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1.  ABSRTACT 
 

The central melanocortin system is comprised of 
discrete populations of neurons and circuits that play a key 
role in maintaining energy balance.  This system can sense 
levels of peripheral energy stores and can integrate a 
variety of nutrient, neuronal and hormonal signals to 
regulate food intake, energy expenditure and nutrient 
metabolism.  Disruption of this system at multiple levels 
causes obesity in humans and animals.  This article reviews 
the normal physiology and regulation of the central 
melanocortin system, the abnormalities of this system that 
cause impaired energy balance in humans and in rodents 
and the potential to target this system for the treatment of 
obesity and cachexia.  
 
2. INTRODUCTION 
 

The central melanocortin system plays a critical 
role in regulating energy balance in humans and animals 
(1,2). This system consists of the proopiomelanocortin 
(POMC)-derived MSH peptides, including α- and γ3- 
MSH, the MSH antagonist, agouti-related protein (AGRP), 
and the brain melanocortin receptors (MC-Rs) (Figure 1). 
α-MSH inhibits feeding and stimulates energy expenditure

 
 
 
 
 
 

while AGRP is orexigenic and decreases energy 
expenditure.  α-MSH and AGRP are synthesized in distinct 
neuronal populations in the arcuate nucleus of the 
hypothalamus but their fiber tracts project to the same brain 
regions where their peptide products interact at the MC3-R 
and MC4-R to regulate both feeding behavior and energy 
expenditure (1,3,4).  Projections of POMC and AGRP 
neurons to other hypothalamic regions, including the 
paraventricular nucleus (PVN) and lateral hypothalamus 
(LH), and to the brainstem are particularly important in 
regulating energy balance (5,6).  Some POMC is also 
synthesized in brainstem neurons.  POMC and AGRP 
neurons can act as sensors of peripheral energy stores and 
respond to a variety of nutrient, neuronal and hormonal 
signals.  Both sets of neurons are important targets for 
leptin and for insulin.  In rodents,  genetic or 
pharmacological inactivation of POMC or the MC4-R 
results in hyperphagia and obesity as does overexpression 
of AGRP (7-11).  Targeted deletion of the MC3-R also 
causes an obesity phenotype (12,13).  This system is highly 
relevant to human energy balance as defects in POMC 
synthesis and processing and in the MC4-R have all been 
reported in human obesity syndromes (2). This article will 
review the anatomy, regulation and physiology of the
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Figure 1.   Diagram depicting the regulation of hypothalamic POMC and AGRP neurons and their interaction with hypothalamic 
melanocortin receptors.    MC3/4-R signaling is stimulated by a-MSH and inhibited by AGRP.    Leptin, which is secreted by fat 
cells,  stimulates POMC and inhibits AGRP, as does insulin.  This leads to an increase in  MC4-R signaling resulting in  
decreased food intake and increased energy expenditure.  Gut hormones and nutrients also regulate the activity of the central 
melanocortin system which can in turn modulate peripheral glucose and fat metabolism. 
 
central melanocortin system and will describe how 
alterations in POMC, AGRP and MC-R function can lead 
to impaired energy balance.  The potential to target this 
system for the treatment of disorders of human energy 
balance such as obesity and cachexia will also be discussed.  
 
3. CENTRAL MELANOCORTIN SYSTEM: ANATOMY, 
REGULATION AND PHYSIOLOGY 
 
3.1. Proopiomelanocortin 
3.1.1. Anatomy, synthesis and processing 
 POMC is a 30-32-kDa precursor protein that is 
synthesized in the pituitary, in the arcuate nucleus of the 
hypothalamus, the nucleus of the solitary tract (NTS) in the 
medulla and in several peripheral tissues (1).  Arcuate 
POMC neurons have dense fiber tracts that project widely 
throughout the brain including other hypothalamic and 
brainstem regions known to be important in regulating 
energy balance (5, 6).  Projections to the paraventricular 
nucleus (PVN) and lateral hypothalamus (LH) are 
particularly important in this respect.  POMC peptides in 
the brainstem are derived form both arcuate and NTS 
neurons (14). 

 
 The posttranslational processing of POMC is 
tissue specific and results in the production of a number of 
peptides with very different biological activities (15-16,17) 

(Figure 2).  Functionally active peptides are produced by 
endoproteolytic cleavage at adjacent pairs of basic amino 
acids by the prohormone convertases, PC1 and PC2 (18).  
In the anterior pituitary, POMC is processed predominantly 
to ACTH,  ß-lipotropin (LPH) and a 16K N-terminal 
fragment.   ACTH is critical for the maintenance of 
adrenocortical function.   In the hypothalamus and in the 
intermediate lobe of the pituitary (which is prominent in the 
rodent),  POMC is more extensively processed:  ACTH is 
further processed to produce α-MSH and corticotropin-
like-intermediate lobe peptide (CLIP);  ß-LPH is processed 
to  ß-EP and γ-LPH; N-terminal POMC is processed to γ3-
MSH (17,19).  In the human,  γ-LPH  can be further 
processed to ß-MSH.   It is now clear that α-MSH regulates 
feeding behavior and energy balance via interaction with 
brain melanocortin receptors.  There is also evidence that 
other POMC-derived MSH peptides, including ß-MSH and 
perhaps γ−MSH, may play a role in this process.   In 
addition, the POMC-derived opioid peptide, ß-EP, can 
affect energy balance.  Regulation of POMC processing is 
particularly important because a number of peptides are 
produced with very different (and even opposing) 
biological activities.  For example, α-MSH can attenuate 
the effects of ß-EP on gonadotropin and prolactin release 
(20, 21) and can also attenuate ß-EP and morphine-induced 
analgesia (22,23).  With respect to feeding,  α-MSH is
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Figure 2.  Schematic diagram of the POMC precursor molecule and the major peptide products which are derived from this 
precursor by endoproteolytic cleavage.  (JP = Joining peptide; LPH= Lipotropin; CLIP= corticotropin-like-intermediate lobe 
peptide). 
 
inhibitory while ß-EP and other opioids have well 
documented stimulatory effects (24).  The role of opioids 
with respect to energy balance is, however, complex as 
demonstrated by recent studies in ß-EP null mice (25,26). 
Opioid receptors, like MC-Rs, are G-protein coupled but 
modulate inhibition rather than stimulation of cAMP.  
Several studies have reported interactions between the 
melanocortin and opioid pathways with respect to feeding 
and weight gain (27,28). 
 
3.1.2. Regulation and physiology 
 The regulation of POMC gene expression and 
peptide release is tissue specific and is quite different in the 
hypothalamus as compared to the pituitary.   In the 
hypothalamus, POMC is regulated by a variety of 
hormones, neuropeptides and neurotransmitters, many of 
which are known to affect energy balance.  These include 
leptin, insulin, glucocorticoids, sex steroids, opioids, 
dopamine, serotonin, GABA and neuropeptide Y (NPY) 
(29-41).  The effects of  leptin, a hormone secreted by fat 
cells, on POMC neurons in the hypothalamus have been 
well documented (42) (Figure 1) and there is accumulating 
evidence that α-MSH mediates some of the downstream 
effects of leptin on energy balance.  POMC expression in 
arcuate neurons is suppressed during fasting and stimulated 
when energy stores are increased.  Levels of peripheral 
energy stores are sensed by leptin receptors on POMC 
neurons (5).   There is extensive evidence documenting the 
activation of POMC neurons by leptin as shown by the 
induction of Fos, SOCS-3, STAT3 phosphorylation, an 
increase in POMC heteronuclear RNA and mRNA levels 
and by an increased frequency of action potentials in 
electrophysiological studies (29,43-47).  In addition, mice 
with selective deletion of leptin receptors on POMC 
neurons are obese (48).   Leptin can also affect the 
development of POMC neuronal projections and can 
modulate the number of excitatory and inhibitory synapses 

on POMC neurons (49,50).   Stimulatory effects of insulin 
on POMC gene expression have also been demonstrated 
(30).  Although leptin and insulin can act by distinct 
signaling pathways, there is evidence for some shared 
intracellular signaling pathways with respect to POMC 
regulation (51).   
 
 Orexigenic AGRP/NPY neurons synapse on 
POMC neurons and can inhibit their activity  through the 
release of both NPY and GABA (41).  POMC neurons also 
express mu opioid and melanocortin-3 receptors which can 
both function as inhibitory autoreceptors in response to the 
release of ß-endorphin and MSH (52,53). There is evidence 
that CNS circuits can sense nutrient levels including 
glucose as well as specific fatty acids and amino acids and 
that POMC neurons in the arcuate may be nutrient 
responsive (54-56).  POMC neurons express ATP-sensitive 
potassium channels that can couple membrane excitability 
to cellular metabolism and electrophysiology studies have 
demonstrated that they are glucose responsive  (57).  Thus 
POMC neurons may integrate both hormonal and nutrient 
signals that reflect levels of energy stores.  
 
 A number of studies have shown that 
intracerebroventricular injection of α-MSH and other 
synthetic MSH agonists can suppress food intake in the 
rodent and that this effect can be blocked by specific α-
MSH antagonists (58-60).  Peripheral injection of MSH 
agonists has also been shown to suppress food intake in 
some rodent models (61).    Icv injection of an MSH 
agonist was also effective in decreasing food intake in a 
monkey model (62). Furthermore, injection of synthetic α-
MSH antagonists, increases food intake, indicating a role 
for endogenous α-MSH in appetite control (63,64).  In 
addition to suppressing food intake, α-MSH can affect 
energy expenditure,  oxygen consumption and fuel 
oxidation, all of which contribute to overall changes in
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Table 1.    Melanocortin receptor family 
Receptor  Localization   Activity   Primary Ligand    
MC1-R Melanocytes, inflammatory cells (monocytes, neutrophils) Pigmentation,   anti-inflammatory     α-MSH, ACTH  
MC2-R Adrenal cortex Adrenal steroidogenesis     ACTH 
MC3-R Hypothalamus, limbic system, pancreas, stomach, duodenum, placenta, 

monoctyes, heart 
Energy homeostasis,  anti-inflammatory     α-MSH, γ-MSH 

MC-4-R Hypothalamus, cerebral cortex, brainstem Energy homeostasis     α-MSH  
MC5-R Exocrine glands, skeletal muscle, brain, lymphocytes, adipocytes Control of  exocrine gland secretion     α-MSH, ACTH 

 
energy balance.   Icv injection of the α-MSH agonist, 
MTII,  increased resting oxygen consumption in lean and 
diet-induced obese (DIO) mice and in lean and obese 
Zucker rats compared to pair-fed controls (61,65).  MTII 
also increased the proportion of expended energy derived 
from fat as evidenced by a reduction in the respiratory 
quotient (RQ) in lean and obese Zucker rats (65).   
Peripheral injection of an MSH analog increased FFA 
levels in normal and ob/ob mice (66).  There is evidence 
that MTII can also modulate the expression of liver 
enzymes involved with both the synthesis and oxidation of 
fat.  MTII decreased the hepatic expression of stearoyl-
CoA desaturase-1 (SCD1), a lipogenic enzyme involved in 
the synthesis of monounsaturated fatty acids (67) and 
increased the hepatic expression of carnitine 
palmitoyltransferase-1 (CPT-1) which is involved in lipid 
oxidation (68).  At least one mechanism by which α-MSH 
might increase energy expenditure is via increasing 
thermogenesis in brown adipose tissue (BAT).  There is 
evidence that the stimulatory effects of leptin on the 
sympathetic nervous system and on the UCPs in BAT are 
mediated by the melanocortin system (69-71).   Infusion of 
MTII has also been shown to increase UCP1 expression in 
BAT (68).  Another mechanism by which MSH may affect 
energy balance is via modulation of the hypothalamic-
pituitary-thyroid (HPT) axis.   α-MSH containing nerve 
terminals have been shown to innervate TRH neurons in 
the PVN and these neurons can be stimulated or suppressed 
by α-MSH (72,73).  It has also been shown that some of 
the effects of fasting and leptin on the HPT axis are 
mediated by the melanocortin pathway.  
 
 Transgenic neuronal overexpression of Pomc has 
been shown to attenuate obesity in ob/ob mice (74). Central 
Pomc gene delivery via recombinant adeno-associated virus 
has also been shown to reduce food intake and adiposity in 
obese Zucker rats (75).   Overexpression of an N-terminal 
POMC transgene, that includes both α-MSH and γ�-MSH, 
reduced weight gain and adiposity in male mice on a 
normal diet and attenuated obesity in male and female  
db3J/db3J mice (76).  This transgene also protected male and 
female mice from weight gain and increased adiposity when 
exposed to a high fat diet.  The importance of POMC in 
regulating energy balance is demonstrated by the fact that 
disruption of the melanocortin system via POMC deficiency 
results in severe obesity.   Mice with targeted deletion of the 
Pomc gene and humans with POMC null mutations are obese 
despite having profound adrenal insufficiency (section 4.1.1).   
Increased susceptibility to obesity has been noted even with 
partial deficiency in both Pomc +/- mice and in humans 
heterozygous for POMC null mutations (8,77). 
 
 α-MSH has long been known to have potent anti-
inflammatory activity and it is possible that this may

 
impact on the metabolic phenotype.  For example, α-MSH 
can antagonize many of the biological effects of endotoxin 
and the pro-inflammatory cytokines, including effects on 
body temperature, immune function, endocrine function 
and behavior (78-80).    There is also evidence that  α-MSH 
and the central MC-Rs may play a role in endotoxin-
induced anorexia and cachexia (85,86).  α-MSH can act 
directly on MC-Rs on peripheral immune cells to 
downregulate the production of pro-inflammatory 
cytokines and can also act within the brain to inhibit 
peripheral immune responses.  At least one mechanism by 
which α-MSH antagonizes the effects of the inflammatory 
cytokines is by blocking the activation of the nuclear 
transcription factor NF-κB by thesecytokines (81).  α-MSH 
has also been shown to block toll-like receptor (TRL4) 
signaling on macrophages (82).  In addition, α-MSH has 
been shown to induce production of the anti-inflammatory 
cytokine, IL-10, in human monocytes (83).  However, it is  
at present unknown if α-MSH plays any role in modulating 
the pro-inflammatory state that is characteristic of obesity 
(84).   
 
3.2. Melanocortin Receptors 

The biological effects of melanocortins are 
mediated by interaction with a family of G protein-coupled, 
seven-transmembrane melanocortin receptors, of which 
thus far five have been identified (87,88) (Table 1).  All the 
melanocortin receptors can be activated by both α-MSH 
and ACTH, with the exception of MC2-R which is 
activated primarily by ACTH alone.  In addition, MC3-R 
differs from the other melanocortin receptors in that it is 
also potently activated by γ-MSH.   

 
MC1-R is expressed predominantly on 

melanocytes and mediates melanocortin effects on skin 
pigmentation and coat color (89).  Mutations of the Mc1-r 
gene are associated with alterations in coat color in 
animals.  In humans, MC1-R gene variants have been 
associated with a phenotype of red hair and/or fair skin that 
tans poorly (90), with some variants linked to an increased 
risk of melanoma as well as other skin cancers  (91).  
Although primarily localized to melanocytes, MC1-R 
expression has been detected in inflammatory cells (92), 
and the periaqueductal gray matter of rodents and humans 
(93), as well.  It has been postulated that MC1-R may play 
a role in melanocortin mediated immunomodulatory and 
anti-inflammatory effects (94). 

 
Expressed almost exclusively in the adrenal 

cortex, MC2-R mediates the effects of ACTH on 
glucocorticoid synthesis and release, and mutations in this 
receptor account for a number of cases of familial 
glucocorticoid deficiency (95).  Among rodents, but not in 
humans, MC2-R as well as MC5-R expression has also 



Melanocrtin regulation of energy balance 

3998 

been found in adipocytes (96,97).  Thus, it has been 
postulated that MC2- and MC5-R may both play a role in 
mediating melanocortin induced lipolysis in some animals.  
MC5-R is found in multiple peripheral tissues, but is most 
predominantly expressed in exocrine glands and skeletal 
muscle (98).   Its most well characterized role is the 
regulation of exocrine gland function, and Mc5-r knockout 
mice exhibit exocrine gland dysfunction with decreased 
production of sebaceous lipids (99).   The finding that 
MC5-R is also expressed in lymphocytes has suggested a 
role for this receptor in modulating immune responses as 
well (100). 

 
The melanocortin receptors MC3- and MC4-R 

are both highly expressed in the brain, particularly within 
key areas involved in regulating energy homeostasis.  
Centrally, the MC3-R localizes to the limbic system and 
hypothalamus, where it is expressed within the arcuate 
nucleus on both POMC and AGRP neurons and may 
mediate crosstalk between these neurons (4, 101).  
Activation of the MC3-R by a specific MC3-R agonist has 
been shown to inhibit POMC neuronal activity, consistent 
with an autoinhibitory function for MC3-R (47).  
Peripherally, MC3-R has also been found in the placenta, 
gut, heart, and monocytes (97,102).  In contrast, expression 
of MC4-R has not been detected in peripheral tissues, but 
within the brain its distribution pattern is much more 
extensive than that of MC3-R.  MC4-R expression sites 
include the hypothalamus, cortex, thalamus, brainstem, and 
spinal cord (103).   Within the hypothalamus, the MC4-R is 
highly expressed in the paraventricular nucleus and the 
lateral hypothalamic area which are both important in 
regulating energy balance. As discussed in sections 4.2.1 
and 4.2.2, targeted disruption of this receptor produces 
hyperphagia and obesity in mice and MC4-R mutations 
have been found in obese humans. Pharmacological studies 
with icv injection of selective MC4-R ligands have also 
demonstrated the importance of this receptor in regulating 
energy balance.   Finally, it has beem shown that 
inactivation of the MC3-R also causes an obese phenotype.    
  
3.3 Agouti-Related Protein 
3.3.1 Anatomy, synthesis and processing  
  AGRP is a 132 amino acid peptide that is 
synthesized in the arcuate nucleus and is structurally 
homologous to agouti protein which normally controls coat 
pigmentation by antagonizing the effects of α-MSH at the 
MC1-R (104,105).  The naturally occurring lethal yellow 
(Ay) mutation of the agouti locus causes widespread 
ectopic expression of agouti.  These animals have a yellow 
coat color and develop hyperphagia, hyperinsulinemia and 
obesity due to ectopic expression of agouti within the brain 
(106).  AGRP is a potent MC3-R and MC4-R antagonist 
which is normally expressed in brain and when 
overexpressed in transgenic mice, causes hyperphagia and 
obesity.   There is almost complete coexpression of AGRP 
with NPY, another orexigenic peptide, in arcuate neurons 
(3).  AGRP/NPY neurons are distinct from POMC neurons 
but their fiber tracts project to the same regions (4).   The 
projections of AGRP neurons are, however, more limited 
than those of POMC neurons which project more widely 
throughout the brain.  It is believed that the projections of 

POMC and AGRP/NPY neurons to the PVN and the lateral 
hypothalamic area (LHA) are particularly important in 
regulating feeding behavior (5,6).  Interactions between 
AGRP and  α-MSH at the MC4-R in these hypothalamic 
regions appears to be critical in maintaining energy 
homeostasis.   AGRP/NPY neurons also synthesize GABA 
and strong inhibitory GABAergic fibers project to POMC 
neurons.  Thus stimulation of AGRP/NPY neurons can 
result in subsequent inhibition of POMC neurons.  
 
  AGRP is processed in the hypothalamus to a C-
terminal AGRP83-132 fragment that is known to have full 
biological activity (107-109).  The processing enzyme, 
PC1/3, is expressed in AGRP neurons in the rat 
hypothalamus and there is evidence that PC1/3 is primarily 
responsible for cleavage of AGRP in vitro (109).  Recent 
studies have shown that syndecan-3, a cell surface heparin 
sulfate proteoglycan found in neurons in the hypothalamus, 
potentiates AGRP activity at the MC4-R and that 
modulation of cell surface expression of syndecan-3 can 
affect feeding behavior (110).   Syndecan-3, however, 
interacts with the amino terminal domain of AGRP and not 
with the C-terminal fragment.  Thus, if the majority of 
AGRP is cleaved, the mechanism by which syndecan-3 
potentiates AGRP activity is at present unclear.  
 
 3.3.2. Regulation and physiology  

Chronic icv infusion of AGRP causes 
hyperphagia and obesity but a metabolic phenotype, 
consisting of increased adiposity and increased leptin and 
insulin levels, persists even when the hyperphagia is 
prevented (111,112).  In a rodent model, AGRP has been 
shown to decrease energy expenditure as reflected by a 
decrease in oxygen consumption and a decrease in the 
capacity of brown adipose tissue to expend energy (113).  
Transgenic overexpression of AGRP also leads to 
hyperphagia and obesity.   On the other hand, reduction of 
hypothalamic AGRP by RNA interference has  been shown 
to decrease body weight and increase metabolic rate (114).  
In contrast to POMC,  mice with genetic AGRP ablation 
are reported to have a relatively normal phenotype with 
respect to energy balance (115) (section 4.3.1).  There is, 
however, evidence for developmental compensation in 
Agrp-/- mice as recent studies have revealed a lean, 
hypophagic phenotype in mice with postembryonic ablation 
of AGRP neurons and the degree of compensation depends 
on the age at the time of neuronal ablation.  
 

AGRP neurons, like POMC neurons, express 
leptin and insulin receptors but  the regulation of AGRP by 
leptin and insulin is opposite to that of POMC (5,116).  
AGRP expression in arcuate neurons is increased during 
fasting when leptin and insulin levels are suppressed and 
AGRP expression declines when energy stores are repleted 
(117-119). Obese leptin deficient mice (ob/ob ) and leptin 
receptor deficient mice (db/db ) have increased AGRP 
mRNA levels in the hypothalamus which in ob/ob mice are 
restored to normal by leptin injection (118,120,121).   
Leptin has also been shown to suppress AGRP mRNA 
levels in food deprived rodents (119,120).    Fasting can 
also stimulate AGRP peptide release from the rat 
hypothalamus when studied in vitro and this was attenuated 
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by leptin and insulin (107,108).  The gut hormone ghrelin 
interacts with AGRP neurons and the stimulatory effect of 
ghrelin on feeding is mediated in part by the release of 
AGRP (122,123). There is also evidence that the gut 
hormone, PYY3-36,  which has an inhibitory effect on 
feeding, inhibits the electrical activity of AGRP/NPY 
neurons (124). Glucocorticoids also regulate AGRP 
expression.  AGRP is suppressed in adrenalectomized rats 
and this was reversed by glucocorticoid replacement (31).   
The importance of glucocorticoid regulation is 
underscored by the fact that that the decrease in AGRP in 
adrenalectomized animals occurred despite a fall in leptin 
and insulin levels, which in other situations would lead to 
an increase in AGRP.   Recently, serotonin has been 
shown to inhibit AGRP neuronal activity (39); this is an 
important finding, given that central serotonergic 
pathways are known to regulate food intake.   There is 
also evidence that some of the downstream effects of 
AGRP on food intake are mediated through opioid 
receptors (125). 
 

AGRP exerts a number of neuroendocrine effects 
that are similar to the changes that occur with fasting.  Icv 
AGRP has been shown to suppress the hypothalamic-
pituitary-thyroid (HPT) axis in rodents (73,126) and to both 
stimulate the hypothalamic-pituitary-adrenal (HPA) axis 
and suppress the hypothalamic-pituitary-gonadal (HPG) 
axis in monkeys (127,128).  Interactions with the HPT axis 
have been most extensively studied and it has been shown 
that α-MSH and AGRP containing nerve terminals 
innervate TRH neurons in the PVN; these neurons can be 
stimulated or suppressed by α-MSH and AGRP 
respectively.  It has also been shown that some of the 
effects of fasting and leptin on the HPT axis are mediated 
by the melanocortin pathway. 
 
4.  ABNORMALITIES OF THE CENTRAL 
MELANOCORTIN SYSTEM CAUSING IMPAIRED  
ENERGY BALANCE 
 
4.1. POMC Mutations 
4.1.1. Pomc null mice 

Two POMC-null mutant mouse models have 
been created and both have an obese phenotype despite 
profound adrenal insufficiency (7,8).  In the first model, 
the entire third exon of Pomc was deleted, thus removing 
the coding region for the relevant POMC-derived peptides 
but the first 18 amino acids of POMC still remained (7).  
In the second model the entire POMC sequence was 
deleted (8).  In both models, homozygous Pomc knockout 
mice have defective adrenal development, altered 
pigmentation and develop hyperphagia and obesity.   
Serum levels of corticosterone and aldosterone were 
undetectable in the mutant mice and plasma epinephrine 
levels were also markedly reduced compared to the wild-
type mice.  Thus POMC-derived peptides appear to be 
critical not only for steroidogenesis but for normal 
adrenal development.  In both models, homozygous Pomc 
null mice were born at only a fraction of the expected 
frequency (8% rather than 25%) consistent with partial 
embryonic lethality.  This was not reversed by 
administering glucocorticoids to the mother.   

Yaswen et al.  noted  increased weight gain in 
Pomc -/- mice in the second postnatal month and by the 
third postnatal month, weights were about twice those of 
the wild-type mice.  There was also a significant increase in 
body length as was reported for  Mc4-r knockout mice.  
Serum leptin levels were markedly increased in 
homozygous Pomc mutant mice.  Leptin levels were also 
increased in heterozygous mutant mice although body 
weight was normal.  When  homozygous Pomc mutant 
mice were treated with daily intraperitoneal injections of a 
synthetic α-MSH agonist, there was a significant decrease 
in food intake and substantial weight loss.  After two weeks 
of treatment, the mutant mice had lost 46% of their excess 
body weight; there was no weight loss in the similarly 
treated wild-type littermates.  When the α-MSH agonist 
injections were stopped, the mutant mice returned to their 
pretreatment weight.  

 
Challis et al. noted an increase in body weight in 

the Pomc -/- mice after 8 weeks of age.  Both fat and lean 
body mass were increased relative to wild-type mice and 
basal metabolic rate (as measured by oxygen consumption) 
was decreased by 23%.   Plasma T4  levels were also 
significantly lower in  Pomc -/- mice.  Although Pomc +/- 
mice were not obese on a standard chow diet, they did 
become obese on a 45% high fat diet.  Thus 
haploinsufficiency of this gene can cause obesity but only 
when exposed to a high fat diet.    The obesity of  Pomc -/- 
mice and its associated metabolic complications were 
markedly exacerbated by either replacement with 
glucocorticoids or by selective transgenic restoration of 
pituitary Pomc (129,130).  In another model, POMC 
neurons were progressively ablated by deleting the 
mitochondrial transcription factor A (Tfam) gene using a 
Cre-lox approach.  These mice developed an obesity 
syndrome similar to that described for Pomc null mice 
(131). 

 
Mutations in the POMC processing enzyme, PC1, 

are associated with obesity in humans, but PC1-null mice 
are not obese.  A recent study, however, does support a role 
for impaired regulation of POMC processing in the 
pathogenesis of obesity in mice.  Deletion of the neuronal 
transcription factor, Nhlh2, which is expressed in POMC 
neurons and regulates PC1 and PC2 mRNA levels, results 
in adult onset obesity (132).  The null mice have normal 
POMC mRNA levels in the arcuate but have reduced levels 
of α-MSH with relatively more ACTH and pro-ACTH. 
 
4.1.2. Human POMC mutations and mutations in 
POMC processing enzymes 
 In 1998,  Krude and colleagues reported two 
patients from Germany with genetic POMC deficiency 
characterized by adrenal insufficiency, red hair 
pigmentation and early-onset obesity (133). The first 
patient was found to be a compound heterozygote for two 
mutations in exon 3 that resulted in ACTH and α-MSH 
deficiency.  She had a normal birth weight and was 
diagnosed with adrenal insufficiency when she developed 
cholestasis at 3 weeks of age and was treated with 
hydrocortisone replacement.  Increased appetite and obesity 
were first noted at 4 months of age.  The second patient 
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was homozygous for a mutation in exon 2 which 
abolishes POMC translation.  His birth weight was 
normal and obesity was first noted at 5 months of age.  
Adrenal insufficiency was diagnosed at 12 months of 
age when he developed hypoglycemia and hyponatremia 
and was treated with hydrocortisone replacement.  
Subsequent development in both children was normal 
except for the abnormal eating behavior and obesity.  
Both children had pale skin and red to red-orange hair 
color. The heterozygous parents in both families had 
normal adrenal function and did not have obesity or red 
hair.  Remarkably, the children were obese despite 
adrenal insufficiency which normally leads to anorexia 
and weight loss.  The contrast between these patients 
with generalized POMC deficiency and with the more 
typical patients who have POMC deficiency limited to 
the pituitary, underscores the critical role that 
hypothalamic POMC plays in regulating energy balance.  
Two other pediatric patients were subsequently 
described with a similar POMC deficiency syndrome 
(134).   A 4 year old boy from Slovenia was found to be 
a compound heterozygote for two new POMC mutations 
and a boy from the Netherlands was found to have the 
same previously described POMC exon 2 mutation.   
Recently a novel  homozygous frameshift mutation in 
POMC, predicted to lead to the lose of all POMC-
derived peptides, was found in a child of Turkish origin 
with adrenal insufficiency and severe obesity (77).    In 
this family, of the 12 relatives that were heterozygous 
for the POMC mutation, 11 were obese.  In contrast, of 
the 7 relatives that were wild-type only one was obese.  
Thus, in humans, as in mice, the loss of one copy of the 
POMC gene predisposes to obesity.     
 
 Recently two groups have reported POMC 
variants that implicate ß-MSH in the control of human 
body weight regulation (135,136).  In one study, 538 
patients with severe, early-onset obesity were screened 
for POMC mutations and 5 unrelated probands, who 
were heterozygous for a rare missense variant in the 
region coding for ß-MSH, were identified (135).  In the 
other study, a similar mutation was found  during a 
screen of 15 severely obese children (136). Compared to 
wild-type ß-MSH, the ability of the variant peptide to 
bind to and activate the MC4-R was impaired.  A 
missense mutation that disrupts the dibasic amino acid 
cleavage site between ß-MSH and ß-EP has also been 
reported to occur more frequently in obese children 
(137).  
 
 Impaired processing of POMC has also been 
associated with human obesity in three instances.   In two 
patients the processing abnormality was due to mutations in 
the prohormone convertase 1 gene (138, 139) but in the 
third patient the cause remains obscure (140).   Further 
evidence that POMC may modulate weight level in humans 
is provided by a study in a population of Mexican 
Americans showing a linkage of serum leptin levels and fat 
mass to an interval on chromosome 2 which includes the 
POMC locus (141). Subsequent studies in a French and in 
an African-American population  have reported similar 
associations (142,143). 

4.2. Melanocortin Receptor Mutations 
4.2.1. Mc-r null mice 

Mice with targeted deletion of the melanocortin-4 
receptor (MC4-R) display an obesity syndrome that 
parallels the obesity phenotype exhibited by mice that 
overexpress the endogenous melanocortin receptor 
antagonists, agouti protein and AGRP (9,10).  With 
complete absence of MC4-R, mice develop a maturity 
onset obesity characterized by hyperphagia, 
hyperinsulinemia, hyperglycemia, hyperleptinemia, and 
increased body length.   Mice heterozygous for the Mc4-r 
deletion display a phenotype intermediate to that of wild-
type and homozygous littermates.   Pair feeding studies 
have demonstrated that hyperphagia alone does not entirely 
account for the obesity developed by Mc4-r knockout mice.   
Mc4-r-/- mice still weighed significantly more than wild-
type mice when their food intake was restricted to that of 
the wild-type mice (144).   Pair-fed Mc4-r-/- mice also 
demonstrated increased adiposity consistent with  effects of 
MC4-R on energy partitioning (144).   Oxygen 
consumption was also reduced among Mc4-r knockout 
animals compared to wild-type (144).   Normally, wild-type 
mice respond to increased fat in the diet with increased 
diet-induced thermogenesis and physical activity; neither 
response was observed in Mc4r -/- mice (145). Mc4r -/- 
mice also exhibit an attenuated increase in fatty acid 
oxidation after exposure to a HF diet, consistent with a role 
of the MC4-R in regulating fat metabolism in the liver 
(146).  Selective restoration of the Mc4r to the PVN of 
Mc4r -/- mice has been shown to attenuate the obesity 
primarily by decreasing hyperphagia but the reduced 
energy expenditure was unaffected (147).   Thus food 
intake and energy expenditure are regulated by distinct 
melanocortin pathways.   Finally, α−MSH analogs fail to 
suppress feeding or stimulate metabolic rate in Mc4r -/- 
animals which implies that MC4-R is the receptor primarily 
responsible for mediating the effects of α−MSH on energy 
balance (148,149). 

 
The importance of the MC4-R in modulating 

insulin sensitivity has also emerged from studies of Mc4r 
null mice and it is clear that their insulin resistance is not 
merely secondary to the obesity.  Young Mc4-r deficient 
mice, maintained on a low fat diet, exhibited fasting 
hyperinsulinemia and impaired insulin tolerance even prior 
to the development of hyperphagia or obesity (150).    
Additional support for the MC4-R in modulating insulin 
sensitivity is provided by a study, using icv infusion of 
antisense oligonucleotide to reduce MC4-R expression in 
the hypothalamus, that resulted in decreased insulin 
sensitivity even in the absence of significant differences in 
feeding and adiposity (151). 

 
While studies in both rodent models and obese 

humans have defined a critical role for MC4-R in 
mediating energy homeostasis, the exact contribution of 
MC3-R is not entirely clear, but is likely related to feed 
efficiency and energy partitioning of fat stores.  Mc3-r 
deficient mice have a milder obesity phenotype which is 
distinct from that of the Mc4-r knockout. Mc3-r knockout 
mice have increased fat mass and reduced lean body mass 
but are not hyperphagic (12,13).  In addition, Mc3-r 
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deficient mice are only mildly hyperinsulinemic and exhibit 
increased feed efficiency as well as a significantly higher 
respiratory quotient compared to wild types when placed on 
a high fat diet (12).  Moreover, mice lacking both MC3 and 
MC4 receptors are significantly heavier than mice deficient 
in MC4-R alone (13). Thus both receptors regulate energy 
balance in a non-redundant manner.  In addition, the MC3-
R and MC4-R play very different roles in  tumor-induced 
cachexia.  While Mc4-r null animals are relatively 
protected from disease induced anorexia and cachexia, 
Mc3-r null animals demonstrate enhanced susceptibility 
with increased weight loss and reduction in lean body mass 
(86). 
 
4.2.2. Human MC3/4-R mutations 

MC4-R mutations are considered to be the most 
common monogenic form of severe obesity.  In 1998, 
heterozygous frameshift mutations in the MC4-R gene were 
first reported in association with dominantly inherited 
obesity (152,153).  Subsequently, many MC4-R gene 
mutations have been detected in multiple ethnic groups 
(154,155 -156).  One large study of 500 patients reported 
that 5.8% of patients with severe early onset morbid obesity 
harbor pathogenic mutations of the MC4-R (157).   A 
recent review of several large series noted the discovery of 
91 mutation carriers (3%) in 3057 children and adolescents 
with severe early onset obesity and also reported for the 
first time an incidence of 2.8%  in 769 obese adults with 
later onset obesity (158).  Although the majority of MC4-R 
gene mutations altering MC4-R activity have been detected 
in patients with obesity, some subjects with these variants 
were not obese.  Thus, it appears that haploinsufficiency 
mutations in the MC4-R gene promote obesity with variable 
expressivity.  In light of the many potential factors 
contributing to the regulation of body weight, it is also 
reasonable to expect that a combination of genetics and 
environment may alter the phenotypic expression of these 
gene variants.   

 
Obese individuals with MC4-R mutations 

demonstrate hyperphagia, hyperinsulinemia and increased 
linear growth in childhood (156,157).  These subjects 
display a marked increase in bone mineral density and 
possess not only increased fat mass but increased lean mass 
as well (157). Thyroid, adrenal, and reproductive axes 
appear to be normal in these patients. Thus the human 
phenotype caused by impaired MC4-R function appears to 
resemble that of the Mc4-r knockout mouse.   

 
 Functional studies have also provided cogent 
supporting evidence for the pathogenic role of MC4-R 
mutations in causing obesity.   MC4-R mutations leading to 
defective cell surface expression of the receptor or 
alterations in ligand binding affinity and impaired cAMP 
generation have been documented (159).   MC4-R 
mutations that lead to impairments in the constitutive 
activity of MC4-R have also been described, and it has 
been suggested that this may contribute to the development 
of obesity in some carriers (160).  There is a correlation 
between in vitro function of the mutant MC4-R and the 
clinical phenotype (157).   An association between the 
severity of the functional alterations in the MC4-R and the 

age of onset of obesity has also been reported (158).  These 
studies provide compelling data for the role of the MC4-R 
in controlling energy balance in humans. 
 

Although several MC3-R mutations have been 
found in humans, the data regarding their relevance to the 
pathogenesis of human obesity is, thus far, inconsistent.  
One study of 355 overweight and non-overweight children 
found two partially inactivating polymorphisms of MC3-R 
associated with high body weight (161).  However, another 
report examining the same polymorphism in an adult 
population found no such correlation (162).  Similarly, a 
study of 252 morbidly obese adults  and 312 controls 
detected 3 MC3-R gene variants with equal frequency in 
both the obese and control groups (163).  Thus, convincing 
evidence that MC3-R mutations have a major impact on the 
pathogenesis of human obesity is lacking.  
 
4.3. AGRP  Mutations 
4.3.1. Agrp null mice 
  Hyperphagia and obesity are produced by either 
chronic central infusion of AGRP or transgenic 
overexpression of AGRP.   One might have then predicted 
that deletion of  Agrp would generate a lean mouse resistant 
to diet induced obesity.  Instead, a surprisingly normal 
phenotype was initially reported.   In one study, Agrp -/- 
mice, studied on a mixed genetic background, 
demonstrated weight gain and feeding behavior that was no 
different from wild-type mice (115).   Furthermore, 
changes in body weight and reflex hyperphagia in response 
to fasting as well as cumulative food intake during 
refeeding were comparable between Agrp -/- and wild-type 
mice (115). When challenged with a high fat diet,  weight 
gain was similar in Agrp -/- and wild-type mice (115).  In a 
more recent study, Agrp-/- mice were independently 
generated and studied on the C57BL/6J background and 
were found to have an age related lean phenotype that only 
became evident after 6 months (164).  At 6 months the 
Agrp-/-  mice demonstrated reduced body weight and 
adiposity that was associated with elevations in metabolic 
rate, body temperature, and locomotor activity (164).   This 
was accompanied by increased circulating thyroid hormone 
levels and greater UCP-1 expression in brown adipose 
tissue which could both contribute to the genesis of this age 
related lean phenotype (164).  Developmental 
compensatory changes are likely responsible for the 
relatively normal phenotype exhibited by Agrp-/- mice as 
recent studies have revealed a lean, hypophagic phenotype 
in mice with postembryonic ablation of AGRP neurons and 
the degree of compensation depends on the age at the time 
of neuronal ablation.  In one study, the human diphtheria 
toxin receptor was targeted to the Agrp locus which allows 
temporally controlled ablation of AGRP neurons after 
injection of diphtheria toxin (165). Neonatal ablation of 
AGRP neurons had little effect on feeding while ablation in 
adults caused a profound decrease  in food intake and body 
weight.  Another group, using a similar approach, also  
reported that selective ablation of AGRP neurons in adults 
results in acute reduction of feeding (166).  Finally a third 
group using a somewhat different neurotoxic approach, also 
noted a lean, hypophagic phenotype (167).    It should  be 
noted that the manipulations in these studies lead not just to 
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the loss of AGRP, but to the entire neuron, and it is at this 
point unclear how much of this phenotype is due to loss of 
AGRP versus GABA and NPY which are also synthesized 
by these neurons.  Indeed, there is evidence for 
upregulation of POMC despite the lean phenotype that 
could result from the loss of GABA inhibitory inputs  
(165).   
 
4.3.2. Human AGRP mutations 

There is some evidence that polymorphisms in 
both the promoter and coding regions of AGRP are 
associated with body weight regulation and a propensity 
towards a lean phenotype.  In one population study of 874 
subjects in Quebec, investigators found that homozygosity 
for a substitution of alanine to threonine at codon 67 in 
exon 3 of the AGRP gene (Ala67Thr) was associated with 
significantly lower body weight, adiposity, and fat free 
mass compared to heterozygous patients (168).  This same 
polymorphism in the heterozygous state was also found at a 
significantly higher frequency (11%) among patients with 
anorexia nervosa compared to 4.5%  in Dutch and German 
control patients (169).  Although the Quebec study did not 
reveal any correlation between body weight and 
heterozygosity for the Ala67Thr allele, Argyropoulos et al. 
did find an association between Ala67Thr and  the presence 
of lower BMI, fat mass, percent body fat, and amount of 
abdominal visceral fat but only among a population with a 
mean age of 53 years (170).  However, a Dutch study with 
subjects whose mean age was 29 found that male subjects 
with the Thr67 allelic variant actually had higher BMI 
values than those who were Ala/Ala homozygous (171). 
Thus, the data regarding the impact of these AGRP 
polymorphisms are somewhat inconsistent, and further 
study is needed before conclusions on their true effect in 
modulating human energy balance can be drawn. 

 
 Another polymorphism located in the promoter 
region of the AGRP gene was identified that was found to 
affect transcription factor binding affinity (172).  The 
variant, conferring increased binding affinity, was 
significantly associated with high BMI and type 2 diabetes 
in an African population.  Similar results were found 
among Black patients in the Heritage Family Study (173).  
This latter study also demonstrated that subjects 
homozygous for the allelic variant with reduced binding 
affinity had significantly lower BMI and adiposity than 
heterozygous patients (173).  Thus, it is possible that this 
polymorphism may offer protection from development of 
obesity in certain populations. 
 
5.  MELANOCORTIN SYSTEM AS A  POTENTIAL 
TARGET FOR THE TREATMENT OF OBESITY 
AND CACHEXIA 
 
 The studies described above clearly indicate an 
important role for the central melanocortin system in 
maintaining energy balance and have potential therapeutic 
implications for human obesity and cachexia.  One 
therapeutic approach for the treatment of obesity would be 
to increase the activity of the central melanocortin pathway 
by administration of α-MSH analogues.  Conversely, 
selective blockade of central MC-Rs could be used to 

decrease the cachexia associated with many chronic 
illnesses (174).  An important consideration in developing 
effective α-MSH agonists and antagonists is that the 
potential compounds cross the blood-brain barrier and gain 
access to appropriate central melanocortin receptors.  
Numerous animal studies have demonstrated inhibitory 
effects of either native α-MSH or of α-MSH analogues on 
food intake,  body weight gain  and adiposity.   In most of 
these studies, peptides were administered directly into the 
brain by the intracerebroventricular route.   Peripheral 
administration of α-MSH  has, however, been effective in a 
few studies with the largest effect on body weight 
demonstrated in Pomc knockout mice with lifelong α-MSH 
deficiency (7).  Peripheral injection of the MSH analog 
MTII was also effective in suppressing body weight gain in 
leptin receptor deficient rats and in diet-induced obese mice 
(61,68).     
 

Potent, stable MSH analogues have been 
administered to a small number of human subjects but to 
date published studies have focused on  skin tanning and on 
erectile function rather than on energy balance.  Both [Nle4, 
DPhe7] α-MSH, referred to as melanotan-I (MT-I), and Ac-
Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2, referred to as 
melanotan-II (MT-II), have been shown to be effective in 
promoting tanning and providing photoprotection when 
given subcutaneously for several weeks (175-177).  Side 
effects noted in these studies included nausea, vomiting, 
anorexia, gastrointestinal discomfort, flushing and fatigue 
in a substantial proportion of subjects.   MT-II was noted to 
produce penile erections in normal men during the skin 
tanning studies and has subsequently been evaluated for 
treatment in men with erectile dysfunction (178).   A new 
MTII analog, PT-141 is currently being evaluated for the 
treatment of erectile dysfunction via the intranasal route 
(179).  Although these analogs are likely acting on the 
MC1-R in the skin to produce tanning, the exact locus of 
action of the other reported effects is still unknown.   No 
effects on energy balance were reported in the published 
MTI and MTII human studies but interpretation may have 
been complicated by the side effect profile.   Effects on 
body weight and adiposity have been reported in humans 
treated via the intranasal route with the MSH fragment 
ACTH 4-10 which is much less potent than either MTI or 
MTII.   An initial study reported that intranasal ACTH 4-10 
reduced body fat in normal weight subjects (180).   
However, subsequent studies showed that intranasal ACTH 
4-10  had no effect on body weight or adiposity in obese 
subjects or in two POMC deficient subjects (181,182).   

 
The challenge for the treatment of obesity will be 

to develop stable, well-tolerated α-MSH analogues which 
gain access to and selectively activate the appropriate 
central melanocortin receptors that regulate food intake and 
energy expenditure.  Another treatment approach would be 
to enhance melanocortin signaling by selectively 
antagonizing AGRP.   Since AGRP neurons project less 
widely than POMC neurons and thus interact with only a 
subset of MC-Rs, antagonism of AGRP should produce 
more selective effects than administration of an MSH 
agonist.  Such a strategy and might also avoid some of the 
side effects noted with MSH agonists.   Additional 
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approaches might include treatment with compounds that 
stimulate hypothalamic POMC synthesis and increase α-
MSH release or inhibit AGRP synthesis.  In addition, 
downstream pathways that mediate effects of melanocortin 
receptor activation could also be targeted.   There is still 
much to be learned about these downstream pathways and 
how the melanocortin pathway interacts with other central 
and peripheral regulators of energy homeostasis.  Thus, 
while there has been considerable progress in elucidating 
the physiology of the central melanocortin system and its 
role in regulating energy balance, the science has yet to 
fully realize its therapeutic promise.  
 
6.  PERSPECTIVE 
 
 The central melanocortin system, which consists 
of POMC, AGRP and the brain melanocortin receptors, 
plays a key role in regulating feeding behavior and energy 
homeostasis.  A growing number of studies in both the 
mouse and the human with genetic defects in the synthesis 
or processing of POMC,  or with defects in melanocortin 
receptor signaling, clearly indicate the  importance of this 
system.   A genetic POMC deficiency syndrome 
characterized by adrenal insufficiency, red hair 
pigmentation and early-onset obesity has been described in 
the human.  It is particularly striking that obesity occurs in 
patients with generalized POMC deficiency and in  Pomc 
knockout mice despite the presence of adrenal 
insufficiency, which under other circumstances, would lead 
to weight loss.  The contrast between these patients with 
generalized POMC deficiency and the more typical patients 
with POMC deficiency limited to the pituitary, underscores 
the critical role that hypothalamic POMC plays in 
regulating energy balance.   The importance of the MC4-R 
in this process is demonstrated by the Mc4-r knockout 
mouse and by the growing number of obese patients 
reported with MC4-R mutations, making this the most 
common known monogenic cause of human obesity.  The 
melanocortin regulatory system appears to be sensitive to 
variations in MC4-R and POMC expression as indicated by 
the fact that heterozygous mutations are associated with 
obesity in both mice and in humans.   Thus, there is 
considerable evidence that the hypothalamic melanocortin 
pathway regulates human feeding behavior and energy 
homeostasis and that abnormalities in this pathway can lead 
to obesity.   A more detailed understanding of the control of 
this pathway and its integration with a growing number of 
other hypothalamic signaling pathways involved  in 
maintaining energy balance will hopefully lead to effective 
new therapies for human obesity.   
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