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1. ABSTRACT 
 

Tumor hypoxia is a serious and enduring problem 
for traditional solid tumor therapies.  Many scientists 
continue to explore methods to improve or exploit tumor 
oxygenation; more recently, scientists have also focused on 
altering the molecular effects of hypoxia.  These cellular 
responses to hypoxia and the resulting physiological 
effects, with a focus on angiogenesis, invasion/metastases, 
apoptosis, and metabolism, are examined.  Recent efforts to 
mitigate or exploit these molecular pathways alone and in 
conjunction with traditional therapies are also explored.  
Current experimental results suggest that targeting multiple 
downstream molecular pathways of hypoxia will be more 
effective than targeting a single molecular pathway of 
hypoxia, and careful planning is necessary in scheduling 
these new therapies to optimize their effects in combination 
with traditional therapies.   

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION   
 
2.1. Clinical Implications of Tumor Hypoxia 

Tumor hypoxia has become one of the most 
studied physiological phenomena in cancer research due to 
its complexity and pervasiveness in solid tumors.  Tumor 
hypoxia has been shown to be prognostically significant in 
many clinical studies, independent of treatment type (1-6).  
Patients with hypoxic tumors have lower overall survival, 
decreased response rates, and higher rates of tumor 
reoccurrence and metasases (1-7).   
 

The causes for poorer prognosis are multi-fold.  
Initially, hypoxia-related resistance in tumors was believed 
to be primarily a problem for radiotherapy, because 
hypoxic cells have increased radio-resistance compared 
with normoxic cells (8).  At O2 concentrations below 10 
mmHg, radiosensitivity of cells decreases.  Under anoxic
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Figure 1. Longitudinal gradients in tumor oxygenation.  A) 
Tumor and fascial images of high resolution magnetic 
resonance GdAlbumin angiography in tumor bearing dorsal 
skin-fold window chamber.  Vessels on fascial side are 
larger, easily visible, and evenly distributed and perfused.  
Vessels on tumor side  (which are fed from vessels on 
fascial side) are disproportionately distributed along edges, 
and unevenly perfused.  B) Tumor and fascial 
phosphorescence lifetime images of pO2.  The tumor 
surface is significantly more hypoxic than the fascial 
surface, reflecting the longitudinal gradient which occurs 
along afferent blood supply.  This dramatic drop in vascular 
oxygenation occurs over very short distance, in this Figure 
the distance between the fascial and tumor surface images 
is only 250 µm.  Figure adapted from  (214) with 
permission of the author and publisher.  

 
conditions, a 3-fold higher dose of radiation is necessary to 
kill the same fraction of cells compared with irradiating 
them under normoxic conditions (8). In the clinical setting, 
fewer tumor cells in hypoxic regions are killed than in 
normoxic regions when given the same dose.  The 
increased sensitivity of cells to radiation in the presence of 
oxygen occurs because molecular oxygen reacts with 
radiation induced damage in DNA, rendering changes in 
DNA base structure that is difficult for cells to repair (8).   
 

Hypoxic tumor cells are also chemoresistant.  
Several factors contribute.  First, the decreased rate of 
proliferation of hypoxic cells causes resistance to drugs that 
are cell cycle specific (9-11). Second, the same deficiencies 
in perfusion that lead to hypoxia contribute to inefficient 
drug transport to hypoxic cells (11).  Third, hypoxic cells 
often have set up defenses to protect them from their 
environment, such as elevations in GSH, that lead to 
multidrug resistance (11).   
 

In addition to treatment resistance, it has been 
shown that hypoxic cells also demonstrate other 
adaptations.  Hypoxia leads to increased tumor cell 
invasiveness and increased angiogenesis. Both of these 

adaptations contribute to increased propensity for 
metastasis.  Additionally, tumor cells are also known to 
develop a glycolytic phenotype, often altering their 
metabolism to utilize glucose when low oxygen levels are 
limiting aerobic respiration. While not contributing directly 
to treatment resistance, these alterations in metabolism 
favor tumor cell survival under noxious environmental 
conditions. 
 

In summary, the plethora of effects caused by 
tumor hypoxia provide a strong rationale for trying to 
understand and potentially exploit this feature of tumors. 
 
2.2. Definition of hypoxia 

Before going into detail on the causes and 
consequences of tumor hypoxia it is necessary to define 
what is meant by this term. For the purposes of this review, 
we will define this as a threshold of 10 mmHg. We chose 
this value because it is the threshold below which 
radioresistance increases (8).  Second, below this value, 
changes in tumor cellular function tend to occur (12), 
leading to the phenotypic changes described above. 
Additionally, below this value there are changes in red cell 
fluidity that increase blood viscosity, leading to alterations 
in tumor perfusion (13). 

 
2.3. Determinants of tumor hypoxia   

O2 concentration in tumor tissue, as in all tissues, 
is the result of a balance between O2 delivery and 
consumption.  In normal tissues, this balance is tightly 
regulated to prevent hypoxia, even at times of peak O2 
metabolism.  This balance is largely controlled by evenly 
distributed arteriolar-capillary networks.  In the event that 
hypoxia does occur in normal tissues, balanced signaling 
cascades lead to vascular remodeling, or angioadaptation, 
until the tissue pO2 is back within its normal range (14, 15).  
In normal tissues, the supply of oxygen is sufficient to meet 
the demands of the tissue. 

 
Tumors are unable to regulate their O2 levels 

because they are not able to strictly control O2 delivery or 
consumption.  This results in regions of hypoxia within the 
tumor which are spatially and temporally variable.  No 
standard treatment has been developed which successfully 
and significantly decreases tumor hypoxia, although many 
have been proposed.  To understand the difficulty behind 
alleviating tumor hypoxia, a clear portrayal of the 
physiologic and metabolic characteristics of tumors is 
necessary.   
 

There are two types of oxygen gradients in 
tumors:  (1) radial gradients, or decline in oxygen 
concentration as one moves radially away from a 
microvessel and  (2) longitudinal gradients, which are 
defined as decline in vascular oxygen concentration when 
moving afferently along the vasculature (Figure 1).  These 
two features are not independent. The lower the vascular 
oxygen concentration, the shorter the radial oxygen 
diffusion distance is. These same types of gradients can be 
found in normal tissues, but in the case of normal tissues, 
one rarely observes hypoxia. Thus, the gradients are much 
more subtle in magnitude. 
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Figure 2.  Diagrammatic illustration of fluctuations in 
tumor hypoxia.  Each image represents a different time 
point.  At location A, the tumor tissue is undergoing 
diffusion limited hypoxia at all time points, the red cell flux 
in nearby vessels has a negligible effect at this location.  At 
location B, the tumor tissue is well-oxygenated at all time 
points, although increased red cell flux at the first and last 
time points do have a minor effect on the oxygen 
concentration.  At location C, the tumor tissue is 
undergoing fluctuations in tumor pO2.  As the red cell flux 
decreases in nearby vessels at different time points, less O2 
is available to diffuse out to this location and it becomes 
hypoxic, even though the tissue immediately near this same 
vessel stays normoxic.  At location D, the O2 concentration 
fluctuates with time, but ranges from normoxic to 
intermediately hypoxic as the red cell flux in several nearby 
vessels changes.   
 

O2 availability in tumors is limited due to 
physiological constraints, particularly irregularities in 
tumor vasculature.  The irregularities are caused by 
imbalances in angiogenic cytokines that regulate 
angiogenesis and vascular maturation.  Four unique traits of 
tumor blood vessels have been described: abnormal 
branching structures and uneven distribution of 
microvessels; steep longitudinal oxygen gradients along 
afferent vasculature; decreased quantity of arterioles; and 
unsteady red cell distribution at bifurcations, leading to 
unstable red cell flux  (number of cells passing through a 
microvessel per unit time).  Abnormalities in the shape and 
distribution of microvessels clearly results in regions in 
which there are overabundances of microvessels, which can 
be connected by short shunts, and regions in which there is 
a scarcity of microvessels.  In the regions in which 
microvessels are scarce, large inter-microvessel distances 
result in regions of tumor tissue which are beyond the 
radial diffusion distance of O2, and are chronically hypoxic  
(remain below 10 mmHg for long periods of time).   
 

Steep longitudinal oxygen gradients can also 
result in large areas of chronically hypoxic tumor tissue, 
although this is not due to the limited radial diffusion of O2.  
Rather, axial O2 gradients are seen in afferent flow.  This 

phenomenon is further perpetuated by the reduced number 
of arterioles in tumors, as compared with comparable 
normal tissue.  Lack of sufficient arteriolar supply and 
steep longitudinal gradients can result in tumor vessels 
which are themselves hypoxic, even when they are 
perfused.  Consequently regions of tumor tissue adjacent to 
blood vessels can also be hypoxic.   
 

Oxygen consumption rates of tumors are not 
exceedingly high compared with most normal tissues (16). 
This leads one to the conclusion that it is the deficiencies in 
oxygen delivery that are most responsible for hypoxia, as 
opposed to oxygen consumption rates.  Nevertheless, at the 
microregional level, variations in oxygen consumption rate 
could contribute to hypoxia. For example, the oxygen 
consumption rate of proliferating cells averages 3-5 times 
that of Go cells (17). Additionally, activated macrophages, 
which can be found in tumors, have very high oxygen 
consumption rates during periods of production of reactive 
oxygen species. 
 

In addition to the deficiencies in oxygenation 
caused by vascular architecture, it is now well established 
that the oxygenation state of tumors is not stable (Figure 2).  
Unsteady red cell flux through the entire vascular structure 
of a tumor creates temporal instability in oxygenation state 
that extends from the microvascular supply vessels to the 
regions most distant from that supply (18, 19).  The 
instability in oxygenation has implications for radiotherapy 
fractionation and may also influence gene expression in 
ways that are independent of hypoxia itself.  

 
3. MODIFYING DOWNSTREAM EFFECTS OF 
TUMOR HYPOXIA 
 

Since the discovery that tumor hypoxia alters the 
efficacy of therapy, many clinical and pre-clinical studies 
have been published, examining a plethora of means to 
reduce tumor hypoxia..  Hyperbaric chambers and 
hyperoxic gas breathing with or without radiosensitizers 
have shown limited success in some tumors (20-22).  A 
number of other approaches have been attempted, including 
administration of agents to right shift the hemoglobin 
saturation curve, cell free hemoglobin, and artificial blood 
substitutes (23, 24).  Hyperthermia treatment has been 
shown to decrease tumor hypoxia in murine, canine and 
human tumors (25, 26).  When combined with hyperoxic 
gases hyperthermia has been shown to virtually eliminate 
hypoxia and increase radiation response in pre-clinical 
models. To date, however, there is no accepted clinical 
standard for eliminating tumor hypoxia (27-29).  Aside 
from trials of hyperbaric oxygen, there is no level-one 
clinical evidence that modification of hypoxia improves 
local control when modified during radiotherapy treatment. 
 

Without a reliable method to significantly reduce 
tumor hypoxia some investigators have instead  focused on 
specifically targeting hypoxic cells (30-33).  Hypoxic 
cytotoxins are now in clinical trials. Other approaches that 
have been tested pre-clinically include anaerobic bacteria 
and adenoviral vectors that proliferate and kill tumor cells 
specifically under hypoxic conditions (33).   
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An alternative strategy to directly killing hypoxic 
cells is to target molecular consequences of hypoxia.    
Some of the molecular effects can be mitigated or exploited 
either as direct therapies or as methods of improving the 
effects of standard therapies.    
 
3.1. HIF  

The central connection between physiological 
hypoxia and the cellular response is mediated by hypoxia-
inducible transcription factors, or HIFs.  Three HIF 
isoforms have been reported in human and rodent cells, 
with oxygen-dependent HIF-α subunits HIF-1α, HIF-2α, 
and HIF-3α.   
 

These HIF-α subunits have been shown to 
heterodimerize with the oxygen-independent HIF-1β, or 
aryl hydrocarbon receptor nuclear translocator  (ARNT) 
(34).  The literature has mainly focused on the effects of 
HIF-1α, which will be the focus of this review, although 
more recently HIF-2α (35, 36) and HIF-3α activities in 
tumors have also been investigated (37).   
 

HIF-1 regulates over one hundred genes, 
including those involved in angiogenesis, 
invasion/metastasis, apoptosis, and metabolism.    
 

Both HIF-1α and HIF-1β are constitutively 
expressed in all cells (12, 38, 39).  The O2 sensors that 
control expression of HIF-1α are a family prolyl 
hydroxylases  (PHD 1-3) (40, 41).  Using O2 as a limiting 
substrate, these Fe (II)-dependent PHDs catalyze the 
hydroxylation of prolyl residues within the oxygen-
dependent degradation domain  (ODD) of HIF-1α under 
normoxia (39).  The hydroxylated HIF-1α subunit binds to 
the von Hippel-Lindau  (VHL) E3 ubiquitin ligase 
complex, resulting in degradation of the hydroxylated HIF-
1α at high pO2s (38, 42).  This process is very efficient in 
normoxic cells, such that under normal circumstances, HIF-
1α is not measureable (43, 44). 
 

An asparaginyl hydroxylase, named Factor 
Inhibiting HIF-1  (FIH-1) provides an additional point of 
regulation of this promoter (45). It also results in HIF-1α 
hydroxylation; however, the hydroxylation occurs at the C-
terminal transactivation domain.  This alters the affinity 
between HIF-1α and its coactivator proteins p300/CBP, 
barring the transactivation of target genes under normoxia 
(46, 47). 
 

A recent study has indicated that HIF-1 is 
regulated by transcription-dependent degradation.  
Demidenko et al showed that under hypoxic conditions, 
tumor cells treated with a transcription inhibitor showed a 
dramatic increase in HIF-1α levels.  This increase in HIF-
1α was partially inhibited by the use of deacetylases, 
offering a potential therapeutic target (48).   
 

Under hypoxic conditions  (in vitro Km for HIF 
signaling was determined to be 15-20 µM (12)), HIF-1α 
almost instantaneously accumulates and is translocated to 
the nucleus (49, 50), along with HIF-1β.  In the nucleus, 
HIF-1α and HIF-1β dimerize and bind to target gene motifs 

called hypoxia responsive elements  (HREs) to alter gene 
expression (51).   
 

HIF-1 can also be regulated in tumor cells 
through O2-independent genetic alterations.  Although this 
type of HIF regulation is not strictly within the scope of 
this paper  (see reviews  (52, 53)), uncoupling the O2-
dependent and -independent HIF-1 levels is difficult.  
Perhaps the key difference for O2-independent regulation of 
HIF-1 is that the genetic alterations usually result in an 
increase in HIF-1α production through loss-of-function or 
gain-of-function mutations (38, 54-58).  These genetic 
alterations affecting HIF-1 expression in specific tumor cell 
lines have been crucial to determining possible targets for 
therapeutics, which are discussed below.     
 
3.1.2. HIF-1 targeting 

High HIF-1 levels in human tumor biopsies are 
associated with increased mortality in a variety of solid 
tumors (52, 59-62).  Decreased HIF-1 activity has been 
shown to decrease tumor growth in preclinical models (63-
65).  Combined with the knowledge of the many 
downstream effects of HIF-1 activation, HIF-1 is an 
excellent target for therapy.   
 

Due to the well-characterized mechanisms of 
HIF-1 regulation, many approaches for HIF-1 targeting 
have been developed.  Perhaps one obvious technique has 
been to target the co-activator proteins of HIF-1α (66, 67), 
preventing its translocation to the nucleus.  This approach 
has been shown to decrease tumor growth in xenograft 
models, as well as mitigate some of the downstream effects 
of hypoxia related to angiogenesis and metabolism (68, 69).  
Similarly, HSP90, which is known to be involved in the 
folding of HIF-1α, has also been targeted in an effort to 
reduced HIF-1 activity. The HSP90 inhibitor geldanamycin 
has been shown to destabilize HIF-1α under both normoxia 
and hypoxia, resulting in transcriptional inhibition of 
VEGF in several cancer cell lines (70, 71).  Other targets 
for therapy might target dimerization between HIF-1α and 
HIF-1β , inhibit its synthesis or prevent accumulation of 
HIF-1α under hypoxia (72-75).   
 
 Genetic approaches for HIF-1 targeting have also 
shown promising results.  Antisense HIF-1α plasmids have 
been shown to suppress HIF-1α expression in tumors, 
reducing both VEGF levels and vascular density (76).  In 
one preclinical study done in two human tumor lines, cells 
transfected with antisense HIF-1α significantly inhibited 
tumor cell growth in vivo (77) (Figure 3).  Adenoviral 
delivery of antisense HIF-1α to established tumors also 
showed an anti-tumor effect when combined with radiation 
(77).  This result is consistent with previous studies, which 
have shown that suppression of HIF-1 gene expression 
inhibited tumor growth in a xenograft model (60, 78).  
Silencing HIF-1 in preclinical models has also been shown 
to increase drug penetration.   
 

An enormous effort is on-going within the 
scientific community to develop effective, non-toxic 
methods of targeting HIF in human patients; meanwhile, 
there are also on-going efforts to develop methods of
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Figure 3.  Results of tumor growth delay using adenoviral 
delivery of antisense HIF-1α with and without radiation.  
Established HCT116 tumors 6-8 mm in diameter were 
given three doses of an adenovirus containing antisense 
HIF-1α or a scrambled sequence every other day.  If 
appropriate, tumors were irradiated 24 hrs after adenoviral 
injections.  While antisense HIF-1α alone has no anti-tumor 
effect, antisense HIF-1α combined with radiation results in 
a tumor growth delay greater than that of radiation alone. 
From  (77) with permission of the author and publisher.   
 
targeting some of the larger down-stream molecular effects 
of HIF.   
 
3.1.2. Angiogenesis 

Pro-angiogenic pathways are an integral part of 
the HIF-1 response to hypoxia.  Since the seminal paper by 
Folkman on tumor angiogenesis in 1971 proposing that the 
size of a tumor was limited by its ability to grow new 
vasculature (79), the factors regulating blood vessel growth 
have been explored in great detail.  An attractive aspect of 
targeting angiogenesis is the fact that while tumor cells 
themselves are inherently genetically unstable, endothelial 
cells, which are part of the host cellular component of 
tumors, are not genetically unstable. A number of 
pharmacological means to target angiogenic pathways have 
been identified.   
 
3.1.2.1. Targeting VEGF 

The VEGF family is composed of seven 
homodimeric glycoproteins: VEGF A-F, and placental 
growth factor  (PlGF) (80-82).  VEGFA is believed to be 
the main regulator of angiogenesis in tumors, and is known 
to have at least six different isoforms, of which VEGFA145 
and VEGFA165 are the most commonly found (81-84).   
 

The angiogenic effects of VEGF are potentiated 
by their binding to VEGF receptors, two of which are 
receptors for VEGFA: VEGFR-1  (or Flt-1) and VEGFR-2  
(or KDR/Flk-1) (80, 81).  VEGFRs include an extracellular 
domain, transmembrane region, and a split tyrosine-kinase 
domain interrupted by a kinase-insert sequence (85, 86).  
The signal transduction of VEGF is mediated by the 
intracellular tyrosine-kinase domain (87), whose 
autophosphorylation at different sites is believed to activate 
different signaling pathways  (i.e. result in different cellular 
responses) (80, 81).   

VEGFA, VEGFR-1, and VEGFR-2 have all been 
shown to be up-regulated by hypoxia at least partially 
through the HIF pathway (82, 88).  VEGFR-1 is believed to 
primarily act as a negative regulator of VEGFR-2 due to its 
competitive binding with VEGFA (88-90); in any case, 
VEGFR-2 is considered to be the dominant mediator of the 
angiogenic response from VEGFA.  VEGF is upregulated 
in many human tumors, and has been shown to correlate 
with poor prognosis in several tumor types.   
 

VEGF pathway has long been considered an 
excellent target for therapy; numerous pre-clinical and 
clinical studies have reinforced that belief (91-94).  VEGF-
targeting agents which are now in clinical trials include a 
humanized monoclonal antibody to VEGF, and anti-
VEGFR-2 antibody, a soluble VEGFR, and small molecule 
inhibitors of VEGFR-2 signal transduction (95, 96).  A 
monoclonal antibody targeting VEGF, to prevent binding to 
its receptor has been approved for human use in metastatic 
colorectal cancer. 
 
3.1.2.2. Targeting angiopoietins 

The angiopoietin-Tie2 pathway is another 
important angiogenic pathway in endothelial cells and 
some tumor cells (97).  Tie-2 is a tyrosine kinase receptor 
with four known ligands, Angiopoietins 1-4  (Ang1-4) (98).  
Most studies have focused on the roles of Ang1 and Ang2 
with Tie-2, perhaps due to their competitive inhibition of 
each other.  Ang1 is the primary agonist for Tie-2; in 
normal tissues Ang1 is constitutively expressed and 
maintain vessels in an adult state by promoting interactions 
between endothelial cells and pericytes or other endothelial 
support cells (99, 100).  However, overexpression of Ang1 
in adult animals has been shown to produce 
neovascularization, and angiogenic effects in vitro such as 
endothelial cell tube formation, sprouting, migration, and 
survival (101).  Recent studies have linked the Tie-2 
signaling mechanisms to some of these endothelial cell 
behaviors through the PI3-K, PAK-1, MAPK, and/or 
Erk1/2 pathways.   
 

Ang2 has been shown to be upregulated by HIF-
1.  Although Ang2 has a similar affinity for Tie-2 binding, 
it does not induce autophosphorylation of the Tie-2 
receptor.  In fact, studies have shown conflicting results 
concerning the role of Ang2 in angiogenesis.  Initial studies 
suggested that Ang2 inhibited Ang1 binding to Tie-2 (102), 
resulting in little neovascularization.  More recent studies 
indicated that Ang2 activates Tie-2 (103, 104), advancing 
endothelial cell survival and differentiation and 
angiogenesis independently of Ang1.  This dual role for 
Ang2 can be attributed to VEGF, whose presence in 
conjunction with Ang2 has been shown to promote an 
angiogenetic response pathways (105).    
 

High microvascular density in human breast 
cancer has been found to be an independent prognostic 
factor, and to significantly correlate with Ang2 expression 
(106).  Strong expression of Ang2 and VEGF, but not Ang2 
alone, was also shown to correlate with disease free 
survival in breast tumors (106).  Similar results were found 
in patients with epithelial ovarian cancer, Ang1/Ang2 gene
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Figure 4.  Well established 4T1  (A) and B16F10.9  (B) 
treated with recombinant adenoviruses containing either 
soluble Tie2 receptor  (AdExTek), which blocks Tie2 
activation, or a control virus  (AdPacβ-gal).  Twelve days 
after treatment, ExTek showed a significant anti-tumor 
effect in both tumor lines.  From  (110) with permission of 
the author and publisher. 

 
expression was found to significantly correlate with poor 
prognosis (107).  
 

Preclinically, blocking Ang1 in human gastric 
cancer cells using an antisense vector resulted in a 
decreased tumor growth rate and decrease in microvascular 
density (108).  In another preclinical study, blocking Ang2 
function has been shown to reduce endothelial cell 
proliferation, prevent VEGF-stimulated angiogenesis, and 
resulted in tumor growth arrest (109).  Combined, this data 
suggests that angiopoietins are potential candidates for 

therapeutic targeting.  However, targeting all angiopoietins 
is of some concern, since Ang1 binding to Tie2 is required 
to maintain vascular maturity. Therapeutic approaches, 
therefore, may have to target Ang2 specifically, or target 
Tie-2.  
 

This approach was taken by Lin et al., who 
developed a soluble specific inhibitor of the Tie-2 
extracellular domain, ExTek (110, 111) (Figure 4).  ExTek 
was shown to inhibit binding of both Ang1 and Ang2 to 
Tie2, but did not alter tumor cell proliferation rate in 
treated cells (110, 111).  Systemic administration of ExTek 
using an adenovirus resulted in decreased growth and 
inhibition of metastases in murine mammary carcinoma 
and melanoma tumors (112).  Even the effects of VEGF 
stimulated angiogenesis in the corneal pocket were 
decreased with ExTek administration, suggesting possible 
interdependence of these two pathways (112).  The results 
of these studies have been confirmed by other investigators 
(113, 114).  Overall, the results from these studies suggest 
that targeting Tie-2 may have important therapeutic 
implications.     
 
3.1.3. Invasion/metastasis 

In the most basic sense, this section is merely an 
extension of the previous one on angiogenesis: tumor 
metastases occur through the vasculature, thus targeting 
angiogenesis also targets tumor metastases.  However, 
hypoxia also alters tumor cell and matrix phenotypes, as 
discussed below.    
 
3.1.3.1. Targeting MMPS 

Matrix metalloproteinases  (MMPs) play an 
important role in the maintenance and degradation of the 
tumor extracellular matrix  (ECM).  MMPs are grouped 
into eight classes: minimal domain MMPs, simple 
hemopexin-like domain-containing MMPs, gelatinases, 
furin-activated secreted MMPs, transmembrane MMPs, 
GPI-linked MMPs, vitronectin-like insert, linker-less 
MMPs, and cysteine/proline-rich IL-1 receptor-like domain 
MMPs (115).  All MMPs have an N-terminal predomain, 
followed by a prodomain.  This prodomain interacts with 
the catalytic zinc ion, and is followed by the catalytic 
domain which contains the distinct configurations for zinc-
dependent metalloenzymes (115).  While the zinc-binding 
motif within this catalytic domain is highly conserved 
between MMPs, C-terminal domains vary within different 
groups for specific functionalities (115).  MMPs are 
involved in regulation of cell growth, apoptosis, 
angiogenesis, invascion, metastases, and adhesion.   
 

MMPs are regulated by endogenous inhibitors, 
including tissue inhibitors of MMPs  (TIMPs) (116, 117), 
α2-macroglobulin (117), and the glycoprotein reversion-
inducing cysteine-rich protein with kazal motifs  (RECK) 
(118).  TIMPs are the principle inhibitors of MMPs (119).  
They are small, cysteine rich proteins which form high-
affinity complexes with MMPs (115).  TIMPs 1, 2, and 4 
are secreted proteins, and are believed to have distinct 
physiologic roles (119).  TIMPs have been shown to 
prevent endothelial cell tube formation, migration, and 
invasion in vitro (120-123).   
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MMP-2 and MMP-9 have been extensively 
studied in cancer.  Both of these gelatinases are expressed 
in cancer cells and endothelial cells, and have been shown 
to be altered by hypoxia (124-128).  Preclinical studies 
have shown MMPs to be good targets as potential anti-
angiogenic or anti-metastatic therapies: MMP-2 deficient 
mice have greatly reduced tumor angiogenesis and growth 
(129), and MMP-9 deficiencies in premetastatic lung 
endothelial cells resulted in decreased metastases (130).  
However, clinical studies for MMP inhibitors  (MMPIs) 
have not shown significant improvements in patient 
outcome (131-134).  This disconnect between preclinical 
work and clinical studies is not understood, and continued 
work on this promising target is needed.    
 
3.1.4. Metabolism 
3.1.4.1. Targeting GLUT1 

GLUT1 is a member of the GLUT family of 
glucose transporters which transports glucose into cells 
through facilitated diffusion along its concentration 
gradient (135, 136).  GLUT1 consists of several 
amphiphatic helices clustered together in the cell 
membrane creating a barrel-like structure containing an 
aqueous pore (135).  The “altering confirmation” model for 
glucose transport suggests that substrate binding sites are 
alternately exposed at different sides of the membrane 
through conformational changesin the transporter.  The 
glucose molecule is proposed to hydrogen-bond to polar 
amino acid side-chains comprising the wall of the aqueous 
pore (135). 
 

GLUT1 is the most widely conserved isoform 
across species and is the most widely expressed GLUT 
transporter among different tissues, including tumors (135, 
136).  GLUT1 levels have been shown to be increased in 
multiple different tumor types (137-145), consistent with an 
increased energy requirement in tumors cells, which often 
proliferate rapidly.  Increased expression of GLUT1 in 
tumors has been shown to correlate with decreased patient 
survival in several different human tumors (137, 143, 146, 
147). 
 

GLUT1 expression has been shown to be 
increased by hypoxia (135, 148) through a HIF-1 
dependent pathway.  This increased expression of GLUT1 
in hypoxic tumor cells (137) may provide a specific target 
for cancer therapy; blocking glucose transport could kill 
hypoxic tumor cells which are more dependent on glucose 
for their energy production (149, 150).    
 

One approach to targeting GLUT1 could be to 
block the GLUT1 transporter   One phytoestogen, 
genistein, directly interacts with GLUT1, inhibiting glucose 
uptake in cells in a dose-dependent manner (151).    Other 
Tyrosine kinase inhibitors can also compete with the ATP 
binding site of tyrosine kinase toinhibit GLUT1 (152).  
These inhibitors work in a competitive, dose-dependent 
manner (152).   
 

Although inhibiting glucose transport into tumor 
cells by blocking GLUT1 could enhance tumor cell kill, it 
could also have adverse effects in normal cells such as 

endothelial cells and red blood cells, which showhigh 
expression of GLUT1 (135).  Blocking GLUT1 could have 
harmful systemic effects, as neurons and red blood cells are 
dependent on glucose for energy production under normal 
conditions.  Despite these potential problems, blocking 
GLUT1 remains a promising method to specifically kill 
hypoxic tumor cells.   
 
3.2. Non-HIF regulated hypoxic targets   

While the HIF family of proteins dominates the 
cellular response to hypoxia, there are other pathways 
which also response to low pO2 in the cell.   
 
3.2.1. Targeting AP-1 

Activator protein 1  (AP-1) transcription factor is 
involved in a diverse variety of cellular functions including 
apoptosis, proliferation, differentiation, invasion, and 
metastases (153).  Hypoxia has been shown to activate AP-
1, and, although the mechanism of oxygen-sensing is not 
well-known, it is generally believed to be indirect (154-
159).  ROS may also alter AP-1 activation as it is known to 
be a redox sensitive transcription factor (160, 161).     
 

The AP-1 transcription factor is a dimer 
composed of members of the JUN, FOS, activating 
transcription factor  (ATF), and musculoaponeurotic 
fibrosarcoma  (MAF) protein families.  Ap-1 proteins 
dimerize through a leucine-zipper motif which recognizes 
different promoters of target genes.  The main DNA 
response element is the 12-O-tetradecanoylphorbol-13-
acetate  (TPA) responsive element  (TRE) (162), but 
different dimers also bind to other response elements (163, 
164).   
 

Elevated AP-1 activity has been detected in 
several tumors (165, 166) and activation of AP-1 is 
required for tumor promotion (167).  Additionally, 
dominant negative inhibitors of AP-1 blocked tumor 
promotion in a pre-clinical model (168).  While no small 
molecule inhibitors of AP-1 have been identified, AP-1 
presents an excellent target for the development of these 
inhibitors.   
 
3.2.2. Targeting NF-κB 

Proteins in the NF-κB mammalian family share a 
highly conserved homology domain which plays an 
important role in dimerization and DNA binding.  This 
domain is also responsible for the interactions of NF-κB 
with its inhibitor IκBα (169, 170).  In resting cells NF-κB is 
bound to IκBα, concealing its nuclear localization sequence 
and forcing NF-κB to remain in the cytoplasm (169, 170).  
Cellular stimulation results in phosphorylation and 
subsequent ubiquitination and degredation of IκBα; NF-κB 
enters the nucleus and is further regulated by 
phosphorylation of its p65 subunit under certain cellular 
stimuli (169, 170).   All proteins in the NF-κB family have 
been shown to bind to a common κB binding motif of 
specific genes, and some dimers also recognize slightly 
altered κB motifs (169, 170).   
 

Hypoxia has been shown to activate nuclear 
factor kappa-B  (NF-κB) through a variety of mechanisms.  
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Although the exact signaling pathways are still ambiguous, 
they are believed to include phosphorylation of IκBα 
through the Ras/Raf pathways (171, 172), signaling 
through the p42/p44 MAPK and PIK3 pathways (173), or 
reactive oxygen species  (ROS) generation (174).  NF-κB 
activation has been linked to cell adhesion, apoptosis, and 
survival.   
 

The inhibition of NF-κB by IκBα offers a clear 
target for therapy.  Several approaches toward this goal 
have been attempted: upstream blocking of signaling 
resulting in IκBα phosphorylation (175), inhibition of IκBα 
degredation (176, 177), and enhanced synthesis of IκBα 
(178-180).  While some of these efforts have been 
successful, none of these mechanisms of IκBα potentiation 
are specific for NF-κB and could result in disregulation of 
other important cellular functions.   
 

Another promising approach for targeting NF-κB 
has been to competitively inhibit binding of NF-κB to its 
κB motif with specially designed oligonucleotides or 
transcription factor decoys.  While this strategy has not yet 
been examined in tumor cells, the use of a transcription 
factor decoy significantly decreased downstream effects of 
NF-κB for 72 hours in murine B cells (181), suggesting this 
method could have significant anti-tumor effects in cancer.    
 
3.3. Other targets 
3.3.1.  p53 

An essential physiological mechanism which 
cells use to guard themselves against the consequences of 
cellular stress is apoptosis, or programmed cell death.  An 
important regulator of apoptosis is the p53 gene, which 
plays a key role in mediating apoptosis in normal and 
damaged cells.   
 

p53 may be the most complex target in cancer 
therapy due to the many roles it plays in the tumor cell.  
Depending on its location within a cell, p53 is known to 
affect transcriptional activity, DNA repair, mitochondrial 
membrane permeability, and exonuclease activity possibly 
leading to apoptosis, senescence, cell-cycle arrest, or 
differentiation (182-187).  Combined, these potential 
functions in tumor cells have ensured that p53 is a well-
studied, hotly debated protein.  For the purposes of this 
review, p53 will be examined as a transcriptional activator 
or suppressor.   
 

The p53 protein consists of four identical 
subunits, each consisting of five well-characterized 
domains.  Three of these domains, the N-terminal 
transactivation  (TA) domain, the highly conserved core 
DNA-binding domain  (DBD), and the C-terminal domain  
(CTD), are known to be integral to the efficacy of p53 
(188).  Further complexity is added to the function of this 
protein by the many post-translational modifications it can 
undergo, which include phosphorylation, acetylation, 
ubiquitination, neddylation, and sumoylation (184).   
 

In the nucleus, p53 binds to its recognition 
elements  (RE) near its target genes.  The DNA-binding 
domain has high affinity for a consensus RE, which is 

attributed to the interactions of the pentamers in the 
consensus RE with the p53 tetramer (189, 190).  
Alternatively, the C-terminal domain is known to bind to 
nonspecific DNA sequences, although its binding behavior 
is heavily influenced by post-translational modifications 
(189, 190).  Less is known about the TA domain binding, 
although its secondary structure has been shown to have 
conserved regions which are believed to act as recognition 
sites for p53 interacting proteins (189).  Despite their 
differences in binding domains, several studies have shown 
that mutations in either the DNA-binding domain or C-
terminal domain can cause significant alterations in p53 
transcriptional activity (191).     
 

p53 is known to be negatively regulated in the 
nucleus by direct interaction with the MDM2 protein 
through two different mechanisms.  In a mechanism of 
regulation reminiscent of HIF-1α and VHL, a ring finger in 
MDM2 contains an E3 ubiquitin ligase for p53, leading to 
its degradation and maintaining low levels of p53 in 
unstressed cells (192).  In response to various types of cell 
stress, p53 is stabilized, and a second level of regulation is 
triggered.  High levels of nuclear p53 activate transcription 
of the mdm2 gene.  MDM2 interacts with p53 through a 
binding pocket which attaches to the N-terminal TA 
domain of p53, inhibiting the ability of p53 to activate 
transcription (193).  A recent study has also shown a 
potential third binding site between MDM2 and p53 within 
the DBD, suggesting that two different p53 molvecules 
within its tetramer may bind to MDM2, further 
strengthening the binding between these two proteins (194).    
 
3.3.1.1. Targeting p53   

More than half of human tumors are believed to 
have mutations which significantly alter the function of p53 
(195), making it a therapeutic target with tremendous 
potential.  Mutant p53 is also known to upregulate or 
downregulate several genes which promote treatment 
resistance.  Almost all tumor-derived p53 mutations contain 
a mutation which alters the DNA binding sites, often 
inactivating the transcriptional ability of p53 and leading to 
a decrease in apoptotic function.  Hypoxia has been shown 
to select for cells with mutant p53 (196, 197), showing 
decreased levels of apoptosis in response to traditional 
therapies (198-200).  Thus two main approaches to 
targeting p53 have emerged: increasing wild-type p53 
levels to stimulate apoptosis and returning normal p53 
activity to cells which have lost this phenotype.   
 

A strategy for potentiation of p53 which has 
recently been successfully implemented preclinically is 
blocking the interaction between p53 and MDM2 to stop 
the degradation of p53.  Nutlins, specific small molecule 
agonists of MDM2, have been shown increase expression 
of p53 upregulated genes and to greatly inhibit tumor 
growth in a murine model (201).  This strategy has the 
potential for additional efficacy as agonists of MDM2 have 
also been shown to enhance the effects of chemotherapy 
(202).   
 
The use of gene therapy is one strategy for the 
reintroduction of wild-type p53 into cells.  Preclinical
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studies have successfully shown the ability to introduce the 
p53 gene into tumor cells.  Phase I and Phase II trials have 
been conducted using a replication incompetent adenovirus 
delivering p53 expression in combination with 
chemotherapy or radiation in non-small cell lung cancer, 
with more than half of the patients achieving a complete or 
partial response (203-205).  Biopsies taken after treatment 
showed a significant increase in p53 regulated gene 
expression compared to pretreatment biopsies, suggesting 
some gain of function of p53 from the gene therapy 
treatments (203-205).  
 

The creation and use of synthetic peptides 
derived from the p53 CTD has also been shown to induce 
p53-dependent apoptosis in tumor cells.  In one pre-clinical 
study, a small molecule, PRIMA-1 (206), was shown to 
restore this function and had a significant anti-tumor effect 
in a human osteosarcoma (207).  Further studies on 
PRIMA-1 showed a synergistic effect on tumor cell colony 
formation when used in combination with Cisplatin, and an 
increased effect on tumor volume in lung adenocarcinoma 
xenografts (207).   
 

However, the many pathways in which p53 is 
involved also make it a tremendously difficult therapeutic 
target.  Although targeting the MDM2/p53 pathway would 
seem to be a highly desired therapeutic target, MDM2 is 
also involves in nuclear export of p53, which is integral for 
apoptotic p53 activity in the mitochondria. This suggests 
that complete inhibition of MDM2 binding to p53 could 
decrease the apoptotic potential in some cancer cells.  
Recalling that only the role of p53 as a transcription factor 
has been examined here, careful deliberation of the impact 
on all of the activities of p53 should be conducted before 
attempting to target this multifunctional protein.   
 
4. OPTIMIZING THE BENEFITS OF TARGETED 
THERAPIES  
 

Although scientists and clinicians have embraced 
the concept of targeting downstream effects of hypoxia as a 
method to improving tumor therapy, clinical trials using 
angiogenesis inhibitors have shown these inhibitors to be 
ineffective as monotherapies, with a less than 4% overall 
response rate (95).   
 

In combination with traditional therapies, 
however, inhibitors of the downstream targets presented 
above have been shown to have greater anti-tumor effects 
than either single mono-therapy.  Additionally, preclinical 
studies with multiple downstream targets have had greater 
success than those with only one.  This strongly suggests 
that multi-targeting of molecular determinants of the tumor 
microenvironment in combination with traditional therapies 
is the best approach for increased anti-tumor effect.   
 

The potential benefits of multi-targeting are 
excellently highlighted in a paper by Cao et al. (208).  In 
this paper human colon carcinoma and murine mammary 
carcinoma cells were grown in dorsal window chambers.  
Incipient angiogenesis preceded HIF-1 mediated 
angiogenesis, suggesting that strategies targeting HIF-1 

alone would not prevent tumor angiogenesis.  This strongly 
suggests the use of other anti-angiogenic targeting in 
combination with HIF-1 targeting.   
 

Preclinical studies have suggested that the 
scheduling of the therapies may have a significant effect on 
the efficacy of the combined therapies.  One traditional 
therapy which has been examined in combination with 
numerous molecular inhibitors is ionizing radiation.  In 
experimental models, anti-VEGF compounds have 
consistently had a greater anti-tumor effect than radiation 
alone, independent of scheduling of the therapies.   

The scheduling of radiation in combination with 
inhibiting any one molecular target is an unresolved topic, 
despite numerous studies in the area.  Studies have 
produced conflicting reports on the importance of 
scheduling, with some studies showing no effect due to 
different dosing regimens and some studies showing a 
significant effect due to different dosing regimens.  These 
results are further complicated by different doses of 
radiation, different drugs targeting a single molecular 
agent, different tumor lines, and different study end-points 
(209).   
 

At least two groups have made thoughtful, well-
supported arguments vis-à-vis scheduling of targeting the 
molecular effects of hypoxia and radiation (Figure 5).   
 

Using a VEGFR2 inhibitor given three times over 
one week, Winkler et al. have shown that by day 4 the 
phenotype of tumor vessels is more like the phenotype of 
normal cells, a process named “vascular normalization” 
(210).  Vascular normalization is a process in response to 
the VEGFR2 inhibitor used which causes a temporary 
improvement in solute transport, leading to an increase in 
oxygenation, radiosensitivity and drug penetration In this 
scenario blocking VEGFR2 resulted in less tortuous, more 
uniform tumor vasculature for a limited time period 
occurring several days after beginning administration of the 
inhibitor.  This normalized vasculature could be taken 
advantage of by scheduling oxygen-dependent therapies 
such as radiation during this normalization window.   
 

Moeller et al. have shown that the HIF-1 pathway 
has significant effects on vascular and tumor cell 
radiosensitivity.   In two tumor cell lines, radiation was 
shown to upregulate HIF-1 and its downstream targets 
(211).  Irradiated tumor cells also produced cytokines, such 
as VEGF, through a HIF-1 dependent pathway that were 
radioprotective for endothelial cells.  Blocking HIF-1 in 
combination with radiation was shown to have a 
significantly larger effect than radiation or anti-HIF-1 
therapy alone.  This data suggested that blocking HIF-1 in 
tumor cells before they can produce cytokines that decrease 
endothelial cell radioresponsiveness would be an optimal 
scheduling regimen.   
 

A follow-up study by Moeller et al. further 
examined the relationship between HIF-1 and radiation.  In 
this study, the tumor microenvironment was shown to 
influence the effects of HIF-1 and tumor cell radiosensivity 
(212).  Low glucose combined with hypoxia showed HIF-
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Figure 5.  Optimizing RT with modification of 

the downstream effects of hypoxia.  In A) no treatment 
other than RT is given so no protocol optimization is 
necessary. In B) a VEGF/VEGFR blocking agent is given, 
leading to a window of vessel “normalization;” to take 
advantage of this normalization, RT is scheduled several 
days after administration of the VEGF/VEGFR blocking 
agent.  In C) blocking the effects of HIF on clonogenicity, 
metabolism, and endothelial cells are balanced; although 
there are both pro- and anti-tumor effects due to blocking 
HIF in combination with RT, the optimal protocol suggests 
blocking HIF immediately after RT. 

 
1-dependent ATP production and increased HIF-1-
dependent proliferation; blocking HIF-1 under hypoxia 
resulted in increased tumor cell clonogenicity.  This data 
presents conflicting potential pro- and anti-tumor effects of 
a HIF-1 blockade, and muddies the role for HIF-1 
inhibitors and inhibitors of downstream targets in 
combination with radiation.  In the two tumor lines 
examined, the balance for targeting the pro- and anti-tumor 
effects of HIF-1 due to hypoxia and radiation seems to be 
found by blocking HIF-1 immediately after irradiating the 
tumors.  This sequence of therapy led to a significant tumor 
growth delay in both cell lines.  Interestingly, the two 

tumor lines showed differences in their relative tumor 
growth delay from scheduling the HIF-1 blocking pre- or 
post-irradiation; this is consistent with the theory that the 
tumor lines will have different tumor microenvironments 
and thus a different balance of pro- and anti-tumor effects 
due to HIF-1 (213).   
 

While Winkler et al. finds an optimal therapy to 
maximize the effects of an anti-VEGFR2 therapy, the 
studies only examine the effects of vessel normalization 
and its subsequent effects on the tumor microenvironment.  
However, since only some of the environmental effects of 
hypoxia are caused by tortuous vasculature, this strategy 
can only, at best, mitigate those effects.  A more 
comprehensive, although not all-inclusive, strategy to 
optimizing anti-HIF-1 treatments with radiation is the one 
developed by Moeller et al.; in this strategy the balance of 
the contradictory effects of HIF-1 on apoptosis, glucose 
metabolism, proliferation, and radioresistance are balanced.  
However, this tactic of broadly approaching the effects of 
modifying the downstream effects of hypoxia does not 
provide the scientific community with a definitive solution; 
it merely provides an excellent framework for future 
studies to examine the pleiotropic effects of altering 
downstream effects of hypoxia and their interaction with 
traditional therapies.   
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