidermal growth factor (EGF) 
network during meiotic resumption. Another second 
messenger guanosine 3’,5’-cyclic monophosphate (cGMP) 
induced by nitric oxide (NO) or atrial natriuretic peptide 
(ANP) also mediates gonadotropins-controlled mammalian 
oocyte meiotic resumption. The different actions of FSH 
and LH on meiotic resumption are discussed. We hope to 
provide a framework to understand how the initial signals 
generated by gonadotropins-stimulation control the 
expression of genes required for meiotic resumption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Mammalian oocytes are arrested at the diplotene 
stage, also called the germinal vesicle (GV) stage of the 
first meiotic division until shortly before ovulation. 
Following stimulation by FSH and LH, grown oocytes 
resume meiosis, followed by completion of meiosis I and 
another arrest in metaphase of meiosis II (except dog and 
horse). These meiosis II oocytes are ready for ovulation and 
subsequent fertilization. Morphologically, resumption of 
meiosis is characterized by the disappearance of nuclear 
membrane of oocytes, which is also called germinal vesicle 
breakdown (GVBD). 
 

Molecular mechanisms by which gonadotropins 
induce oocyte meiotic resumption in the preovulatory 
follicle may involve the elimination of meiosis inhibiting 
factors and/or the accumulation or activation of oocyte 
maturation signals. Two major gonadotropins, FSH and 
LH, are used to study the signal pathways of oocyte 
maturation in vivo and in vitro. The actions of FSH and LH 
on mammalian oocyte meiotic resumption are believed to 
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be mediated in large part through increasing the production 
of cyclic adenosine 3’,5’-monophosphate (cAMP), and 
subsequent activation of specific signaling pathways 
including protein kinase A (PKA), protein kinase C (PKC), 
calcium/calmodulin-dependent protein kinase II (CaMKII), 
and mitogen-activated protein kinase (MAPK) (1). 
However, it is becoming increasingly difficult to fully 
explain the divergent outcomes of cAMP activation in 
granulosa cells observed in vitro as well as the distinct 
patterns of gene expression induced by FSH and LH during 
meiotic resumption. Recent findings indicate that 
gonadotropins-inducing meiosis activating sterol (MAS), 
gonadal steroid hormones and epidermal growth factor 
(EGF)-like growth factors are also involved in the 
mediation of meiotic resumption. The presence of intact 
cumulus-oocyte connections are mandatory for 
gonadotropins-inducing meiotic resumption, since oocytes 
lack gonadotropins receptors (2, 3) and thus do not respond 
to follicle-stimulating hormone (FSH) and luteinizing 
hormone (LH) exposure (4-7). Recent studies suggest that 
the second messenger guanosine 3’,5’-cyclic 
monophosphate (cGMP) induced by nitric oxide (NO) or 
atrial natriuretic peptide (ANP) also mediates 
gonadotropins-induced mammalian oocyte meiotic 
resumption (8-11).  
 

The endocrine control of meiotic resumption by 
gonadotropins rests on a network of extracellular and 
intracellular molecular interactions. The purpose of this 
review is to summarize data from several laboratories, 
including ours, on the regulation of meiotic resumption in 
mammals. We attempt to provide a framework with which 
to understand how the initial signals generated by 
gonadotropins-stimulation control the expression of genes 
required for meiotic resumption.  
 
3. GONADOTROPINS INDUCE MEIOTIC 
RESUMPTION VIA CUMULUS CELLS 
 

It is well-known that fully grown mammalian 
oocytes arrested at the diplotene stage of first meiotic 
prophase resume meiosis as a consequence of preovulatory 
gonadotropin stimulation (12). Particularly, the endogenous 
LH peak initiates the specific alterations in follicular 
steroidogenesis in Graafian follicles, causes the changes in 
the cumulus cell-oocyte complex and subsequently oocyte 
meiotic resumption. The central role of gonadotropins in 
the regulation of meiotic resumption through the activation 
of G protein-coupled receptors mediated by the adenyl 
cyclase-cyclic AMP is now well established, but signal 
transduction following gonadotropins receptor activation is 
still poorly understood. The gonadotropins likely act 
through granulosa cells since oocytes lack gonadotropins 
receptors (2, 3) and do not respond to FSH and LH 
exposure (5-7). All cells within the follicular compartment 
are interconnected through a network of gap junctions 
allowing communication between somatic cells and oocytes. 
Through gap junctions, follicular somatic cells play an 
important role in gonadotropin-induced mammalian oocyte 
meiotic resumption (6, 13, 14). It is generally accepted that 
cAMP and MAPK in oocytes play an important role in this 
process. 

3.1. Gonadotropins regulate the level of cAMP in the 
oocyte via cumulus cells 

In preovulatory follicle oocytes with the 
competence of meiotic resumption, inhibitory signals 
derived from granulosa cells may be transported into 
oocytes through gap junctions and thus suppress the 
resumption of meiosis (15). On the other hand, it is needed 
for cumulus cells to be connected with oocytes for 
cytoplasmic maturation to occur (16). cAMP, produced 
endogenously in oocytes (17) or transported into oocytes 
from adjacent cumulus cells (18, 19), may be the meiotic 
inhibitor. The concentration of cAMP in oocytes plays a 
critical role in the regulation of oocyte meiotic resumption. 
Countless studies, in vivo and in vitro, have demonstrated 
that gonadotropins increase cAMP in granulosa cells and 
decrease cAMP in oocytes, which subsequently induce the 
resumption of meiosis (20, 21). Activation of type I PKA 
by elevated cAMP level in oocytes prevents spontaneous 
oocyte meiotic resumption, whereas FSH-stimulated 
activation of type II PKA within cumulus cells leads to 
meiotic resumption in cumulus-enclosed oocytes (CEOs) 
(22). Concomitant intra-oocyte cAMP degradation may be 
a prerequisite for meiotic resumption (23). Concurrently 
with meiotic resumption induced by FSH, a dramatic 
conformational change caused by the production and 
secretion of hyaluronic acid disperses the cumulus cells 
(24). The production of hyaluronic acid by cumulus cells is 
essential for the expansion of the cumulus oophorus before 
ovulation (25). It is reported that cumulus cells acquire the 
ability to expand before or possibly during the acquisition 
of meiotic competence (24). Cumulus expansion, required 
for normal ovulation (26), may disrupt the transfer of 
meiosis-arresting factors such as cAMP to oocytes. cAMP 
decrease in oocyte may be also resulted from closure of 
communication somatic cells and oocytes, since meiotic 
resumption induced by the preovulatory gonadotropin surge 
(possibly LH) is accompanied by disassembly of gap 
junctions (27, 28) and phosphorylation of gap junction 
protein connexin 43 (29). 
 

The concentration of cAMP is determined not 
only by the activity of cyclases, but also the activity of 
phosphodiesterases (PDEs). Recent data have demonstrated 
that the regulation of PDE activity may be critical in 
shaping the cAMP signal in granulosa cells and in 
contribution to the specificity of the gonadortropin 
responses (30). It has been indicated that PDE subtypes are 
specifically localized to different compartments of bovine 
follicles: i.e. PDE3 in oocytes and PDE4 in granulosa cells 
(31, 32). Activity of PDE3 increases prior to resumption of 
meiosis in both spontaneous and gonadotropins-induced 
oocyte maturation, and a PDE3 inhibitor cilostamide 
inhibits meiotic resumption by increasing the levels of 
cAMP in oocytes (33). A PDE4 inhibitor rolipram 
increases the levels of cAMP in cumulus cells, which is a 
main contributor to cAMP content in oocytes (21). Studies 
on endocrine and nonendocrine cells have shown that 
cAMP-phosphodiesterases 4 (cAMP-PDE4s), expressed in 
granulosa and theca cells but not in oocytes (21), is part of 
a feedback control of cAMP levels after stimulated by 
gonadotropins (34). In vivo, PDE4D mRNA is induced by 
FSH in preantral follicles and by LH in periovulatory
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Figure 1. A proposed model for FSH-induced mammalian CEOs meiotic resumption. FSH binds to the G protein-coupled 
receptors in granulosa cells, resulting in activation of adenylyl cyclase and increased production of cAMP. The elevated cAMP in 
cumulus cells can activate MAPK possibly by PKA II, PKC/CaMII, MAS, and/or P4 (produced by FSH and LH), which in turn 
decreases cAMP level in oocyte and induces the release of a signal(s) that trigger meiotic resumption. The activation of cAMP-
GEF may also involve in decreasing cAMP level in oocytes by PI-3K/CDK1/PKB/PDE3B pathway. FSH, follicle-stimulating 
hormone; LH, luteinizing hormone; CEOs, cumulus-enclosed oocytes; cAMP, cyclic adenosine 3’,5’-monophosphate; MAPK, 
mitogen-activated protein kinase; PKA II, type II protein kinase A; PKC, protein kinase C; CaMKII, calcium/calmodulin-
dependent protein kinase II; MAS, meiosis activating sterol; P4, progesterone; cAMP-GEF, cAMP-dependent guanine nucleotide 
exchange factor; PI-3K, phospatidil inositol 3 kinase; PDK1, phosphoinositide-dependent protein kinase-1; PKB, protein kinase 
B; PDE3B, phosphodiesterase 3B. 
 
follicles (30). Stimulation of cultured rat granulosa cells 
with FSH causes a significant increase in PDE4s activity, 
which may in turn decrease the cAMP levels (35). Further 
studies show that the LH-regulated expression of PDE4D 
may contribute to desensitization in granulosa cells (30). 
Indeed, a rapid and transient cAMP response is followed by 
a decrease of cAMP after gonadotropins stimulation (35). 
The rapid increase of cAMP in cumulus cells may activate 
PDE3B and decrease cAMP level in oocytes, possibly by 
cAMP-dependent guanine nucleotide exchange factor 
(GEF)/phospatidil inositol 3 kinase (PI-3K)/ 
phosphoinositide-dependent protein kinase-1 
(PDK1)/protein kinase B (PKB) pathway (34, 36). 
 
3.2. Gonadotropins induce meiotic resumption via 
activation of MAPK pathway in cumulus cells 

Xenopus oocytes remain in meiotic arrest after 
removal from the ovary, and can be induced in vitro to meiotic 
resumption by addition of various steroids. Steroids promote 
maturation through release of inhibition mechanisms whereby 
these constitutive repressive signals are antagonized, thus 
allowing meiosis to progress (37). In contrast to Xenopus, 
mammalian oocytes spontaneously mature when removed 
from ovary (38), suggesting that the primary signal 
maintaining meiotic arrest of mammalian oocytes comes from 
follicles rather than oocytes themselves. Thus, the 
gonadotropins-induced mammalian oocyte meiotic resumption 
probably involves not only termination of the flow of meiosis-
arresting factors, but also the production of meiosis-
promoting signals by granulosa cells (39, 40). 

It is generally believed that the effects of FSH and 
LH on ovary are mediated in large part through increasing 
cAMP production, and subsequent activation of specific 
signaling pathways (1). More and more studies show that 
the activation of two isoforms of MAPKs, extracellular-
regulated kinase 1 (ERK1) and ERK2, is indispensable for 
gonadotropins-inducing, but not spontaneous, meiotic 
resumption of mammalian oocytes as well as cumulus 
expansion (38), and that specific MAPK kinase (MEK) 
inhibitors block oocyte meiotic resumption and cumulus 
expansion induced by gonadotropins (41-43). Su et al (43) 
studied the role of MAPK in FSH-induced oocyte meiotic 
resumption and cumulus expansion using MostmlEv/MostmlEv 
(Mos-null) mice, and indicated that MAPK activation in 
oocytes was not necessary for FSH-induced resumption of 
meiosis. In contrast, a further study shows that cAMP-
dependent activation of MAPK in cumulus cells is essential 
for FSH-induced porcine oocyte meiotic resumption (32). 
Inhibition of MAPK activity in cumulus by an MEK 
inhibitor, U0126, prevents gonadotropins-inducing meiotic 
resumption and cumulus expansion (43, 44). It is also 
reported that cumulus p38 MAPK, another member of the 
MAPK family, might be also involved in FSH-induced 
meiotic resumption of oocytes (45). These results indicate 
both meiotic resumption and cumulus expansion require the 
activation of MAPK in cumulus (Figure 1). Inhibition of 
MAPK activation prevents LH-stimulated resumption of 
meiosis as well as expression of two genes whose products 
are necessary for normal cumulus expansion, Has2 and 
Ptgs2 (44). 
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Gonadotropins-dependent activation of MAPK is 
downstream of elevated granulosa cell cAMP level and the 
activation of PKA (46-48). The cAMP-PKA pathway 
regulates functions of cumulus cells by activation of 
MAPK, since FSH-dependent elevation of cumulus cell 
cAMP level is not affected by MEK1/2 inhibitor U0126 
(44). It is suggested that gonadotropins control mammalian 
oocyte meiotic resumption by decreasing cAMP level in 
oocytes, and increasing cAMP level and activating MAPK 
pathway in cumulus cells. More recently, it is suggested 
that MAPK mediates LH-induced GVBD by interrupting 
cell to cell communication within follicles, possibly 
through phosphorylation of connexin 43 (29). 
 
3.3. Crosstalk of MAPK with other protein kinases 
during gonadotropin-induced meiotic resumption 

PKC and CaMKII: The signal transduction of 
FSH is considered mainly through cAMP-PKA. Recently, 
the results of several studies show that PKC and 
intracellular calcium may also play an important role in the 
signal transduction of FSH (49, 50). While PKC activators, 
phorbol 12-myristate 13-acetate (PMA) and 1-oleoy-2-
acetyl-sn-glycerol (OAG), inhibit denuded oocyte (DO) 
GVBD or meiosis progression (51, 52), the activation of 
PKC is implicated in hormone-induced oocyte meiotic 
resumption in rat (49), bovine (53) and porcine (50) 
through cumulus cells. Moreover, PKC inhibitors, 
staurosporine, sphingosine, calphostin C or chelerythrine, 
could inhibit the effect of FSH on stimulating porcine and 
mouse CEOs to resume meiosis (50, 54). It is reported that 
both PKC inhibitors and U0126 inhibit the FSH-induced 
GVBD of oocytes and MAPK activation in cumulus cells 
(54), suggesting that PKC might induce the meiotic 
reinitiation of CEOs by activating MAPK in cumulus cells. 
Interestingly, it is reported that FSH induces mouse oocyte 
maturation through the inhibition of PKC activity (55). Up 
todate, the signal transduction process of PKC in cumulus 
cells that leads to oocyte meiotic resumption is still not well 
known because many PKC subtypes exist, morever the 
results from above mentioned studies used both inhibitors 
and activators are not specific to different subtype of PKC. 
 

In Xenopus laevis, oocytes meiotic resumption is 
induced when the intracellular Ca2+ concentration is raised 
in the presence of ionophore, and injection of calcium 
chelator BAPTA or CaMKII inhibitor autocamtide-2 
related inhibitory peptide inhibits meiotic resumption (56). 
Similarly, calcium-dependent pathways are essential for 
FSH-induced oocyte meiotic resumption of mouse oocytes 
(57). Chelation of intracellular calcium blocks FSH-
induced meiotic resumption in mouse and pig CEOs (58), 
and the FSH-induced meiotic resumption of mouse CEO, 
rather than spontaneous meiotic resumption, is inhibited by 
CaMKII inhibitors (59), indicating that CaM kinase II is 
required for FSH-activated oocyte meiotic resumption (59). 
Calcium probably interacts with calmodulin to regulate 
oocyte maturation (60, 61). However, some conflicting 
results have been reported, possibly due to the use of 
different systems and culture conditions (62, 63). CaM or 
CaMKII inhibitor suppresses the accumulation of cyclin B 
as well as the phosphorylation of MAPK at the same time 
of blocking meiotic resumption (64), suggesting that 

calcium-dependent mechanisms may participate in the 
initial activation of MAPK cascade during FSH-induced 
meiotic resumption. CaMKII may also be involved in the 
regulation of MPF activity in term of p34cdc2 
dephosphorylation, which is more important than MAPK in 
controlling the meiotic initiation of mammalian oocytes 
(65). 
 

MPF: In spite of MAPK activity, matured 
oocytes also exhibit elevated levels of maturation 
promoting factor (MPF) activity. MPF has been identified 
as heterodimeric protein kinase composed of a catalytic 
subunit p34cdc2 kinase and a regulatory subunit cyclin B 
(66), and acts as an important cell-cycle regulatory protein 
with kinase activity and is downstream to cAMP activation 
(67). In Xenopus oocytes, progesterone-dependent entry 
into meiosis I is accompanied by the synthesis of Mos (68) 
and the activation of the MAPK pathway (69), which leads 
to MPF activation (70). Meiotic competence of mammalian 
oocytes may be associated with the ability to synthesize 
and to activate MPF molecules. Recently, a general model 
of MPF formation during oocyte maturation in vertebrates 
has been proposed (71). Activation of MPF is also involved 
in mouse oocyte meiotic resumption (67). Furthermore, the 
degree of MPF activation is very low in porcine oocytes in 
the absence of MAPK activation (72), suggesting that 
MAPK may promote GVBD by increasing MPF activity. 
 
3.4. Oocyte-somatic cell crosstalk 

Gonadotropins, via activation of MAPK pathway 
in cumulus cells, induce meiotic resumption of mammalian 
oocyte. On the other hand, the function of cumulus cells is 
also regulated by oocytes. It is shown that oocytectomized 
mouse cumulus cell complexes do not produce hyaluronic 
acid and undergo expansion after FSH stimulation until 
addition of fully-grown oocytes (73, 74). Further studies 
indicate that mouse oocytes secrete a cumulus expansion-
enabling factor that promotes cumulus expansion in 
response to FSH (24). This paracrine factor may be oocyte-
specific growth differentiation factor-9 (GDF-9), since 
recombinant GDF-9 can promote Has2 (a key gene for 
hyaluronic acid synthesis) expression and cumulus 
expansion (75). Moreover, mouse cumulus expansion 
requires gonadotropins-dependent increased expression of 
several key genes in cumulus cells, including Has2 and 
Ptgs2 (75, 76). A recent study shows that denuded mouse 
oocytes greatly enhanced MAPK activity in cocultured 
cumulus cells after FSH stimulation, while MAPK activity 
is low in the absence of oocytes (44), and that mouse 
oocytes control the intercellular metabolic cooperativity 
between cumulus cells and oocytes, which is needed for 
energy production by granulosa cells and for oocyte and 
follicular development (77). All these results indicate that 
oocytes also play a key role in enabling or licensing the 
maturation of oocytes and cumulus oophorus. As that in 
oocyte, a likely path of gonadotropins may begin with the 
elevation of cAMP levels in granulosa cells to promote the 
activation of MAPK, then be followed by the events 
leading to meiotic resumption and cumulus expansion. 
Moreover, the activation of MAPK in cumulus also 
requires one or more paracrine factors secreted by the 
oocyte (44), suggesting that MAPK activation alone is not 
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sufficient to initiate these maturation processes. All these 
studies demonstrate a remarkable interaction between 
oocytes and cumulus cells, which is essential for 
gonadotropins-induced oocyte maturation processes. 
 

In contrast, it seems that cumulus expansion in 
pig CEOs do not require a cumulus expansion-enabling 
factor, since pig oocytectomy does not change the ability of 
pig cumulus granulosa cells to respond to FSH and 
forskolin by increasing cAMP contents and hyaluronic acid 
synthesis (78). Furthermore, forskolin can induce cumulus 
expansion but inhibit oocyte maturation (79). However, 
compared to an almost full expansion induced by FSH in 
CEOs, the expansion stimulated by forskolin is limited to 
outer layers of cumulus cells in our studies and studies by 
others (11, 78, 79). Moreover, although FSH has no obvious 
effect on cumulus expansion but induces porcine oocyte 
maturation in porcine follicular fluid (pFF)-free culture system, 
the appearance of cumulus cells when stripped from oocytes 
indicates that the connection among the cumulus has been 
loosen in FSH-induced oocyte maturation (80). All these 
studies suggest that the normal interaction between oocytes 
and cumulus cells in pig may be also needed for the full 
cumulus expansion or incompact. 
 
4. GONADOTROPINS INDUCE MEIOTIC 
RESUMPTION VIA OTHER HORMONES OR 
FACTORS 
 

The primary signal emanating from 
gonadotropins stimulation is the accumulation of cAMP in 
theca and granulosa cells. However, additional signaling 
pathways may be activated during the action of FSH and 
LH. Recent studies show that gonadotropins-induced 
meiosis activating sterol (MAS), gonadal steroid hormones 
and epidermal growth factor (EGF)-like growth factors are 
also involved in meiotic resumption. 
 
4.1. MAS 

The gonadotropins-inducing signal has not yet 
been identified. A positive regulator produced by somatic 
cells may be transported to oocytes and induces meiotic 
resumption (6, 7, 40, 81). Byskov et al (82) reported that 
MAS in human follicular fluid (FF-MAS) and bull 
testicular tissue (T-MAS) might be a candidate signal 
molecule taking part in FSH induced meiotic resumption. 
Though the results are not always consistent, studies using 
follicle-derived or synthetic FF-MAS show that FF-MAS, 
in a dose-dependent manner, can induce meiotic 
resumption of roden oocytes in vitro in the presence of 
meiosis-inhibitors affecting different pathways (e.g. 
hypoxanthine (HX), isobutyl methylxanthine (IBMX) and 
dbcAMP) (83-87). FF-MAS also positively influences the 
survival rate of human oocytes and induces nuclear 
maturation in vitro (88, 89). It is hypothesized that MAS is 
responsible for many important aspects of meiosis 
signalling during oocyte maturation both nuclear and 
cytoplasmic maturation, chromatin condensation and 
spindle assembly (90). 
 

Whether MAS is an obligatory downstream signal 
in FSH-induced oocyte meiotic resumption is currently 

controversy. It has been shown that the resumption of 
meiosis induced by MAS in rat oocytes was much slower, 
kinetically, than observed after LH stimulation (91). 
However, in our study, mice CEOs resumed maturation in a 
way similar to that of FSH in the media containing 
amphotericin B for 1 h, which accumulates MAS by 
inhibiting delta-7-reductase (92). It has been also reported 
that CYP51 inhibitor, azalanstat (50, 100 and 200 µM), 
does not prevent the LH-induced rat follicle enclosed 
oocytes (FEO) maturation at dose not leading to 
degenerate, and does not prevent spontaneous maturation of 
CEO (93, 94). However, we have successfully inhibited LH 
induced rat CEOs maturation by azalanstat at 60 µM, 
which did not significantly increase oocyte degeneration, 
and at 100 µM, which significantly induced oocyte 
degeneration (unpublished). In mice, we have demonstrated 
that both FSH and AY9944-A-7, which is used to 
accumulate FF-MAS, can significantly promote FEO 
maturation. Besides, FSH inducing FEO maturation can be 
inhibited by FF-MAS producing inhibitor, RS-21745 (95). 
In our recent study, FSH induced mouse FEO meiosis 
resumption can be significantly inhibited by intra-follicle 
injection of small interference RNA of CYP51 gene 
(unpublished). However, RNA interference did not 
markedly decrease the rate of spontaneous FEO maturation 
in vitro, which is in accordance with the finding that 
spontaneous and FSH or MAS induced oocyte maturation 
are by different mechanisms (42, 58, 64, 92, 96, 97). All 
these results seem to support that the resumption of oocyte 
meiosis is the result of gonadotropins-inducing FF-MAS 
production by cumulus cells, by overcoming follicular 
inhibition of meiosis when transferred to oocytes. 
 

Though FF-MAS levels increase in mouse CEOs 
after FSH stimulation (98) and in rabbit ovary stimulated 
by LH (90), and the secretion of FF-MAS by granulosa 
cells is a cAMP-dependent process, the precise mechanism 
by which gonadotropins inducing MAS accumulation has 
not yet been determined. An attractive hypothesis is that 
ovarian steroids cause a negative feed-back inhibition of 
steroidogenic enzymes (such as ∆14-reductase) and 
subsequently lead to MAS accumulation, reflecting events 
taking place during the mid-cycle surge of gonadotropins, 
when progesterone and 17α-hydroxyprogesterone 
accumulates (99-101).  
 
MAS may have a membrane-bound receptor, since MAS-
binding sites could be detected at the surface of mouse, 
cattle and marmoset denuded oocyte membrane (97) and 
the microinjection of FF-MAS does not lead to any 
induction of meiosis resumption (90). It is possible that 
MAS-mediated oocyte maturation is dependent on a G-
protein coupled receptor mechanism. Addition of cholera 
toxin (CT), which results in activation of adenylate cyclase 
through G-proteins and increases cAMP, significantly 
inhibits MAS-mediated mouse oocyte maturation (84). 
Microinjection antibody of GTP binding protein Gs into 
oocytes of mouse FEO results in meiotic resumption, 
suggesting that Gs activation is vital for maintaining oocyte 
cycle arrest (102). Our resent results showed that MAS 
might induce porcine oocytes meiotic resumption via PKC 
signal pathway (unpublished). MAS receptor is
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Table 1. A summary of gonadotropin-induced meiotic resumption of mammalian and amphibian (Xenopus Laevis as the 
representative) oocytes 

Factors Mammals Xenopus 
Meiotic inhibitor cAMP, cGMP? cAMP 
Meiotic resumption FSH and LH-induced meiotic resumption (functions in cumulus 

cells and theca cells, respectively) 
Facilitate progesterone-induced 
meiotic resumption (functions 
in oocytes) 

Gene expression Yes No 
Signal pathway Increasing MAPK activity in cumulus cells stimulated by PKA II, 

PKC, MAS, EGF worknet, and/or gonadal steroid hormones, and 
decreasing cAMP level in oocytes possibly through 
phosphorylation of connexin 43 and/or the activation of PDE3B 

MAPK/MPF activated by 
decreasing cAMP level in 
oocytes 

 
hypothesized to involve three pathways: the 
mos/MEK/MAPK pathways leading to MPF formation 
and stabilization, direct translation to cyclin B and 
decreasing cAMP and A-kinase activation (71, 103). 
 

In summary, the exact functions of MAS, as 
well as its precise mode of action, need further 
investigation. Nevertheless, the confirmed beneficial 
action of MAS on follicle/oocyte quality and the 
degeneration of oocytes under inhibition of sterol 
synthesis are probably indicative of an important role(s) 
of sterols in oocyte growth and subsequent embryonic 
developmental potential (100, 104, 105). 
 
4.2. Gonadal steroid hormones 

The role of follicle cell steroids in gonadotropin-
stimulating oocyte maturation in fish and amphibian 
oocytes has been well established (106, 107) (Table 1). 
Although gonadotropins-inducing increases in cAMP 
concentrations are associated with increased production 
of steroid hormones in mammalian follicle (108), and 
the regulation of oocyte maturation is quite similar to 
that in Xenopus laevis (17, 36, 102), little is known 
about the role of ovarian steroids on mammalian meiotic 
resumption. Earlier studies show that medium 
containing progesterone, testosterone, or 
androstenedione increases the incidence of mouse antral 
follicles remaining meiotically inactive, when compared 
to follicles cultured in steroid-free medium (109), and 
that Arimidex, a potent follicular aromatase inhibitor, 
reduces E2 concentration in follicle culture medium and 
induces meiotic resumption in response to hCG (110). 
The effects of steroids on mouse oocyte meiotic 
resumption are inconsistent (14, 111, 112). The 
differences may be due in part to the background of 
spontaneous oocyte maturation upon removal from the 
ovary, as well as methods of oocyte removal that pre-
expose oocytes to sex steroids. 
 

Recently, it was shown that FSH and LH 
induced preogesterone production and progesterone 
receptor (PR) expression in porcine cumulus cells (113). 
Aminoglutethimide (AGT), an inhibitor of progesterone 
production, significantly suppresses gonadotropins-
induced progesterone production and porcine oocyte 
meiotic resumption. Further study suggests that 
gonadotropins-induced expression and function of delta 
14-reductase and delta 7-reductase (the members of the 
superfamily that converts acetyl-CoA to cholesterol) in

 
cumulus cells contribute to porcine oocyte meiotic 
resumption via a progesterone-dependent pathway 
(114). A possible mechanism is decreasing connexin 43 
in cumulus cells and cAMP level in oocytes (113). It is 
difficult to demonstrate that the maturation of 
mammalian oocytes is a steroid-mediating process. The 
drastic changes in the intrafollicular steroid 
concentrations induced by gonadotropins could 
adversely affect fertilization of in vitro grown oocytes 
(110). Thus, the role of steroids in mediating 
mammalian oocyte maturation remains to be elucidated. 
 
4.3. EGF network 

Although cAMP activated by gonadotropins 
clearly signals through PKA activation, additional 
signaling pathways are also activated during FSH and 
LH action. Recently, it is indicated that EGF network 
induced by LH is involved in the meiotic resumption. 
EGF receptors and EGF-receptor mRNA were detected 
on granulosa cells of many species (115). EGF induction 
of oocyte meiotic resumption and cumulus expansion 
has been observed in many species (116, 117), and the 
events in vivo are associated with the endogenous 
preovulatory surge of LH (6, 116, 118). EGF can only 
stimulate expansion of porcine CEOs from large 
follicles, indicating that EGF may operate as a mediator 
of signals elicited by the LH surge (117). 
 

Recent studies have suggested that follicular 
EGF-like factors play a physiological role in the 
mediation of the ovulatory response to LH. LH/hCG 
stimulates the production of EGF-family members 
amphiregulin (AR), epiregulin (ER) and betacellulin 
(BTC) in pre-ovulatory follicles in many species and a 
transient expression of their receptor mRNAs in rat. 
Addition of EGF-like factors results in complete (with 
AR and ER) and partial (BTC) stimulation of the 
resumption of meiosis in mouse oocyte (119) and rat 
FEO (120). More importantly, meiotic resumption 
induced by LH is slower than that observed after ER and 
AR treatment (119), suggesting that these growth factors 
act downstream of LH. The three growth factors also 
induce cumulus expansion and the expression of ptgs2, 
Has2, and Tnfaip6 genes that are critical for matrix 
remodeling in the CEOs (119, 121). EGFR kinase 
inhibitor AG1478 blocks the LH-induced meiotic 
resumption and cumulus expansion (120), suggesting 
that EGF-signal transduction is involved in the process. 
These findings can explain the observation that EGF 
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mimics some of the LH effects in vitro. The intra-
cellular mechanisms by which growth factors affect 
oocyte meiotic resumption may involve tyrosine kinase 
(TK) and MAPK activation (115, 122, 123). 

 
5. REGULATION OF CGMP IN GONADOTROPIN-
INDUCED MEIOTIC RESUMPTION 
 

The ac messenger cAMP, and subsequent 
activation of specific signalling pathways involving 
phosphorylation of MAPK (38, 124). Recent studies 
indicate that cGMP also influences a wide range of 
ovarian functions (108). The synthesis of cGMP is 
accomplished by two distinct classes of guanylyl 
cyclases, particulate and soluble, both of which appear 
to have relevance to oocyte maturation. Nitric oxide 
(NO) is a regulator of cGMP production via its action on 
soluble guanylyl cyclase, while natriuretic peptides 
activate receptors with intrinsic guanylyl cyclase 
activities (125). Activation of either form of guanylyl 
cyclase results in large increases in cGMP production, 
and subsequent activation of cGMP-dependent signaling 
pathways, including cGMP-dependent protein kinase 
activation, activation or inactivation of PDE, interaction 
with cyclic nucleotide gate (CNG) channels and 
phosphorylation of the cAMP response element binding 
protein (CREB) (108). It has been observed that ovarian 
cAMP increases during proestrous while cGMP 
decreases (126). These inverse changes in cyclic 
nucleotide concentrations were abolished when the 
preovulatory LH surges were blocked by 
phenobarbitone injection, but could be restored by 
administration of exogenous LH (126). cGMP induced 
by NO or ANP antagonizes the effects of FSH on 
oestradiol production and cAMP accumulation (108). 
All these studies suggest physiological roles of this 
second messenger in gonadortopin-induced oocyte 
maturation.  
 
5.1. NO 

NO is a chemical messenger enzymatically 
produced by enzymes known as nitric oxide synthases 
(NOS), which convert L-arginine into NO and citrulline 
(127). Three isoforms of NOS have been identified: two 
constitutive isoforms, endothelial (eNOS) and neuronal 
NOS (nNOS), and an inducible isoform (iNOS). 
Constitutive isoforms are calcium- and calmodulin-
dependent and, only small amount of NO are produced 
by these isoforms (108). iNOS, maintaining sustained 
synthesis of NO, is secreted by many types of cells 
(128). eNOS is expressed in ovarian thecal and stromal 
cells, in mural granulosa cells of maturing follicles, and 
in corpora lutea (129, 130). The expression of iNOS is 
primarily in immature follicles and apparently decreases 
with follicular growth (131, 132). In contrast, the 
expression of NOS isoforms in the ovary is consistent 
with physiological roles of NO in ovarian functions, 
such as sexual behavior, follicular development, 
steroidogenesis, oocyte meiotic resumption, ovulation 
and atresia, corpus luteum function, fertilization, 
implantation, embryo development and pregnancy (127). 

It has been reported that NO donor, sodium 
nitroprusside (SNP), significantly stimulates meiotic 
maturation in CEOs, whereas NOS inhibitor L-NAME 
suppresses resumption of meiosis and this inhibition is 
reversed by the addition of SNP (129, 133). In contrast, 
some reports show that NO inhibits rat meiotic 
maturation (9). Our studies showed that NO exerted dual 
function on mouse oocyte maturation (134, 135). High 
concentration of SNP (10-4-10-3 M) could inhibit the 
spontaneous and FSH-induced meiotic resumption and 
cumulus expansion and, low concentration of SNP (10-5-
10-7 M) exhibited stimulatory effect on CEOs in the 
presence of HX, but no effect on DOs. A general trend 
highlighted is that NO plays biphasic role in 
reproduction. That is, NO, in a narrow range of and 
usually low concentrations, can stimulate oocyte 
maturation, but absence or too much NO has negative 
consequences (136). Further studies show that the 
stimulatory effect of NO on mouse oocyte meiotic 
resumption is via the cAMP pathway, while the 
inhibitory mechanism is through the cGMP pathway and, 
PKC possibly involves this process (10). 
 

NO plays an important role in mammalian 
oocyte meiotic resumption (129, 137, 138). It has been 
reported that eNOS produces small quantities of NO (at 
nM) while iNOS produces NO at µM over a long period 
(128). The amount of NO produced under the condition 
of high concentration of SNP is equivalent to that 
produced by iNOS under physiological circumstance. 
Yamagata et al (133) indicated that iNOS expression 
significantly decreased after hCG injection, which 
induced a decrease of NO concentrations in 
preovulatory follicular fluid. Nakamura et al (9) also 
showed that hCG induces meiotic resumption in rat 
oocytes of preovulatory follicles, and the NO donor 
prevents this phenomenon. Moreover, aminoguanidine 
bicarbonate salt (AG), a pecific inhibitor for iNOS, 
induces meiotic resumption, which can be prevented by 
NO donor. All these results suggest that iNOS-derived 
NO may be an oocyte maturation inhibitor. A high-
concentration of intrafollicular NO probably plays a role 
in meiotic arrest of oocytes, and the decrease of NO 
after hCG injection may be an important event for 
meiotic resumption. However, we find that AG strongly 
inhibits FSH-induced porcine oocyte meiotic resumption 
(139). The different roles of AG might be due to 
different experimental conditions, animals and stage of 
oocyte development. 
 

Intracellular NO signaling pathway is quite 
complex and flexible. NO exerts functions by activating 
cyclooxygenase enzyme (COX) or PKC (127). It can 
also act throuth P53/Bax pathway. It has been indicated 
that the decrease of cGMP and cAMP in oocytes 
parallels spontaneous meiosis, and that microinjection 
of these substances into oocytes causes a delay in oocyte 
meiotic resumption (140, 141). Produced by iNOS-
derived NO in granulosa cells and transported via gap 
junctions into oocytes, cGMP has an important role in 
maintaining the meiotic arrest of oocytes (141). cGMP 
maintains the meiotic arrest of preovulatory oocytes 
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mainly via two pathways: inhibition of oocyte cAMP 
phosphodiesterase to maintain cAMP level and 
activation of cGMP-dependent protein kinase in oocytes 
(141). It has been reported that PDE3 can be inhibited 
by NO and cGMP (142). Perhaps the most common 
pathway of cGMP action is mediated through activation 
of PKG, of which there are two types, PKGI and PKGII 
(143). PKGII expression is very low or non-existent in 
human ovarian tissue, whereas PKGI is detectable at 
significant concentrations in ovary (144). MAPK plays 
an important role in gonadotropins-induced mammalian 
oocyte meiotic resumption (29). Interestingly, NO can 
inhibit MAPK activity via generation of cGMP (145). 
All these results indicate NO, possibly produced by 
iNOS, maintains the intrafollicular cGMP level to 
inhibit meiotic resumption. 
 
5.2 ANP 

ANP is a small peptide and a member of a 
family of hormones mainly involved in the regulation of 
blood pressure, salt and water excretion, cell 
proliferation and body fluid homeostasis (146, 147). The 
diverse physiological responses of cells to ANP are 
manifested through binding of different cell-surface 
receptors. Four types of natriuretic peptide receptors 
have been identified using molecular cloning 
techniques: natriuretic peptide receptors-A (NPRA), 
natriuretic peptide receptors-B (NPRB), natriuretic 
peptide receptors-C (NPRC) and natriuretic peptide 
receptors-D (NPRD) (148). ANP exhibits high affinity 
to NPRA and activates particulate guanylate cyclase to 
produce physiological response in many tissues and 
cells (149). ANP also binds with high affinity to NPRC 
that has been thought to be responsible for clearance of 
plasma natriuretic peptides (150) and to play a role in 
the ANP-dependent inhibitory action on adenylate 
cyclase without intrinsic ability to generate cGMP 
(151).  
 

Recently, it was found that ANP localizes in 
mammalian granulosa cells (152, 153) and oocyte (154). 
These results suggest that ANP may act as an autocrine 
and/or paracrine hormone that influences ovarian 
functions, including ovarian growth or steroidogenesis 
(155) and the regulation of oestradiol production after 
equine gonadotropin treatment of ovaries (156). ANP 
can also affect oocyte maturation by cGMP, i.e. ANP 
participates in ovum development by stimulation of 
cGMP accumulation and activation of cAMP-
phosphodiesterase, thereby promotes Xenopus ovum 
maturation (157) and resumption of meiosis in hamster 
oocytes (158). ANP dose-dependently inhibits 
spontaneous maturation of rat oocytes via cGMP 
accumulation (159). These varied results suggest that 
there may be different signal pathways participating 
ANP-mediated action on mammalian oocyte meiotic 
maturation. The different responses to ANP may result 
from animal species, different pathways or experimental 
conditions. 
 

In our studies, ANP inhibited FSH-induced, but 
not spontaneous, porcine oocyte meiotic resumption and 

cumulus expansion in a dose-dependent manner (80). 
ANP also obviously inhibited FSH-induced MAPK 
phosphorylation in both oocytes and cumulus cells (11). 
These effects is mimicked by 8-Br-cGMP and reversed 
by a PKG inhibitor KT5823, suggesting that 
cGMP/PKG signaling pathway is involved in FSH-
induced porcine oocyte maturation. The inhibitory effect 
of ANP on FSH-induced porcine oocyte meiotic 
resumption and cumulus expansion might be via 
PKG/MAPK pathway, since FSH-induced MAPK 
phosphorylation in both oocytes and cumulus cells is 
necessary for pig oocytes maturation and cumulus 
expansion (38), and inhibition of MAPK activation 
prevents FSH-stimulated resumption of meiosis as well 
as cumulus expansion (44). ANP shows high affinity for 
NPRA receptors (160), and the concentrations of ANP 
used in our studies are in the same range as those used 
to regulate MAPK phosphorylation by ANP/NPRA 
system (149), suggesting that the inhibitory effect of 
ANP on FSH-induced pig oocytes maturation is 
mediated by its specific receptor NPRA. 
 

Little is known about the physiological role of 
the ovarian ANP. Recently, granulosa cells from porcine 
large follicle shew strong expression of ANP (153). In 
addition, pregnant mare’s serum gonadotropin (PMSG) 
increased the production of ANP and cGMP in rat ovary 
(161, 162), and LH results in decrease of cGMP by 
suppressing guanylate cyclase activity in rabbit ovary 
(161). Taken together, it can be hypothesized that 
accumulation of cGMP under FSH stimulation (during 
follicular growth) may serve to prevent untimely oocyte 
maturation until ovulation after the LH serge (Figure 2). 
The detailed roles of ANP in ovarian function need to be 
explored. 
 
6. PERSPECTIVE 
 

Gonadotropins induce mammal oocyte meiotic 
resumption mainly through cAMP/MAPK pathway. 
Recent studies suggest that MAS, gonadal steroid 
hormones and EGF network induced by FSH and/or LH 
are also involved in meiotic resumption. On the other 
hand, growing evidence indicates that cGMP-dependent 
signaling pathways exert a wide range of influences on 
gonadotropins-induced meiotic resumption (Figure 2). 
Although both FSH and LH use cAMP primary 
signaling pathway, the different downstream pathways 
may involve the regulation of meiotic resumption (36). 
FSH stimulates oocyte growth and LH receptor (LHR) 
expression in theca cells and cumulus cells (163), while 
a midcycle LH surge triggers meiotic resumption. 
Furthermore, the expression of LHR is essential for 
follicular maturation in the process from antral to 
preovulatory stage (164). It can be hypothesized that 
accumulation of cGMP under FSH stimulation (during 
follicular growth) may serve to prevent untimely oocyte 
maturation until ovulation after the LH serge. Further 
studies in this area may yield important new insights 
into the mechanisms regulating multiple aspects of 
oocyte maturation.tions of gonadotropins on mammalian 
oocyte meiotic resumption are believed to be mediated in
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Figure 2. A proposed model for LH-induced mammalian oocyte meiotic resumption in preovulatory follicle. LH binds to the 
receptor in theca cells (or in cumulus cells), resulting in activation of adenylyl cyclase and increased production of cAMP. The 
elevated cAMP, possibly via MAS, EGF worknet, or other signal pathways, activates MAPK. MAPK, possibly through 
phosphorylation of Cx43 and decrease of cAMP in oocyte, trigger meiotic resumption. LH may also remove the negative effects 
of cGMP (produced by NO or ANP) on MAPK and PDE3 activity during gonadotropins-induced meiotic resumption. LH, 
luteinizing hormone; cAMP, cyclic adenosine 3’,5’-monophosphate; MAS, meiosis activating sterol; EGF, epidermal growth 
factor; MAPK, mitogen-activated protein kinase; cGMP, guanosine 3’,5’-cyclic monophosphate; Cx43, connexin 43; PDE3, 
phosphodiesterase 3; iNOS, inducible isoform of nitric oxide synthases; NO, nitric oxide; ANP, atrial natriuretic peptide; GC, 
guanylyl cyclase. 
 
large part through increasing the production of the second  
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