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1. ABSTRACT  
 
Slipped strand DNA structures are formed when 
complementary strands comprising direct repeats pair in a 
misaligned, or slipped, fashion along the DNA helix axis.  
Although slipped strand DNA may form in almost any direct 
repeat, to date, these structures have only been detected in 
short DNA repeats, termed unstable DNA repeats, in which 
expansion is associated with many neurodegenerative diseases.  
This alternative DNA structure, or a similar slipped 
intermediate DNA that may form during DNA replication or 
repair, may be a causative factor in the instability of the DNA 
sequences that can form these structures.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
  Slipped strand DNA structures can form in DNA 
sequences comprising direct repeat symmetry.  To form a 
slipped strand DNA structure the direct repeat region must 
unwind and one strand of one copy of a direct repeat must 
pair with the complementary strand of another copy of a 
second direct repeat.  Figure 1 shows the two possible 
isomers of slipped strand DNA  that can be formed for a 
region comprising two direct repeats (Figure 1, A).  One 
isomer has loops located at the 5’ end of the direct repeats 
(Figure 1, B1) while the other has loops located at the 3' 
ends (Figure 1, B2).   
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Figure 1. Slipped Strand DNA. Slipped strand DNA is 
formed from direct repeats (A) in which complementary 
strands of two adjacent direct repeats mispair such that one 
strand of one direct repeat pairs with the complementary 
strand of the other direct repeat.  Structures B1 and B2 
show the two possible different isomers of slipped strand 
DNA structures. 
 

 
 
Figure 2. Assay for Slipped Strand DNA. Duplex DNA 
migrates with a characteristic mobility in polyacrylamide 
gels that is dependent on the length of the DNA (shown as 
a ‘band’ in the lane marked ‘L” in the idealized gel at the 
right of the figure).  Following “reduplexing,” which 
involves denaturation followed by renaturation, slipped 
strand DNA is formed (shown in the left of the figure).  
Slipped strand DNA contains two bends introduced by the 
two three-way junctions.  These bends make DNA migrate 
more slowly in polyacrylamide than non bent duplex DNA.  
As this shows from formation of slipped strand DNA 
within a (CAG)n•(CTG)n repeat tract, multiple isomers are 
possible (as described in Figure 3) and slipped strand DNA 
actually migrates as a series of bands corresponding to 
multiple structural isomers as shown in the lane denoted S-
DNA.  (Note that while ‘S-DNA’ has been used to denote 
slipped strand DNA, it has also found favor with physicists 
to denote stretched-DNA (141)). 
 
 At first glance, slipped strand DNA structures 
would not appear to be stable.  This is because a 
considerable loss of overall helix stability would be 
associated with slipped strand DNA formation from the 
loss of hydrogen bonding and base stacking interactions of 
DNA within the two loops, if the looped-out strands remain 
unpaired.  Certain factors may compensate for the loss of 

hydrogen bonding and base stacking energy.  It is possible 
for loop-loop interaction to occur as the looped-out strands 
in opposite DNA strands are complementary.  In fact, 
structures with loop-loop interactions have been reported 
for various other DNA structures (1-6), and loop-loop 
interactions in slipped strand DNAs will be discussed 
below.  Moreover, in all cases of DNA sequences known to 
form slipped strand DNA structures the sequences involved 
contain some degree of inverted repeat symmetry, in 
addition to direct repeat symmetry.  This inverted repeat 
symmetry can result in the formation of DNA hairpins in 
the looped -out arms of slipped strand structures, and this 
base pairing likely contributes to the stability to these DNA 
structures.  In addition, unwinding of the DNA double helix 
associated with slipped strand DNA formation results in the 
loss of DNA supercoils and, therefore, this process would 
be expected to drive the formation of slipped strand 
structures in supercoiled DNA. 
 
3. SLIPPED STRAND DNA STRUCTURES AND 
SLIPPED INTERMEDIATE DNA    
 
3.1.Slipped strand structures in (CTG)•(CAG) and 

(CGG)•(CCG) repeats 
 Although it was known for many years that 
slipped strand DNA structures should exist, the first 
characterization of these structures was reported for 
(CTG)n•(CAG)n and (CGG)n•(CCG)n repeats, associated 
with myotonic dystrophy and fragile X syndrome, 
respectively (7).  Following denaturing and renaturing 
DNA molecules containing (CTG)n•(CAG)n or 
(CGG)n•(CCG)n repeats in vitro, a high proportion of the 
DNA fragments containing the DNA repeat migrated with 
very reduced electrophoretic mobility in polyacrylamide 
gels.  The reduction in electrophoretic mobility is due to 
bends in the DNA that result from three way junctions 
associated with the looped-out strands, as illustrated in 
Figure 2.  As also shown in Figure 2, a broad distribution of 
DNA bands corresponds to the large number of individual 
slipped strand isomers that results from a long simple 
repeat tract.  The reason for the multiplicity of DNA 
isomers is because there are many possible locations for 
loop-outs to form due to the simple repeating nature of the 
trinucleotide repeat.  This is illustrated in Figure 3.  
      
 Considerable work has been undertaken to 
understand the precise structure of slipped strand DNA 
structures (8-11).  Biochemical, electron microscopy, and 
atomic force microscopy experiments mapped the site of 
the unusual structures within the triplet repeat region (8-
10).  As with many alternative DNA conformations, 
percentage of slipped strand DNA structures formed is 
proportional to the repeat tract length.  Slipped strand 
structures do not readily form in repeat lengths associated 
with normal individuals (usually less than 30 
(CTG)•(CAG) repeats), but they can form at levels of up to 
80% in disease-associated repeat lengths of more than 50 
repeats.  Slipped strand structures are also remarkably 
stable and little conversion back to a correctly annealed 
duplex DNA is observed on prolonged incubation at 37°C 
(7).  This stability presumably results from the combination 
of base pairing within potential hairpin stems (discussed
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Figure 3. Heterogeneity in slipped strand DNA formation 
within a tract of simple repeats. This figure shows features 
possible for structural isomers formed from a long tract of a 
simple DNA repeat.  The examples in this figure are based 
on our understanding of the characteristics of a 
(CAG)n•(CTG)n repeat tract.  A.  Hairpin loop-outs can 
form at multiple different positions along the repeat tract.  
B.  Theoretically the loop- outs can form opposite one 
another.  In the absence of supercoiling, however they may 
tend to branch-migrate back into a linear duplex form.  C.  
Multiple loop-outs, rather than a single loop-out (as in A) 
may form.  D.  Multiple loop-outs may form in one strand 
with a single loop-out in the opposite strand.  E.  One loop-
out may form a hairpin, the (CTG)n strand in the case of a 
(CAG)n•(CTG)n repeat tract, while the other strand may 
form an unpaired, or unstructured loop-out, as is the case 
for the (CAG)n strand. 
 
under section 4) and base pairing in the DNA duplex 
between the loop-outs, which would have to unpair for the 
structure to convert back to the linear form (7).  Seemingly 
there is little to prevent the dissolution of slipped strand 
DNAs by branch migration of the loops.  However, base 
pairing interactions between the unpaired bases at the tips 
of the complementary hairpin-structured loop-outs (or 
between unpaired complementary loop-outs) forming 
folded slipped strand DNA, may be a major source of the 
stability of these structures.  Folded slipped strand DNAs 
stabilized by loop-loop interactions between (CTG)n and 
(CAG)n hairpins have been demonstrated (Figure 4) (8).  

Both (CTG)•(CAG) and (CGG)•(CCG) repeats are 
inherently flexible (12-14) and this property may facilitate 
from formation of folded slipped strand structures.   
 
 The amount of slipped strand DNA structure 
formed is a function of the length of the repeat tract and the 
extent of repeat sequence heterogeneity, that is the number 
of sequence interruptions in the repeat tract (9, 15).  In 
general, longer repeat tracts form more slipped strand DNA 
than shorter ones.  Also, sequence interruptions reduce the 
overall amount and heterogeneity of the alternative DNA 
structure formed (7, 9, 10, 16). 
   
 For (CTG)n•(CAG)n and (CGG)n•(CCG)n repeats, 
the looped-out individual strands can form hairpins (for 
review see (17). Experiments by Pearson and coworkers, 
however, showed that for the (CTG)n•(CAG)n slipped 
strand structure, the (CTG) strand forms a base-paired 
hairpin, while the (CAG) strand remains unpaired.  This 
was demonstrated in slipped intermediate DNAs which are 
defined as DNA duplexes with different numbers of repeats 
in opposite strands, for example (CTG)30•(CAG)50 or 
(CAG)30•(CTG)50 (Figure 5).   Slipped intermediate DNAs 
would occur during repeat expansion or deletion associated 
with replication, repair, or recombination, as discussed 
below.  In the (CTG)30•(CAG)50 slipped intermediate the 
excess (CAG)20 loop-out remains unpaired, while in the 
(CAG)30•(CTG)50 slipped intermediate the (CTG)20 loop-
out formed a hairpin (10).   
 
3.2. Slipped strand structures in (CCTG)•(CAGG) 
repeats 
 Recent experiments have shown that the DM2 
(CCTG)n•(CAGG)n repeats can also form slipped strand 
DNA structures (Edwards and Sinden, unpublished).  As 
with (CTG•(CAG) and (CCG)•(CGG) repeats a population 
of DNA species is formed following reduplexing, with 
preferred products giving prominent bands in addition to a 
heterogeneous distribution in polyacrylamide gels.  A 
major and important difference found with 
(CCTG)n•(CAGG)n repeats is that they form slipped strand 
DNA structures spontaneously in supercoiled DNA without 
heat or alkaline denaturation.  This property had been 
expected for slipped strand DNA structures as the 
formation of slipped strand DNA will relax supercoils from 
duplex unwinding, but it had not been observed for 
(CTG•(CAG) and (CCG)•(CGG) repeats.  The reasons for 
this difference are not understood at present, but it may 
reflect an easier initiation of structure formation or 
unwinding for CCTG repeats compared to CGG or CTG 
repeats.  
 
4. HAIRPIN STRUCTURES IN SLIPPED STRAND 
DNA LOOP-OUTS 
 
 Many of the simple DNA repeats associated with 
neurodegenerative diseases contain some degree of inverted 
repeat, in addition to direct repeat, symmetry.  Specifically, 
all repeats of the form (CXG)n, where n = A, T, C, or G 
(which includes (CTG)n•(CAG)n and (CGG)n•(CCG)n) can 
form hairpin stems stabilized by two C•G base pairs 
surrounding a T•T, A•A, C•C, or G•G mispair (Figure 6)
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Figure 4. Folded slipped strand DNA. Since the loops, or 
loop-outs, of slipped strand DNAs are complementary, it is 
possible that loop-loop interactions involving 
complementary base pairing can occur.  As described in the 
text, this has been observed for (CAG)n•(CTG)n repeats.  
The pairing would necessarily be limited given the 
topology of the DNA, as extensive wrapping would not be 
possible.  Folded slipped strand structures may be 
responsible for the unusual stability of slipped strand 
DNAs.   
 

 
Figure 5. Slipped intermediate DNA. Slipped intermediate 
DNA has been defined as a (CAG)x•(CTG)y repeat, where 
x ≠ y.  In this case one strand will contain an excess of 
repeats, either an excess of (CAG) or (CTG) repeats.  This 
leads, in the case of a (CTG)n repeat, to a hairpin 
protruding from the duplex, forming a single three-way 
junction.  These structures would result from primer-
template misalignment followed by continued replication 
during DNA replication, as discussed below, and therefore 
represent replication intermediates in a pathway to repeat 
expansion or deletion. 
 
(see for review (18-21)).  CTG and CAG repeat tracts can 
form but a single hairpin structure with a T•T or A•A base 
pair mismatch flanking two C•G pairs, respectively  (17-
19).  The hairpin formed by (CTG)n is more stable than that 
formed by (CAG)n.  This is because the smaller pyrimidine 
T•T mispairs stack better in the DNA helix than are larger 
purine A•A mispairs (18, 22, 23).  In fact, single-stranded 
(CAG)20 loop-outs in duplex DNA form an unstructured 
loop rather than a base-paired hairpin (10).  Hairpin 

structures formed by CGG and CCG strands are more 
complex as each can fold into two different conformations 
while still containing a G•G or C•C mismatch, respectively.  
Hairpins formed by (CGG)n are more stable than those 
formed by (CCG)n (18).  The CCG tract can form an 
unusual duplex called an e-motif in which C•C mispairs 
actually "kicked" out of the DNA helix and are extrahelical 
(24).  
 The (CCTG)n•(CAGG)n repeats are also prone to 
hairpin formation with the CAGG strand forming a more 
stable hairpin than the CCTG strand (25, 26).  The 
(CAGG)n hairpin is stabilized by two Watson-Crick G•C 
and two unusual G•A pairs per tetranucleotide repeat 
(Figure 7).  
 
 Single-stranded tracts of GAA repeats can also 
fold into hairpins comprised of G•A and A•A mispairs (27, 
28) (Figure 7).  Short GAA repeat tracts (n = 15) are only 
stable at very low temperatures, however, longer (GAA)n 
and (TTC)n  repeat tracts may exist as hairpins at 
physiological salt concentrations and temperatures (28).  
However, the Friedreich ataxia (GAA)•(TTC) repeat forms 
a Py•Pu•Py intramolecular triplex rather than slipped strand 
DNA (29). 
 
5. DNA DIRECT REPEATS, SLIPPED STRAND DNA 
STRUCTURES AND GENOMIC INSTABILITY  
 
5.1. Polymerase misbehavior and DNA misdirection  
 Direct repeat DNA sequences, which can form 
slipped stand DNA structures, are  associated with DNA 
mutations that can cause disease.  In 1966, Streisinger et al. 
proposed a DNA slippage model to explain frameshift 
mutations within runs of a simple DNA repeats of a single 
base, or a few bases.  The mechanism proposed for 
frameshift mutagenesis within a simple repeating sequence 
involves unpairing the newly synthesized (nascent) DNA 
strand from its template during the process of   DNA 
replication, followed by the reformation of hydrogen bonds 
with a different set of complementary bases.  This slippage 
of base pairing between the template and nascent strand 
will result in the formation of extrahelical bases in either 
the template or nascent DNA strand, resulting in 
duplication or deletion mutations, respectively when 
replication continues (Figure 8).   
 
 Large deletions and duplications can also occur 
between direct repeats.  These direct repeats can be 
separated hundreds of base pairs, or they can be adjacent 
(30-32).  If the DNA sequence between the direct repeats 
contains inverted repeat symmetry, the formation of a 
hairpin within the inverted repeat can increase the 
frequency of deletion by bringing the direct repeats into 
close proximity (33-38).  Misalignment between 
nonadjacent regions of a tract of short direct repeats will 
result in the formation of slipped intermediate structures, as 
shown in Figure 5. 
 Mutations associated with primer-template 
misalignment have been established in many model 
systems (39-46).  Misalignment resulting in mutations can 
occur within runs of repeats (47-50) or between distant 
direct repeats (31, 52).   
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Figure 6. Hairpin structures in (CXG)n repeats. All repeats 
of the form (CXG)n, where X = A, T, C, or G can form a 
hairpin stem containing two C•G base pairs and a T•T, 
C•C, A•A, or G•G mispair.  In the case of (CAG)n•(CTG)n, 
the (CAG)n strand forms an unpaired loop, while the 
(CTG)n repeat tract forms a paired hairpin stem containing 
T•T mismatches, as shown above.   
 

 
 
Figure 7. Hairpins in (GAA)n  and (CAGG)n repeats. 
Hairpins have been reported to form in (GAA)n and 
(CAGG)n repeat strands as shown above, and as described 
in the text.   
 
5.2. Repeat expansion and deletion associated with 
human neurodegenerative disease 
 Since 1991, many different genetic 
neurodegenerative diseases and chromosomal fragile sites 
have been associated with the expansion of 
(CTG)n•(CAG)n, (CGG)n•(CCG)n, (GAA)n•(TTC)n,  
(CCTG)n•(CAGG)n, (ATTCT)n•(AGAAT)n, or 
(CCCCGCCCCGCG)n•(CGCGGGGCGGGG)n repeats (for 
review see (8, 53-62)). Both small and large changes in 
repeat lengths are associated with human 
neurodegenerative diseases.  While repeats shorter than 
about 30 copies are stable, large intergenerational changes 
in repeat tract length, from a length of typically 30 -100 
repeats to more than 1000 copies, have been identified in 
several neurodegenerative diseases including myotonic 
dystrophy types 1 and 2 (DM1 and DM2), fragile X 
syndrome, Friedreich ataxia, and spinocerebellar ataxia 
type 10 (SCA10).  In SCA10 and DM2, expansion occurs 
to 4,500 and 11,000 repeats, respectively.  These repeat 
expansions may occur during germ cell development (see 
for review (57, 58)).  In patients with some 
neurodegenerative diseases, small repeat length changes are 
observed in somatic cells throughout the life of an 
individual (63, 64).  These changes could occur via primer-
template misalignment during normal DNA replication.  
Repeat length changes may even occur in nondividing cells 
where mismatch or other DNA repair activity may be 
responsible (58, 65-67).  
 
 The mechanism(s) that explain expansion from 
30-100 repeats to lengths of 1000, or even 4,000-11,000 
repeats remains unknown, and we have recently reviewed 
several possibilities (53, 68).  The expansion of these 

repeats may involve the formation of alternative structures 
in the DNA. These structures include slipped intermediate 
DNA, slipped strand DNA, triplex DNA, quadruplex DNA, 
parallel strand DNA, or unwound DNA.  The roles that 
alternative DNA structures may play in both short and long 
repeat expansions will be discussed below, as will models 
for repeat deletion.  Understanding deletion mutation (also 
called contractions) is also important since, for expanded 
alleles associated with Friedreich ataxia and SCA10, 
deletions may be the predominant event in patients (69-73).   
 
6. BIOLOGICAL CONSEQUENCES OF 
ALTERNATIVE DNA CONFORMATIONS  
 
6.1. Replication blockage 
 Alternative structures can have important roles in 
the functioning of a cell.  For example, alternative DNA 
structures are involved in DNA replication or transcription 
(74).  All too often, however, associations are observed 
between DNA sequences that can form alternative DNA 
structures and mutations in genes that cause human disease 
(75-77).  Stable alternative DNA structures, including 
hairpins, triplex, quadruplex, and slipped strand DNA 
structures act to block DNA polymerase leading to the 
stalling or termination of a replication fork.  Many different 
DNA polymerases either pause or can be completely 
inhibited by DNA hairpins (78-81).  Dissociation from the 
template during replication of a hairpin may lead to primer-
template misalignment resulting in mutations  (42, 82-85).  
Following blockage, replication restart may provide a 
window for repeat expansion as discussed previously (53).   
 DNA polymerase pausing has been observed at 
(CGG)n hairpins in vitro (86), and at (CGG)n•(CCG)n and 
(CTG)n•(CAG)n repeats in bacteria and yeast (87-89).  
Replication fork stalling at these repeats in cells is 
dependent on repeat length and orientation relative to a 
replication origin.  The formation of unusual DNA 
structures in these trinucleotide repeats may cause the 
replication blockage. 
 
 (CGG)n, (AGG)n, and (TGG)n repeats can form 
DNA quadruplex structures that may also be responsible 
for blockage of bacterial, bacteriophage, and various 
eukaryotic DNA polymerases (86, 90, 91).  
 
 Py•Pu tracts with mirror repeat symmetry have 
long been known to block the DNA replication fork in cells 
(92, 93).  Replication fork blockage may result from the 
folding of a single strand DNA template  back into the 
major groove of the nascent duplex in part of the Py•Pu 
tract, resulting in the formation of triplex DNA (93-95).  
Strong blocks to DNA replication have also been observed 
when triplex structures are formed prior to polymerization 
(96).  
 
(GAA)n•(TTC)n repeats can also form triplex DNA (29, 97-
102) and pause DNA replication in vitro within the repeat 
tract (101), as observed for other triplex-forming DNA 
sequences (93-95).  The formation of a 
[(GAA)n•(dGAA)n•(dTTC)n] RNA-DNA triplex during 
transcription of the (GAA)n•(TTC)n repeat in the frataxin 
gene has also been proposed as a mechanism of gene 
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Figure 8. Primer template misalignment during DNA replication. Primer-template misalignment is responsible for many 
mutations.  It can explain expansions and deletions within runs of DNA repeats.  A.  In the case of triplet repeats, backward 
slippage of the nascent leading strand would result in a 3-nt loop-out.  Continued replication would result in a 3 bp duplication 
(or addition).  B.  Misalignment can also occur between distant direct repeats.  This figure shows misalignment of one repeat in 
the nascent leading strand with a ‘downstream’ second copy of the repeat.  This results in the formation of an intervening DNA 
loop (of nonrepetitive DNA in the figure shown above).  When this occurs within a long simple direct repeat tract, such as 
(CAG)n•(CTG)n repeats, slippage and replication would result in the formation of slipped intermediate DNA, as shown in Figure 
5, A. 
 
downregulation.  This would result from the (GAA)n 
transcript becoming trapped in the RNA-DNA triplex-
duplex combination (99, 104), or between the 
(GAA)n•(TTC)n duplex and the nontranscribed (GAA)n 
single strand of the transcription bubble (105). 
 
 In summary, the data for replication pausing at 
slipped strand DNA structures is less strong than for other 
alternative DNA structures formed by expandable disease-
associated repeats.  However, the important point to be 
made is that all unstable repeats can form one or more 
alternative structures that may influence the processes of 
replication or repair.  In fact, in contrast to all other 
unstable repeats, the SCA10 (ATTCT)•(AGAAT) repeats 
that expand to 4,500 copies do not form a structure that 
blocks DNA replication.  Rather, they form an unwound 
DNA structure (106), and models for expansion and 
deletion resulting from aberrant replication origin activity 
have been described (68, 106) 
 
6.2. Does replication slippage occur at DNA repeats? 
 While the formation of slipped strand DNA may 
promote replication errors, the process of replication 
slippage would result in the formation of slipped 
intermediate structures, which are structural intermediates 

in the path of mutagenesis.  Primer-template slippage by 
bacterial and mammalian enzymes occurs in vitro at 
disease-associated repeats (25, 28, 107-109).  Evidence for 
primer-template slippage and the formation of slipped 
intermediate DNA in living cells abounds.  Changes in 
repeat length are expected to reflect the formation of 
slipped strands during DNA replication, according to the 
simple models described in Figure 7.  Repeat heterogeneity 
in E. coli, especially in mismatch repair deficient strains, is 
consistent with slipped misalignment during replication of 
repeats in bacteria (110-112).  Thus, slipped misalignment 
may be the simplest mechanism for repeat instability and it 
could be operable for all repeats. 
 
 Moreover, since hairpins formed from opposite 
strands can have different thermal stabilities, one may 
reasonably expect asymmetries in slippage during 
replication of the leading or lagging DNA strands.  This is a 
results that would also point to the involvement of 
replication slippage and slipped strand DNA formation 
during replication.  Consistent with these predictions, 
repeat instability that is dependent on the orientation of the 
repeat with respect to the approach of a replication fork is 
observed in E. coli (113), yeast (114-118), and mammalian 
model systems (119, 120).   
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7. FATE OF SLIPPED STRAND AND SLIPPED 
INTERMEDIATE DNA IN CELLS 
 
7.1. Role of DNA repair proteins 
 The repair of loop-outs in E. coli may involve 
excision repair proteins UvrA, UvrB, and SbcC (121, 122).  
The UvrA protein, which is generally thought to recognize 
DNA damages in cells, binds in vitro to DNA structures 
containing (CAG)n repeat loop-outs where the loops 
comprise 1, 2, or 17 repeats (121).  Significantly, UvrA and 
other excision repair proteins presumably bind (CTG)n and 
(CAG)n loop-outs in cells since these loops are effectively 
excised from plasmids containing either a (CTG)23 or a 
(CAG)23 heteroduplex loop when introduced into E. coli 
cells in cells containing functional UvrA.  In cells defective 
in UvrA, loops were effectively excised (121).  
 
 Mammalian cell mismatch repair proteins also 
bind to DNA structures containing (CTG)n or (CAG)n loops 
in slipped strand DNA (10, 123).  The (CAG)n loop-out is 
preferentially recognized by MSH2, a human mismatch 
repair protein, compared with recognition of the (CTG)n 
loop-out (10, 123). In addition, a MSH2-MSH3 
heterodimer binds to a (CAG)n loop-out (124).  In mice, 
short expansions seen in ectopic repeat tracts depend on the 
presence of functional mismatch repair proteins MSH2, 
MSH3, MSH6, or PMS2 (65, 67, 125-130).    
 
 Pearson and coworkers have also characterized 
the repair of slipped strand DNA in mammalian cell 
extracts.  Plasmid DNA containing a slipped intermediate 
DNAs with either a (CAG)n loop-out or (CTG)n hairpin in a 
continuous template or nicked nascent strand (131).  These 
templates, which mimic products of replication slippage or 
strand exchange during replication restart or double-strand 
break repair,  are repaired with very different efficiencies 
(131).  These results suggest that different slipped 
intermediate DNA structures have very different biological 
consequences and fates in mammalian cells.   
 
7.2. Role of DNA replication proteins 
 FEN-1 is a human flap endonuclease, which is 
responsible for digesting the RNA primer from the 5' end 
of an Okazaki fragment during lagging strand DNA 
replication (132).  However, a triplet repeat tract at the 5' 
end of an Okazaki fragment can form a hairpin that is 
refractory to FEN-1 digestion (101, 133, 134).  This could 
result in DNA expansion from ligation of repeat containing 
the hairpin near the 5' terminus, resulting in the formation 
of a slipped intermediate DNA structure (135, 136).  
Supporting evidence for this scenario comes from in vitro 
replication studies with human pol beta, in which large 
(GAA)n expansions are generated during replication of 
repeat tract when FEN-1 is omitted from the reaction.  The 
addition of FEN-1 prevented GAA repeat expansion (109).  
 
 In E. coli, replication restart proteins PriA, which 
is involved in restarting replication on the lagging strand 
following fork pausing and collapse, and RecG, which 
drives fork reversal forming a four-stranded DNA structure, 
both bind to (CTG)n and (CAG)n hairpins.  They also bind 
to single-stranded and duplex DNA molecules containing 

(CTG)n and/or (CAG)n loop-outs (137).  Moreover, both 
PriA and RecG bound to forked DNA substrates containing 
a (CTG)7 or (CAG)7 loop-out in a model lagging template 
strand, but they did not bind when the loop-out was 
contained in the leading template strand.   
 
7.3. Role of replication restart in repeat instability 
 Repeat deletions as well as repeat expansions 
may result from errors occurring during replication restart 
following the collapse of the replication fork during 
synthesis of the repeats (50, 137, 138).  Hairpins, slipped 
strand DNA, or other secondary structures may block the 
progression of a replication fork in (CTG)n•(CAG)n or 
(CGG)n•(CCG)n repeats (28, 86, 90, 107, 139, 140).  
 
 Several pathways are available for restarting a 
collapsed or paused fork, as we have described previously (53, 
137).  For the purposes here, it is important to mention that 
significant potential for slipped intermediate or slipped strand 
DNA formation exists during the replication restart process.   
The potential for hairpin formation when the CTG strand is 
single-stranded during a RecA and RecBC dependent restart 
pathway may explain the generally observed orientation bias 
for deletions in E. coli (137, 138).  Also, following fork 
collapse, a hairpin may form in a single-stranded lagging 
strand upstream of the fork.  Reannealing of the template 
strands would result in the formation of slipped strand DNA.  
Therefore, ample opportunity exists for formation of slipped 
strand DNA or slipped intermediate DNA during replication 
restart, resulting in the structure directed mutations.   
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