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1. ABSTRACT 
 

A number of lifestyle factors that reduce cancer 
risk in the primary prevention setting may be potential new 
targets for use in combination with cancer vaccines.  This 
review discusses the modulation of energy balance 
(physical activity, calorie restriction, and obesity 
prevention), and the supplementation with natural and 
synthetic analogs of vitamins A and E, as potential 
interventions for use in combination with cancer vaccines.  
Additionally, the pharmacologic manipulation of nutrient 
metabolism in the tumor microenvironment (e.g., 
arachidonic acid, arginine, tryptophan, and glucose 
metabolism) is discussed.  This review includes a brief 
overview of the role of each agent in primary cancer 
prevention; outlines the effects of these agents on immune

 
 
 
 
 

function, specifically adaptive and/or anti-tumor immune 
mechanisms, when known; and discusses the potential 
use of these interventions in combination with 
therapeutic cancer vaccines.  Modulation of energy 
balance through exercise and strategies targeting 
nutrient metabolism in the tumor microenvironment 
represent the most promising interventions to partner 
with therapeutic cancer vaccines.  Additionally, the use 
of vitamin E succinate and the retinoid X receptor-
directed rexinoids in combination with cancer vaccines 
offer promise.  In summary, a number of energy 
balance- and nutrition-related interventions are viable 
candidates for further study in combination with cancer 
vaccines. 
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2.  INTRODUCTION 
 

Following completion of primary therapy, a 
limited number of interventions have demonstrated success 
in reducing the risk of recurrence of the primary tumor, 
preventing a secondary malignancy and increasing survival 
(1).  Therapies targeting the immune system offer promise 
in controlling micro-metastases and increasing survival (2-
5), but are likely to yield greater success if used in 
combination with other strategies that may either slow 
tumor growth or increase the efficacy of therapeutic cancer 
vaccines.  New targets for use in combination with cancer 
vaccines need to be identified and explored.   

 
A number of lifestyle factors that reduce cancer 

risk in the primary prevention setting may be promising 
candidates such as the modulation of energy balance, as 
well as supplementation with vitamins and minerals.  
Changes in energy balance (i.e. physical activity, calorie 
restriction, and obesity prevention) alter cancer risk.  
Physical activity significantly reduces the risk of several 
types of cancer.  The data on this are most consistent for 
colon and breast cancer in humans (6) and animals (7;8).  
Calorie restriction also consistently and significantly 
reduces the risk of tumor formation in a variety of animal 
models (8;9).  At the other end of the energy balance 
spectrum, obesity increases cancer risk and mortality in 
humans (10;11) and in animal models (8;12-17).  With 
respect to vitamins and minerals, the vitamins A, B6, B12, 
C, D, E, folate, selenium, and zinc have been shown to 
reduce the risk of cancer in humans (recently reviewed in 
(18-22)).   

 
The biological mechanisms underlying the cancer 

preventive effects of both changes in energy balance and of 
specific nutrients differ based on the intervention or agent, 
and are reviewed in detail elsewhere (23-29).  A variety of 
biological mechanisms have been proposed to explain the 
relationship between changes in energy balance and cancer 
prevention including: 1) alterations in growth factors; 2) 
reductions in reproductive and metabolic hormones; 3) 
enhanced antioxidant defense mechanisms; and 4) 
enhanced immune function.  The chemopreventive activity 
of many nutrients is achieved through the inhibition of 
proliferation, promotion of differentiation, and/or induction 
of apoptosis of tumor cells, as well as increased 
antioxidant, anti-inflammatory, and immunomodulatory 
activities.  An understanding of the immunoregulatory 
capabilities of these lifestyle interventions is particularly 
relevant if these are to be used in combination with cancer 
vaccines and will be explored in this review. 

 
The target population to receive therapeutic 

cancer vaccines is likely an older cohort since 60% of all 
newly diagnosed malignant tumors and 70% of all cancer 
deaths occur in persons 65 years and older (30).  It is well 
documented that components of both the innate and 
adaptive immune system decline with advancing age (31-
33) and that the T cell population is most affected by the 
aging process (32).  Immunosenescence has been 
hypothesized to contribute to a greater risk of tumor 
formation and infection with advancing age, and may 

contribute to a less effective response to vaccination.  In 
particular, the age-associated decline in T cell function has 
been associated with thymic involution and atrophy, as well 
as acquired defects in the bone marrow stroma, 
hematopoietic stem cell populations, and peripheral 
lymphoid tissues (34).  Therefore, the energy balance- and 
nutrition-related intervention strategies proposed need to be 
effective within the context of an aging immune system in 
order to benefit the patient population most likely to 
receive cancer vaccines.   

 
The scope of this review was narrowed by only 

including lifestyle interventions that have shown efficacy in 
primary prevention coupled with those that regulate 
immune function.  Using these two criteria, several 
traditional cancer prevention interventions emerge as 
promising strategies for use in combination with various 
cancer vaccine platforms.  In this review, changes in energy 
balance are discussed in combination with therapeutic 
vaccines.  The use of systemic supplementation with 
natural and synthetic analogs of vitamins A and E are also 
reviewed.  Additionally, the pharmacologic manipulation of 
nutrient metabolism in the tumor microenvironment (e.g., 
arachidonic acid, arginine, tryptophan, and glucose 
metabolism), all of which have been shown to contribute to 
immunosuppression in cancer, are discussed.  This review 
includes a brief overview of the role of each agent in 
primary cancer prevention; outlines the effects of these agents 
on immune function, in particular adaptive and/ or anti-tumor 
immune mechanisms, when known; and discusses the potential 
use of these interventions in combination with therapeutic 
cancer vaccines (Tables 1-3).  There is a paucity of work in the 
nexus between nutrition, energy balance, and cancer vaccines. 
Therefore, the goal of this review is to discuss the rationale for 
using these prevention strategies in combination with cancer 
vaccines and to outline key questions that need to be addressed 
to incorporate these interventions with cancer vaccines in the 
future. 

 
3.  CHANGES IN ENERGY BALANCE 
 
3.1. Physical activity 
3.1.1. Role of physical activity in cancer prevention 

An International Agency for Research on Cancer 
(IARC) Working Group on the Evaluation of Weight 
Control and Physical Activity concluded that consistent 
epidemiologic evidence exists demonstrating that physical 
activity reduces the risk of some forms of cancer.  The 
evidence is conclusive for a protective effect of physical 
activity on colon and postmenopausal breast cancer risk, 
and is mounting for a protective effect of physical activity 
on endometrial, ovarian, and prostate cancers (35).   Some 
of the reported benefit of physical activity on cancer risk 
reduction is independent of weight loss.  These data suggest 
that the impact of physical activity on cancer risk reduction 
may not be solely due to the prevention of obesity (another 
potential modifiable risk factor that may negatively impact 
response to vaccine discussed in a later section), but rather 
due to a cancer preventive effect specifically of exercise. 

 
A variety of animal models have been used to 

explore the effects of exercise on carcinogenesis including
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Table 1.  Summary of the effects of changes1 in energy balance and the impact of nutrients on anti-tumor activity, immune 
function and use in combination with vaccines in preclinical studies. 

   Immune Function Use with 
  Anti-Tumor Activity NK Cell Function T Cell Function Cancer Vaccine 
  Prevention Therapy/ 

Survival 
Ref.2 Cytotoxicity Ref.2 Proliferation Cytokine 

Production 
Cytotoxicity Ref.2  Ref.2 

Changes in Energy Balance 
Physical Activity + + + 7;35-38; 

41-46; 
48-58 

+ + 68-70; 
72; 354 +/- + ND 72;76-78; 

81-83;85; 
90;94;95;
102;104; 
355 

ND  

Calorie Restriction3 + + +/- 8;9; 
115-125 ( - ) 139; 

140 +/- +/- ND 82; 
130-138; 
168;356 

ND  

Obesity (-) (-) 8;12-14; 
16;17; 
357;358 

( - ) 168-
170 (-) +/- ND 169;174; 

175;359 
ND  

Impact of Nutrients 
Retinoids and Carotenoids 
Retinoid Analogs4 + + + 223;224; 

233-236; 
268 

+ 257; 
259; 
265 

+ + + 251-254; 
257-259 + 266;

268 
 

Synthetic Rexinoids5 + + + + 242-248; 
250;270 

ND  ND ND ND  ND  

Tocopherols and Tocotrienols 
Alpha-Tocopherol ND ND  ND  + + ND 290-292 ND  

Vitamin E Succinate 
(VES) + + + + 274-281; 

293 
ND  ND ND ND  + + 294-

296 
1 Changes in activities outlined in this table are designated with the following symbols: (-) = negative effect, +/-  = inconsistent 
results, + = mild/moderate stimulatory effect, + + = strong stimulatory effect, ND = No data available, 2 Ref. = References, 3 
Only studies utilizing adult onset calorie restriction are reviewed in this table, 4 Retinoid Analogs (all-trans-, 9-cis-, and 13-cis-
retinoic acid), 5 Synthetic Rexinoids (Bexarotene (LGD1069) and LG100268). 
 
Table 2.  Summary of the effects of changes1 in energy balance and the impact of nutrients on anti-tumor activity, immune 
function and use in combination with vaccines in human studies 

  Immune Function Use with 
  Anti-Tumor Activity NK Cell Function T Cell Function Cancer Vaccine 
  Prevention Therapy/ 

Survival 
Ref.2 Cytotoxicity Ref.2 Proliferation Cytokine 

Production 
Cytotoxicity Ref.2  Ref.2 

Changes in Energy Balance 
Physical Activity + + + 35;  

105-107 + + 59-66; 
73;74 +/- +/- ND 59;64;75;79;

80;82;84; 
86-89;91-

93;100;101 

ND  

Calorie Restriction2 ND ND  (-) 177-
179 +/- ND ND 173;176 ND  

Obesity (-) (-) 10;11;35; 
144-147; 
180-193; 
195-222 

+/- 165-
167 (-) +/- ND 149-158; 

166;171-173 
ND  

Impact of Nutrients 
Retinoids and Carotenoids 
Retinoid Analogs3 + + + 223; 

237-240 
ND  + ND ND 267 ND  

Synthetic Rexinoids4 ND + 249; 
260-263 

ND  ND ND ND  ND  

Tocopherols and Tocotrienols 
Alpha-Tocopherol +/- ND 231; 

 271-273 + 288 + + + 282;283; 
287;288 

ND  

Vitamin E Succinate 
(VES) 

ND ND  ND  ND ND ND  ND  

1 Changes in activities outlined in this table are designated with the following symbols: (-) = negative effect, +/-  = inconsistent 
results, + = mild/moderate stimulatory effect, + + = strong stimulatory effect, ND = No data available, 2 Ref. = References, 3 
Only studies utilizing adult onset calorie restriction are reviewed in this table, 4 Retinoid Analogs (all-trans-, 9-cis-, and 13-cis-
retinoic acid), 5 Synthetic Rexinoids (Bexarotene (LGD1069) and LG100268). 
 
chemically-induced, transplantable, and spontaneous tumor 
models (7).  In these studies, the effect of exercise on 
intestinal tumor incidence and multiplicity have been the 
best characterized, with a protective effect of exercise 
observed in most reports.  Early studies showed a 
significant reduction in the incidence of carcinogen-
induced tumors in exercising animals (36-39).  Several 
subsequent studies have examined polyp development 
following exercise training in the APCMin mouse, a model 
in which an APC tumor suppressor gene mutation results in 
multiple intestinal polyps (40).  Although some variability 

has been reported due to the type of exercise and gender of 
the animals studied, collectively these studies show a 
decrease in polyp number in exercising male animals (41-
44).  A protective effect of exercise on mammary tumor 
incidence, multiplicity, growth rate and/or survival has also 
been reported (45-52).  In additional to colon and breast 
cancer models, exercise has been shown to be effective in 
reducing tumor incidence or burden in carcinogen-induced 
pancreatic (53;54) and liver (55-57) neoplasias.  One study 
has shown that exercise delays tumor growth and enhanced 
regression of an allogeneic tumor (a murine T cell
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Table 3.  Summary of the immunosuppressive effects of metabolic factors in the tumor microenvironment and the use small 
molecule inhibitors in combination with cancer vaccines 

Metabolic Factor Key 
Pathway(s) 

Cellular 
Distribution 

Metabolic 
Changes 

Mechanisms of 
Immune Suppression 

Inhibitor Use with 
Cancer 
Vaccine 

References 

Arachidonic Acid COX-2 Tumor ↑ PGE2 ↓ B and T cell proliferation Celecoxib Yes 297;300;301;304;308 
   TAMs ↑ Angiogenesis ↓ NK cell cytoxicity    
      ↑ Tregs     
      ↓ DC function     
      ↓ TH1 and ↑ TH2 cytokines     
        
Arginine ARG1 Tumor ↓ Arginine ↓ TCR CD3 zeta chain expression NCX-4016 Yes 297;313;316;319;321;322 
  iNOS TAMs ↑ Polyamines ↓ IL-2R signaling    
  ODC MDSCs  ↓ IL-2     
      ↑ Effector T cell apoptosis     
        
Tryptophan IDO Tumor ↓ Tryptophan ↓ TCR CD3 zeta chain expression 1-MT Yes 297;325;333;334 
   TAMs ↑ Kynurenines ↑ Tregs     
   MDSCs   ↑ TGF-beta     
   DCs   ↑ IL-10     
        
Glucose Glut-1 Tumor ↓ Glucose ↓ Effector T cell function ND1 ND1 337;342;348;350 
 MCT-4  ↓ pH     
 HIF-1-alpha  ↑ Hypoxia     
   ↑ Angiogenesis     

1 ND = No data available. 
 
lymphoma cell line) (58).   Thus, exercise has been shown 
to be effective in reducing the number and size of tumors in 
a number of models. 

 
Numerous mechanisms have been proposed to 

explain the relationship between exercise and cancer 
prevention (29), including an exercise-induced stimulation 
of anti-tumor immunity.  Little work has been done to 
examine those components of the immune system that are 
most likely mediating anti-tumor immunity or the effects of 
exercise on antigen-specific immune responses.  However, 
the work in this area is promising and suggests that an 
exercise-induced enhancement of immune function may be 
one of the mechanisms underlying the protective effect of 
exercise on tumor formation. 

 
3.1.2. Modulation of immune function by physical 
activity 

The current theory to explain the relationship 
between exercise and immune function is the Inverted J 
Hypothesis (59).  This hypothesis proposes that regular, 
moderate exercise enhances immune function and in turn, 
reduces the susceptibility to cancer.  In contrast, sedentary 
behavior, at one end of the curve, and overtraining, at the 
opposite end of the curve, both lead to suppressed 
immunity and elevated risk of tumor development.  In 
terms of anti-tumor immunity, NK cell function has been 
studied in response to exercise to a greater extent than 
either CD4+ and/or CD8+ T cell function.  Little work has 
been done examining the effect of exercise on antigen-
specific T cell functions such as cytokine production, 
proliferation, and/or cytotoxicity. 

 
Overall, moderate exercise enhances NK cell 

activity, although there are some inconsistencies in the 
literature.  Several cross-sectional studies have 
demonstrated higher NK cell function in trained athletes as 
compared to sedentary individuals (60;61).   Longitudinal 
studies have shown that aerobic training over a period of 
several months in untrained individuals enhances NK cell 
activity in humans (59;62-66) and experimental animals 
(67-72).  The beneficial effect of long-term aerobic training 

on NK cell function (four to seven months) has also been 
observed in postmenopausal breast cancer survivors 
(73;74), suggesting that exercise may benefit those patients 
who may be immunosuppressed following adjuvant 
therapy. However, another study in breast cancer survivors 
reported that eight weeks of aerobic training had no effect 
on NK cell function (61).  The lack of a statistically 
significant effect of exercise on NK cell cytotoxicity in the 
latter study may be due to a relatively short training period.   
Recent studies suggest that the duration of the training 
period influences the effect of exercise on splenic NK cell 
cytotoxicity in mice.   A signficant beneficial effect of 
running was observed only after 11 weeks of voluntary 
running (not at six or eight weeks) with the greatest 
increase in NK cell cytotoxicity observed following 15 
weeks of training  (72). 

 
The effect of regular moderate exercise on 

mitogen-induced T cell proliferation has been examined in 
many studies which have yielded inconsistent results.  
Some studies have reported an increase (64;75-82), a 
decrease (83;84), or no effect (59;64;85-93) of regular, 
moderate exercise on T cell proliferative responses to 
mitogens in both humans and in experimental animals.  Part 
of the heterogeneity of proliferative responses reported in 
the literature may be due to variability in the timing of 
lymphocyte collection with respect to the last exercise bout; 
to varying intensity and duration of exercise employed in 
the different studies; and to the origin of lymphoid tissue. 
With respect to the latter, it has been shown that 
lymphocytes isolated from different lymphoid tissues are 
differentially impacted by exercise training.   For example, 
eight weeks of training has been shown to enhance the 
concanavalin A (Con A)-induced proliferation of T cells 
collected from the peripheral blood but not the spleen of 
hamsters (85).   Additionally, exercise in rats resulted in an 
increase in Con A-induced lymphocyte proliferation in the 
mesenteric lymph nodes, but not the spleen (81). These 
results are consistent with recent findings in which T cell 
proliferative responses following six weeks of voluntary 
exercise differed by tissue type, with exercise significantly 
enhancing Con A-induced lymphocyte proliferation in 
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intestinal lymphocytes but not splenocytes (82). These data 
suggest that voluntary exercise enhances T cell 
proliferation in some but not all lymphoid organs.  This is 
an important distinction since many clinical studies only 
collect peripheral blood from patients.  The assessment of 
immune status based on the response of one population of 
lymphoid cells (e.g., PBMC) following an intervention 
such as exercise may not be representative of the effect on 
all lymphoid cells and should be taken into consideration. 

 
In tumor-bearing animals, splenic Con A-induced 

lymphocyte proliferation was increased following exercise 
training in two studies (94;95).  In the first study, increased 
lymphocyte proliferation was correlated with reduced 
tumor growth and increased survival (94).  However in the 
second report, final tumor volumes did not differ between 
the exercising and control animals despite an increase in T 
cell proliferative responses in the exercise group (95).  A 
study in early-stage breast cancer patients three to six 
months following chemotherapy found that women who 
participated in a six-month exercise program showed a 
greater percentage of CD4+CD69+ cells and a greater level 
of mitogen-induced proliferation at the end of the 
intervention (96).  The results from these limited studies 
suggest that exercise may enhance T cell proliferation 
under conditions where immunosuppressive factors, i.e. the 
presence of a tumor or following chemotherapy, are 
exerting an inhibitory effect on the immune system.   

 
There have been considerably fewer studies 

examining the effect of exercise on antigen-specific T cell 
function.  Most of these have explored the interaction between 
exercise, aging and T cell function; however, none to date have 
examined the effect of exercise on the generation of tumor-
specific T cells. One line of evidence to suggest that regular, 
moderate exercise can stimulate antigen-specific immunity is 
the observation that the incidence and duration of upper-
respiratory tract infections is significantly lower in 
postmenopausal women who are moderately active as 
compared to sedentary controls (63;64;97).  Although no 
adaptive immune endpoints were measured in any of these 
studies, adequate cellular immune responses play a critical role 
in the clearance of viral infections of the respiratory tract 
(98;99).   Two other studies that have examined the effect of 
exercise on antigen-specific T cell responses have reported a 
stimulatory effect.  Physically fit older men (age 60-79) had 
significantly greater delayed-type hypersensitivity (DTH) 
reaction to keyhole limpet hemocyanin (KLH) and higher anti-
KLH antibody titers than sedentary controls (100).  Older men 
and women (age 65 or older) who were active or moderately 
active prior to influenza immunization had greater in vitro 
antigen-specific T cell proliferation and antibody titers than 
sedentary subjects (101).  Furthermore, several studies in 
animals have demonstrated a beneficial effect of exercise on T 
cell function in aged mice.  Kohut and colleagues 
demonstrated that eight weeks of exercise prior to herpes 
simplex virus-1 (HSV-1) infection enhanced in vitro HSV-1 
specific cytokine production (IL-2 and IFN-gamma) in older 
(16-18 months) but not younger mice (2-4 months) (102;103).   

 
Recent studies conducted to assess the effect of 

exercise on antigen-specific immunity in young, non-tumor 

bearing animals have demonstrated that eight weeks of 
voluntary running prior to vaccination with either a protein 
or viral based vaccine enhances antigen-specific immune 
responses.  Specifically, antigen-specific proliferation of 
CD4+ T cells collected from the spleens and inguinal lymph 
nodes of animals vaccinated subcutaneously with a protein-
based vaccine (ovalbumin plus lymphotactin) was 
significantly higher in exercising animals (104)  
Additionally, eight weeks of training prior to vaccination 
enhanced antigen-specific splenic CD4+ T cell proliferation 
following vaccination with a pox virus based vaccine 
(recombinant vaccinia/fowlpox NP34 plus recombinant 
fowlpox GMCSF) (72).  In subsequent studies, the 
minimum length of training time needed to enhance 
antigen-specific immune responses in C57BL/6 mice was 
shown to be eight weeks.  Importantly, initiating exercise 
concurrently with the administration of the primary 
vaccination did not yield significant increases in CD4+ T 
cell proliferation (72).  These data suggest that a training 
period of eight weeks prior to the primary vaccination is 
required to achieve the stimulatory effect of exercise on 
adaptive immune function and that exercise can be used 
effectively in combination with vaccination. 

 
3.1.3. Physical activity in combination with cancer 
vaccine 

No studies to date have combined moderate 
physical activity with the administration of a therapeutic 
cancer vaccine.  However, this combinatorial approach 
seems promising for several reasons.  Moderate exercise 
alone following cancer treatment has been shown to 
decrease recurrence and increase survival in cancer patients.  
Compelling findings from the Nurses Health Study, one of the 
largest prospective investigations examining chronic disease 
risk factors in women, demonstrated that women who 
exercised for the equivalent of walking 3-5 hours per week at 
an average pace had a 50% reduction in breast cancer mortality 
risk (105).  Importantly, women who exercised for the 
equivalent of walking 1-3 hours per week had a 20% reduction 
in breast cancer mortality risk, suggesting that modest 
increases in physical activity can have a profound impact on 
clinical outcomes.  A second report examining physical 
activity and colorectal cancer outcomes from the Nurses 
Health Study found similar results.  Female nonmetastatic 
colorectal cancer patients who exercised for the equivalent of 
walking six or more hours per week at an average pace had 
approximately a 50% reduction in both colorectal cancer-
specific and overall mortality (106).  A third study of patients 
enrolled in an adjuvant chemotherapy trial for stage III colon 
cancer who exercised for the equivalent of walking six or more 
hours per week at an average pace had a 47% improvement in 
disease free survival compared to sedentary patients (107).  
In addition to the robust effect of exercise on clinical 
outcomes, exercise interventions in women with breast 
cancer have been shown to be safe, have had high 
compliance levels and result in improved fitness and 
quality of life (108;109).  These data suggest that 
combining an exercise intervention with other therapeutic 
strategies, such as cancer vaccine treatment, may be 
relatively easy to implement and confer significant benefit 
to the patient independent of any enhancement of vaccine 
efficacy. 
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Numerous cancer vaccine platforms have already 
been shown to stimulate tumor-antigen specific immune 
responses (110-113) and increase disease free survival 

(4;114) in cancer patients over 65 years old.   Moderate 
exercise has also been shown to enhance the antigen-
specific immune responses in aged humans and animal 
models.  Furthermore, moderate exercise can be used 
effectively in combination with a variety of vaccination 
protocols to enhance antigen-specific T cell responses in 
preclinical models.  Combined, these data suggest that 
moderate physical activity is a likely candidate to partner 
with therapeutic cancer vaccine treatment to enhance the 
vaccine efficacy.  Studies are currently underway to 
examine this combination in preclinical animal models. 
 
3.2. Calorie restriction 
3.2.1. Role of calorie restriction in cancer prevention 

The best studied alteration of energy balance in 
experimental tumor models is on the energy intake side of 
the equation, specifically involving obesity prevention 
through calorie restriction (CR).  Studies in rodents have 
most often intiated CR early in life (at the time of weaning) 
and maintained the CR for the life of the animal.  This long 
term CR inhibits the incidence and growth rate of a variety 
of spontaneous neoplasias in experimental cancer model 
systems, including tumors arising in several genetically 
altered mouse models (e.g., p53-deficient mice, APCmin 
mice and Wnt-1 transgenic mice); as well as carcinogen and 
radiation induced cancer (recently reviewed in (8;9)).  
Additionally, several studies have shown that CR initiated 
in adult animals in mid to late life also reduces the 
incidence (115-118) and/or delays the onset (118;119) of 
spontaneous tumors.  CR has also been shown to increase 
survival in most tumor models (120-125).  Thus, the 
inhibitory action of CR on carcinogenesis is effective in 
several species for a variety of tumor types and 
importantly, when intiated in either early and late life.   

 
3.2.2. Modulation of immune function by calorie 
restriction 

Long term CR throughout the life course prevents 
a variety of age-associated decrements in immune function 
(117;126-129), and is an intriguing model to explore the 
effects of aging on the immune system.  However, two 
aspects of long term CR make it difficult to translate 
into a viable intervention for use in humans: 1) the early 
age of onset of CR in animal models and 2) the duration 
of this exposure over the life course.  CR started in older 
animals and/or shorter duration of CR (weeks to 
months) are both more appropriate model systems to 
investigate the effects of CR on immune function, 
particularly if CR is being considered as a potential 
intervention for use in combination with therapeutic 
cancer vaccines.  Much less is known about the effects 
of CR initiated in mid-life on immune function.  Adult 
onset CR initiated at 12 months of age (117;130) and at 
17 months of age (131) and lasting for up to eight 
months increased splenic mitogen-induced proliferation 
and increased the percentage of splenic T cells in mice 
(116).  Additionally, 27 month old mice restricted at 12 
months of age had significantly higher allogeneic T cell 
responses compared to their ad libitum fed, age-matched 

controls (116;130).  Although a limited number of studies 
have explored the immune sequelae of CR started in mid 
life, the results to date suggest that a beneficial effect on 
immune function can be achieved when CR is initiated in 
older animals. 

 
In contrast, studies exploring the effects of 

shorter term CR (up to six months) on immune function in 
animals of varying ages have reported inhibitory effects.  A 
dose dependent inhibition of antigen-specific T cell 
proliferation following eight weeks of either mild (20%) 
or severe (50%) CR was observed in normal C57BL6 
mice (132).  This CR-induced inhibition of T cell 
proliferation was due to both a deficit in the antigen 
presenting capabilities of macrophages and proliferative 
capacity of T cells.  In one study, moderate CR 
significantly reduced mitogen-induced and allogeneic T 
cell proliferation during the first month of restriction, 
but after six months on the diet the proliferative 
responses of CR and ad libitum animals were no longer 
different (131), suggesting that the time of exposure to 
CR may influence immune responsiveness. 
Additionally, in several rodent autoimmunity models, 
short-term CR in young animals decreases antigen-
specific proliferation of T cells, as well as decreases 
IFN-gamma, IL-12 and autoantibody production 
(133;134).  Futhermore, 40% CR beginning at six weeks 
of age and lasting for several months, dampens 
autoreactive lymphocyte proliferation and cytokine 
production (IL-2 and IFN-gamma) by both CD4+ and 
CD8+ lymphocytes in the autoimmune prone 
(NZBxNZW)F1 (B/W) murine model of systemic lupus 
erythematosis (135-137).  Using autoimmune prone 
(B/W) mice another group has shown decreased mRNA 
expression of IL-6 and TNF-alpha, and increased 
expression of TGF-beta  in splenocytes harvested from 
CR animals (138).  Finally, four to eight weeks of 
moderate (30%) to severe (50%) CR significantly 
lowered splenic NK cell cytotoxicity (139;140).  These 
data suggest that short-term CR in non-aged animals 
may suppress a number of effector cell functions.  
Futhermore, these results suggest that a longer duration 
of exposure to CR (greater than six months) may be 
necessary to achieve the stimulatory effects on immune 
function.  Additional studies are needed to further 
characterize the effects of adult onset CR on antigen-
specific T cell functions and NK cell cytotoxicity to 
determine what factors (e.g., age of the animal at the 
onset of CR, duration of CR exposure, severity of CR, 
etc...) influence immune responses. 

 
3.2.3. Calorie restriction in combination with cancer 
vaccine 

No studies to date have implemented CR prior to 
the administration of a therapeutic cancer vaccine.  In our 
view, CR may be an effective strategy to reduce weight in 
overweight and obese individuals (discussed in the next 
section).  However, additional studies are needed to futher 
examine the effects of short term CR on immune function 
in middle-aged normal and overweight animals before any 
recommendations regarding its use in combination with 
therapeutic vaccines can be made. 
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3.3. Obesity: prevention and reversal  
3.3.1. Links between obesity and cancer 

Obesity continues to be one of the leading 
health issues facing the nation. The prevalence of 
obesity has risen significantly over the past several 
decades and there is no indication that this trend is 
declining (141;142).  In 2004, 66.3% of adults were 
overweight (body mass index or BMI = 25.0-29.9 
kg/m2), 32.2% were obese (BMI > 30.0 kg/m2), and 
4.8% were extremely obese (BMI > 40 kg/m2) (142).  
This trend in the prevalence of obesity is related to an 
increased incidence of a myriad of chronic diseases, 
including cancer (143).  A body of convincing 
epidemiologic evidence has accumulated suggesting that 
overweight or obesity increases risk of several types of 
cancer including colon, breast (in postmenopausal 
women), endometrial, ovarian, kidney, esophageal, 
pancreatic and gallbladder (35;144-147).  Furthermore, 
data from a large cohort study of more than 900,000 
adults in the U.S. has demonstrated that in both men and 
women, increased BMI is associated with increased 
mortality from tumors of the esophagus, colon, liver, 
gallbladder, pancreas, and kidney, as well as death due 
to non-Hodgkin’s lymphoma and multiple myeloma 
(11).  In this same cohort, increased BMI is associated 
with increased mortality from cancers of the stomach 
and prostate in men; and mortality from cancers of the 
breast, uterus, cervix, and ovary in women (11).  In 
addition to providing recommendations on physical 
activity, the IARC Working Group on the Evaluation of 
Weight Control and Physical Activity concluded that 
excess body weight and physical inactivity account for 
approximately a quarter to one third of cancers of the 
colon, breast, endometrium, kidney and esophagus (35). 
Thus, excess adiposity and physical inactivity appear to 
be the most important avoidable causes of these cancers. 

 
3.3.2. Obesity and immune function 

Although obesity is believed to adversely 
impact immunity, the effect of overweight and obesity 
on the function of specific immune cell types has not 
been well studied.  However, obesity has been 
consistently associated with a state of low grade, 
chronic inflammation (148;149).  Cross-sectional 
analyses show elevated levels of C-reactive protein 
(CRP) (150;151), tumor necrosis factor alpha (TNF-
alpha) (152-154), and IL-6 (155) in the serum of 
overweight and obese individuals.  A variety of pro-
inflammatory markers are produced in adipose tissue 
and increase with increasing adiposity, including: TNF-
alpha, IL-6, monocyte chemotatic protein-1 (MCP-1), 
inducible nitric oxide synthase (iNOS), TGF-beta-1, and 
plasminogen activator inhibitor type 1 (PAI-1) (149).  
Macrophages are the main source of pro-inflammatory 
cytokines in the adipose tissue of obese subjects (156-
158) and the number of adipose tissue macrophages 
increases with increasing body fat (156;157).  Increased 
expression of inflammation-specific genes by adipose 
tissue macrophages has been shown in obese mice 
preceding the development of insulin resistance, a well-
documented consequence of obesity (155).  Both TNF-
alpha and IL-6 block insulin action by triggering key 

steps in the insulin signaling pathway (155;159;160).  In 
the study by Xu and colleagues, obese mice treated with 
rosiglitazone (an insulin-sensitizing drug) had a 
decreased expression of inflammation-specific genes in 
adipose tissue macrophages (157), suggesting an 
additional feedback loop between insulin signaling and 
inflammatory cytokines.  Currently it is uncertain if the 
chronic elevation of circulating pro-inflammatory 
cytokines observed in obese subjects cause and/or 
contribute to any of the obesity-induced changes in 
innate and adaptive immune function (discussed below) 
or if the elevation of inflammatory cytokines and 
alterations in immunity are both downstream 
consequences of obesity. 

 
In addition to the elevation of inflammatory 

markers in obesity, several reports have documented an 
obesity-induced impairment in innate immunity.  Wound 
healing is significantly delayed and the reported 
incidence of wound complications is significantly 
greater in obese patients compared with normal-weight 
patients (161-163). Additionally,  the incidence of 
nosocomial infections is higher in overweight and obese 
patients compared with normal-weight patients (161) 
and obese burn patients have an increased risk of 
infection and bacteremia during recovery (164).  Taken 
together, these data suggest that several components of 
innate immunity are adversely impacted by obesity and 
the surgical resection of a primary tumor may be more 
complicated in obese patients. 

 
The effect of obesity on NK cell function has 

been examined in several studies, but the results are 
inconsistent.  Two cross-sectional studies have reported 
no statistically significant difference in NK cell 
cytotoxicity between obese subjects and lean controls 
(165;166).  In another report, the influence of obesity on 
NK cell function differed by age.  Obesity had no effect 
on NK cell cytotoxicity in younger subjects, but obese 
subjects over 60 years old had lower NK cell function 
than the lean age-matched controls  (167).   In animal 
studies, diet-induced obese animals have lower NK cell 
function than lean control animals (168;169).  
Moreover, in a metastasis model, the number of 
experimental lung colonies was significantly higher in 
obese mice compared to lean controls (170).  Depletion 
of NK cells with anti-asialo-GM1 antibody led to 
increased metastases in both control and obese mice, but 
eliminated the obesity-induced difference in tumor 
metastasis (170).  These results demonstrate that the 
obesity-induced increase in metastasis in this model is 
mainly due to impaired NK cell function in obese mice.  
These data suggest that obesity adversely impacts NK 
cell function in mice.  However, additional studies are 
needed to further characterize the effects of overweight 
and obesity on NK cell function in both humans and 
animal models. 

 
Little work has been done to date to identify 

the effect of obesity on adaptive immune function.  
Phenotypic studies have shown increased numbers of 
CD19+ and CD3+ cells among obese individuals.  The 
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increase in CD3+ T cells is due to a selective increase in 
CD4+ T cells (166;171).  There are conflicting results on 
the effects of obesity on the CD8+ T cell population.  
One report showed no effect of obesity on the CD8+ T 
cell population (84) while another showed a decreased 
frequency of CD8+ T cells (171).  Despite increases in 
the number of CD4+ T cells, their functional capacity is 
impaired by obesity.  Reduced mitogen-induced T cell 
proliferation has been observed in obese subjects 
(166;172;173) and in experimental animals (174;175).  
Additionally, obese children and adolescents have 
impaired DTH responses compared to normal weight 
controls (172).  Finally, a recent study has demonstrated 
that obesity impairs antigen-specific CD4+ T cell 
proliferation and cytokine production following 
vaccination with a pox virus based vaccine (169).  
Taken together, these preliminary results suggest that T 
cell function is impaired by obesity.  Therefore, the 
generation of adequate immunological response to 
common vaccinations (e.g., flu, tetanus, etc…), and 
potentially, therapeutic cancer vaccines may be 
significantly impaired by obesity. 

 
If obesity impairs innate and adaptive immune 

function, several critical questions need to be addressed.  
First, can weight loss reverse the adverse effects of 
obesity on the immune system?  Second, does the 
method of weight loss, i.e. CR (diet), exercise or a 
combination of CR and exercise, differentially alter the 
immunological response to weight loss?  A few studies 
have examined immunological endpoints following 
weight loss in obese subjects using either CR, exercise 
or a combination of CR and exercise and have reported 
inconsistent results.  Obese subjects maintained on a 
very low calorie diet for 12 weeks lost a significant 
amount of body weight and had increased mitogen-
induced T cell proliferation after 12 weeks on the diet 
(173).  Similarly, overweight rats that were calorie 
restricted had a significantly higher number of splenic 
CD4+ T cells and enhanced mitogen-induced 
proliferation compared to overweight ad libitum-fed rats 
(168).  However, in another study, obese women 
completing a 26-week weight loss program involving 
severe CR followed by a period of incremental refeeding 
had a significant loss in body weight and percent body 
fat, but also had a significant decline in DTH 
responsiveness (176).  Importantly, DTH responses 
remained suppressed for eight months after the end of 
the diet in those subjects who regained less than 40% of 
their original weight (176).  Additionally, obese women 
who completed a 12-week weight loss program using a 
low calorie diet (50% reduction in calories) had a 30-
35% reduction in the number of circulating NK cells 
that persisted following 35 days of normal food intake 
(177).  Finally, one report showed that repeated cycles 
of weight loss were associated with lower NK cell 
function in postmenopausal, obese women (178). 

 
In contrast, studies that have incorporated 

exercise into the weight loss program have reported 
better immune responses than CR alone.  For example, 
in one report obese women were randomized to one of 

four groups: control, exercise (walking 45 minutes, 5 
days/wk); CR (1200-1300 kcal/day) or a combined CR 
and exercise group.  Women in the CR and CR plus 
exercise groups lost weight and lowered their percent 
body fat, however, only the obese exercisers had 
significantly lower upper respiratory tract infections 
(84).  In another study, obese women were randomized 
into CR (925 kcal/day) or CR plus exercise (925 
kcal/day plus 20 minutes aerobic activity 3 days/wk) 
groups for eight weeks.  Women in the CR only group 
had significantly lower NK cell function following the 
diet, but the CR plus exercise group had no decrements 
in NK cell function (179).  In animal studies, exercise 
but not weight loss enhanced NK cell cytotoxicity and 
Con A-induced proliferation of splenic lymphocytes in 
obese Zucker rats (174).  These limited results suggest 
that the incorporation of physical activity into a weight 
loss regimen may enhance a broader repertoire of 
immunological responses than dieting alone.  

 
3.3.3. Weight loss strategies in combination with 
cancer vaccine 

No studies to date have implemented weight 
loss strategies (either via CR, increased physical activity 
or a combination of both) prior to the administration of 
a therapeutic cancer vaccine.  However, reducing body 
weight and/or percent body fat may provide a better host 
environment to generate antigen-specific vaccine 
responses since obesity had been linked to adverse 
clinical outcomes, as well as potentially impaired 
immune function. 

 
In numerous studies, being overweight at the 

time of diagnosis has been identified as a predictor of 
adverse clinical outcomes in women with breast cancer 
(10).  To date, 39 studies have examined the relationship 
between obesity and risk of recurrence or survival in 
breast cancer patients.  A significant association 
between obesity and recurrence or survival for breast 
cancer was observed in 31 of these studies (180-185); 
and the negative effects of obesity on recurrence and 
survival were observed in both pre and postmenopausal 
women (185-187).  Weight gain after diagnosis is also 
related to poorer survival in breast cancer patients 
(183;188;189).  Weight gain after diagnosis is 
commonly reported in breast cancer patients, 
particularly those receiving adjuvant chemotherapy 
(190-193).  Furthermore, several studies have 
demonstrated that a return to pre-diagnosis body weight 
seldom occurs in breast cancer patients (188;194), 
suggesting that the adverse effects of obesity, at least 
the risk associated with post-diagnosis weight gain, 
impact the vast majority of breast cancer patients.  

 
Obesity is also predictive of other less 

favorable breast cancer clinical outcomes and related 
co-morbidities.  Obesity is associated with more 
advance stage of disease at diagnosis (195-198), greater 
lymph node involvement (199-201), and greater risk of 
contralateral breast cancer in pre (202) and 
postmenopausal (202-204) women.   Obese women also 
have greater wound complications (e.g., slower healing 
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and greater infections) and lymphedema following 
breast cancer surgery (205;206).   

 
Although less well studied, similar patterns are 

emerging between obesity and clinical outcomes related 
to prostate and colorectal cancer.  A number of large 
cohort studies have demonstrated a clear association 
between obesity and prostate cancer mortality (11;207-
209).  In addition, several of these studies have also 
demonstrated that obesity is strongly correlated with 
more aggressive disease (207-210).  Obese prostate 
cancer patients have higher grade and/or stage tumors 
and higher rates of positive surgical margins at the time 
of radical prostatectomy (210-214), and are at greater 
risk for biochemical failure following surgery 
(210;214).  Two recent studies have demonstrated that 
obese men are at an increased risk of developing 
metastases (215;216). Finally, several recent studies 
have shown a positive association between obesity at the 
time of diagnosis and prostate cancer recurrence 
(210;217-219).   

 
Less data is available regarding the impact of 

obesity on clinical outcomes related to colorectal 
cancer.  In a randomized adjuvant chemotherapy trial for 
colorectal cancer, obese women had 34% greater risk of 
overall mortality and 24% increased risk of recurrence 
than normal weight women (220).  In a second trial 
investigating clinical outcomes in subjects from the 
National Surgical Adjuvant Breast and Bowel Project, 
obesity at the time of diagnosis was associated with 
increased risk of colon cancer recurrence and death 
(221).  Lastly, in an Australian cohort, incremental 
increases in percent body fat were positively associated 
with colorectal-specific mortality (222).  Together these 
data suggest that obesity is associated with adverse 
clinical outcomes following diagnosis of breast, prostate 
and colon cancer.  Reduction in body weight either 
through moderate calorie restriction and/or physical 
activity following diagnosis may reduce the risk of these 
cancer-related events.   However, no studies to date 
have addressed this issue.   

 
The adverse effects of obesity on recurrence, 

survival, and other clinical outcomes, and the potential 
for obesity to impair immunological response to vaccine 
provide compelling rationale for reducing obesity in 
cancer patients in general, but also specifically prior to 
receiving a therapeutic vaccine.  However, it may not be 
feasible to recommend weight loss in overweight and 
obese patients until after the completion of adjuvant 
therapy given the potential for adverse side effects 
associated with treatment (e.g., nausea, fatigue, etc…).  
Furthermore, the few studies that have explored the 
effect of weight loss on immune endpoints in obese 
subjects suggest that weight loss achieved via dieting 
versus dieting in combination with exercise may have 
different consequences on immune function, with 
exercise providing greater benefit.   Given the number 
of potential cancer patients who are likely to be 
overweight or obese at the time of diagnosis or become 
obese following treatment, future studies are warranted 

to first, determine the mechanisms by which obesity 
impairs immune function; and second, determine if these 
immunological impairments can be reversed though 
weight loss or other pharmacological interventions that 
can be used prior to or in combination with vaccine to 
enhance vaccine efficacy. 

 
4. Impact of Nutrients 

 
4.1. Retinoids and carotenoids 
4.1.1. Role of retinoids and carotenoids in cancer 
prevention  

Vitamin A and its natural analogues, all-trans, 
9-cis, and 13-cis-retinoic acids, have been shown to 
promote the differentiation of normal and neoplastic 
cells, in vitro and in vivo (223;224).  The carotenoids 
are fat-soluble, antioxidant compounds (xanthophylls, 
carotenes, and lycopene) that are found in green and 
yellow leafy vegetables and serve as precursors to 
vitamin A and its derivatives.  Epidemiological studies 
indicate that diets deficient in the retinoids and 
carotenoids or individuals with low serum retinol levels 
are associated with increased relative risk of cancer 
(225-227).  However, large, randomized studies of 
dietary supplementation with beta-carotene reported 
significant increases in lung cancer incidence and 
mortality in heavy smokers and asbestos workers (228-
231).  These data led the Institute of Medicine (IOM) to 
conclude that beta-carotene supplementation is not 
advisable for the general population, but may be 
appropriate in vitamin A deficient populations (232). 

 
In preclinical studies, a liposomal formulation 

of all-trans retinoic acid (ATRA) was shown to induce 
sustained remission of acute promyelocytic leukemia in 
immunocompetent but not immunodeficient mice, 
suggesting an immunological mechanism of action 
(233).  The use of 9-cis-retinoic acid (9-cis-RA) has 
been shown to inhibit the growth of ER+ (234;235) and 
ER- (236) mammary tumors in the rat.  Clinical trials of 
13-cis-retinoic acid (13-cis-RA, Isotretinoin, Accutane, 
Hoffman-La Roche Inc.) show regression of oral 
leukoplakia (237) and significant reductions in the 
incidence of secondary squamous cell carcinomas of the 
head and neck (238;239).  A topical formulation of 9-
cis-RA (Alitretinoin gel 0.1%, Panretin, Ligand 
Pharmaceuticals) is FDA approved for the treatment of 
AIDS-related Kaposis’s sarcoma (KS) where it is 
thought to inhibit the proliferation and neoangiogenesis 
of KS lesions (240).   

 
To avoid the toxicities associated with the 

retinoids (241), synthetic analogues that preferentially 
bind to the retinoid X receptor (RXR) termed 
“rexinoids”, LGD1069 (Bexarotene, Targretin, Ligand 
Pharmaceuticals) and LG100268, were developed.  
These synthetic analogues show preventive and 
therapeutic efficacy against animal models of ER+ (242-
245) and ER- (244;246-248) mammary carcinogenesis.  
In a phase II clinical trial of metastatic breast cancer 
patients, Bexarotene (Targretin, LGD1069) was shown 
to benefit 20% of the patients without significant 
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toxicity (249).  Even greater promise may lie in the new 
rexinoid, LG100268, which has been shown to synergize 
with the selective estrogen receptor modulators, 
Arzoxifene and Acolbifene (244;248), and may be more 
potent and less toxic than LGD1069 due to its greater 
specificity of RXR binding (250).   

 
4.1.2. Modulation of immune function by retinoids 
and carotenoids 

There is support in the literature for a diverse 
immunomodulatory role of the retinoids.  Preclinical 
studies suggest that ATRA therapy promotes Th2-
mediated immune responses (251-253).  Vertuani and 
colleagues (254) demonstrated that the retinoids, ATRA 
and 9-cis-RA, stabilized the class I major 
histocompatibility complex (MHC) and enhanced both 
MHC class I restricted peptide-specific lysis by CD8+ 
cytotoxic T lymphocytes (CTLs) and NK cell 
cytotoxicity of neuroblastoma cells.  Treatment with 
ATRA works additively with IFN-gamma (255) and 
high dose gamma irradiation (256) to upregulate human 
leukocyte antigen (HLA) class I and intercellular 
adhesion molecule 1 (ICAM-1) on human cervical 
carcinoma cell lines.  Against a panel of human uveal 
melanoma cells, ATRA treatment was shown to induce 
G1 arrest, apoptosis, and sensitize cells to MHC class I 
restricted CTL killing and NK mediated lysis (257).  
Furthermore, the in vitro proliferation of T cells in 
response to anti-CD3/anti-CD28 stimulation is 
significantly improved with ATRA (258).  Following 
chemotherapy in advanced ovarian cancer patients, the 
combination of low-dose IL-2 with 13-cis-RA was 
shown to reduce circulating vascular endothelial growth 
factor (VEGF) levels, increase lymphocyte and NK cell 
numbers, and significantly improve both progression-
free and overall survival (259).   

 
Bexarotene (Targretin) is FDA approved for 

the treatment of early (260) and advanced (261) 
cutaneous T cell lymphoma (CTCL).  Both Bexarotene 
(Targretin) and Alitretinoin (Panretin) enhance the 
sensitivity of T- and B-leukemia cells to denileukin 
diftitox (ONTAK) due to upregulation of the 
α/p55/CD25 and β/p75/CD122 chains of the high-
affinity IL-2 receptor (262).  The combination of 
Bexarotene (Targretin) and ONTAK (Panretin) is 
currently being evaluated in clinical trials of patients 
with relapsed or refractory CTCL (263).  
 
4.1.3. Use of retinoids and carotenoids in 
combination with cancer vaccine 

Several lines of evidence suggest that the 
retinoids may be effective adjuncts to antigen-specific 
immunotherapy.  The expansion of Gr-1+/CD11b+ 
myeloid-derived suppressor cells (MDSCs) in tumor-
bearing hosts are reported to be a major mechanism of 
tumor-associated immunosuppression (264).  ATRA 
therapy has been shown to improve antigen-specific T 
cell responses through reductions in the Gr-1+/CD11b+ 
MDSC population in both mice (265;266) and humans 
(267).  In an adoptive transfer model, ATRA therapy 
reduced the proportions of Gr-1+/CD11b+ MDSCs with 

concomitant increases in the proportions of CD11c+/I-
Ab+ dendritic cells (DCs), F4/80+ macrophages, and Gr-
1+/CD11b- granulocytes (266).  Moreover, the loss of 
Gr-1+/CD11b+ MDSCs was associated with 
improvements in CD4+- and CD8+-mediated immune 
responses.  ATRA therapy was shown to significantly 
enhance the antitumor efficacy of two vaccine 
strategies: 1) a peptide-based vaccine against C3 
fibrosarcomas, and 2) a DC-based vaccine against 
MethA sarcomas (266).   

 
In myeloid leukemia, reciprocal DNA 

translocations result in the formation of unique tumor-
associated antigens such as the promyelocytic leukemia-
retinoic acid receptor-α (PML-RARA) fusion protein 
which represents over 95% of the fusion proteins found 
in acute promyelocytic leukemia patients (268).  Padua 
and colleagues (268) developed a DNA-based vaccine 
that linked the PML-RARA oncogene with fragment c 
of the tetanus toxin (PML-RARA-FrC).  The DNA 
vaccine successfully targeted the oncoprotein and 
combination therapy with ATRA was shown to improve 
survival, induce antibody production against RARA, and 
increase serum IFN-gamma levels in vivo (268). 

 
These studies provide mechanistic insights and 

demonstrate the potential of combination 
immunotherapy with retinoids such as ATRA; however, 
significant toxicities associated with the use of the 
retinoids (269) have led to the development of the 
synthetic rexinoids with fewer RAR-mediated side 
effects.  The rexinoids show tremendous potential for 
chemoprevention, but have not been tested in 
combination with cancer vaccines (personal 
communication with Dr. Michael Sporn).  Interestingly, 
the rexinoid, Bexarotene (Targretin, LGD1069) has been 
reported to inhibit cyclooxygenase-2 (COX-2) 
expression through transrepression of the AP-1 
transcription factor in both normal and malignant 
mammary tissue (270).  As pharmacologic inhibition of 
COX-2 expression has been shown to synergize with a 
variety of anti-tumor vaccine strategies (see Arachidonic 
Acid Metabolism), the potential for combination 
immunotherapy with the rexinoids is intriguing. 

 
4.2. Tocopherols and tocotrienols 
4.2.1. Role of tocopherols and tocotrienols in cancer 
prevention 

Vitamin E, a fat-soluble antioxidant vitamin 
found in plant oils, grains, and seeds, is comprised of a 
family of four tocopherols and four tocotrienols.  The 
tocopherols have been shown to scavenge free radicals, 
prevent lipid peroxidation in cell membranes and low-
density lipoprotein cholesterol, and inhibit production of 
the nitrosamines, carcinogens derived from dietary 
nitrites.  Epidemiological studies offer mixed results 
with some trials suggesting that alpha-tocopherol 
supplementation may protect against cancers of the 
prostate (231) and upper gastrointestinal tract (271) in 
high-risk populations.  The Heart Outcomes Prevention 
Evaluation (HOPE) trial observed a protective effect of 
vitamin E supplementation (400 IU/day of RRR-alpha-
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tocopheryl acetate) on incident cases of lung cancer; 
however, vitamin E supplementation was not shown to 
be protective against prostate or colorectal cancers 
(272).  In a phase II clinical trial of the Community 
Clinical Oncology Program (CCOP), alpha-tocopherol 
supplementation (800 IU/day for 24 weeks) resulted in 
clinical or histological responses in 61% of patients with 
premalignant oral leukoplakia (273). 

 
Vitamin E succinate (VES) is a redox-inactive 

ester analog of vitamin E and a potent chemopreventive 
agent in many types of cancer with remarkable 
specificity for malignant tissues (274;275).  In prostate 
cancer cells, VES induces apoptosis by suppressing NF-
kB activity, inhibiting the interaction between Bcl-XL 
and Bcl-2 proteins, and sensitizing androgen-dependent 
prostate cancer cells to androgen deprivation in vitro 
(276;277).  Malafa and colleagues (278) demonstrated 
that VES induced caspase 4-dependent apoptosis and 
inhibited lung metastases in human prostate tumors 
growing in SCID mice.  In malignant mesothelioma 
cells, VES activates the expression of death receptors 4 
and 5 (DR4 and DR5); thereby, rendering malignant 
mesothelioma cells sensitive to TNF-related apoptosis-
inducing ligand (TRAIL) mediated apoptosis in a p53-
dependent manner (279).  The antitumor activity of VES 
has also been associated inhibition of angiogenesis 
through the suppression of VEGF expression in B16F10 
melanoma (280) and MDA-MB-231 breast cancer cells 
(281). 

 
4.2.2. Modulation of immune function by tocopherols 
and tocotrienols 

There is evidence from clinical trials that 
vitamin E supplementation may boost immune function, 
particularly in high-risk elderly populations.  Meydani 
and colleagues (282) evaluated the effects of vitamin E 
supplementation on indices of cell-mediated immunity 
in a randomized, double-blinded, placebo-controlled 
trial of healthy older subjects.  Supplementation with 30 
days of vitamin E (dl-alpha-tocopheryl acetate) at 800 
IU/day was shown to increase DTH responses, Con A-
stimulated T cell proliferation, and IL-2 release (282).  
In a subsequent randomized, double-blinded, placebo-
controlled trial of elderly subjects, vitamin E 
supplementation for 4 months at 200 mg/day was shown 
to enhance DTH responses and antibody responses to 
hepatitis B and tetanus toxoid vaccination (283).  In this 
study, subjects in the highest tertile of serum alpha-
tocopherol concentration (> 2.08 mg/dL) following 
supplementation had the highest antibody titers to 
hepatitis B and DTH responses (283).  These findings 
are consistent with a study in a Japanese cohort of 
nursing home residents in which pre-vaccination vitamin 
E status was positively associated with response to the 
influenza vaccine (284).  In yet a third supplementation 
study by Meydani’s group, nursing home residents 
receiving one year of vitamin E supplementation (200 
IU/day) were significantly protected from upper 
respiratory tract infections such as the common cold 
(285).  However, this effect was not observed in another 
randomized trial of non-institutionalized elderly 

individuals receiving vitamin E supplementation (200 
mg/day) for up to 15 months (286).   

 
In advanced colorectal cancer patients, short-

term, high-dose vitamin E supplementation (750 mg/day 
for 2 weeks) increased CD4+/CD8+ T cell ratios, 
increased T cell production of IL-2 and IFN-gamma, and 
significantly improved NK function through induction 
of NKG2D expression (287;288).  The beneficial effects 
of vitamin E supplementation on cellular and humoral 
immunity appear to be dose-dependent as De Waart and 
colleagues (289) reported that 3 months of 
supplementation with 100 mg/day of dl-alpha-
tocopheryl acetate did not significantly alter mitogen-
activated lymphoproliferative responses or antigen-
specific IgG or IgA antibody titers. 

 
Several hypotheses have been forwarded to 

explain the effects of vitamin E supplementation on age-
associated decrements in cell-mediated immunity.  In a 
recent study, in vivo vitamin E supplementation of aged 
mice improved the development of an effective immune 
synapse between naive CD4+ T cells and APCs resulting 
in improved T cell signaling and activation (290).  Han 
and colleagues (291) reported that vitamin E 
supplementation in aged mice resulted in up-regulation 
of IL-2 and down-regulation of IL-4 expression 
following anti-CD3/anti-CD28 stimulation suggesting a 
shift in Th1/Th2 balance in the T cells of older mice 
receiving vitamin E in vivo.  Another hypothesis is 
based on the observation that macrophages from aging 
animals produce more prostaglandin E2 (PGE2) which 
has been shown to inhibit the proliferative capacity and 
IL-2 secretion of T cells, in vitro.  In co-culture 
experiments, vitamin E supplementation and the 
cyclooxygenase inhibitor, indomethacin, were shown to 
improve T cell responsiveness in old mice primarily by 
reducing macrophage-derived PGE2 production (292).  
Similarly, VES is hypothesized to inhibit the initiation 
and progression of lung cancer through its ability to 
suppress COX-2 activity and PGE2 production in 
phorbol ester-stimulated human lung epithelial cell lines 
(293).  Thus, the synthetic rexinoid, Bexarotene, and the 
esterified vitamin E analog, VES, both appear to 
mediate at least some of their chemopreventive and 
immunomodulatory effects through the inhibition of 
COX-2 activity and PGE2 production in target tissues. 
 
4.2.3. Use of tocopherols and tocotrienols in 
combination with cancer vaccine 

To date, three preclinical studies have 
evaluated VES in combination with DC-based cancer 
vaccines.  Ramanathapuram and colleagues (294) 
demonstrated that DCs pulsed with tumor cell lysate and 
injected either intratumorally or subcutaneously in 
combination with locally or systemically administered 
VES resulted in significant growth inhibition of 
established Lewis lung carcinomas.  In this study, the 
adjuvant effect of VES was shown to outperform that of 
cyclophosphamide.  One of the impediments to the 
clinical applicability of VES is its requirement for 
ethanol, DMSO, or sesame oil for solubilization.  A 
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more soluble formulation of vitamin E succinate, 
vesiculated alpha-tocopherol succinate (V-alpha-TOS), 
was shown to be soluble in aqueous solutions and 
enhance the anti-tumor efficacy of DC-based vaccines 
against 4T1 breast (295) and Lewis lung (296) 
carcinomas.  In both studies, non-matured DCs 
incubated with the lysates of V-alpha-TOS-treated 
tumor cells were shown to mature as evidenced by the 
upregulation of costimulatory molecules (CD40, CD80, 
and CD86) and the secretion of IL-12p70 (295;296).  
Two mechanisms were proposed to explain how V-
alpha-TOS improves DC-based immunotherapy: 1) V-
alpha-TOS directly lyses tumor cells thereby cross-
priming DCs through antigen cascade, and 2) V-alpha-
TOS induces the expression of heat shock proteins 60, 
70, and 90 in tumor cells which present a “danger” 
signal to antigen presenting cells (APCs) leading to their 
activation (295;296).  The improved solubility and 
demonstrated adjuvant characteristics of V-alpha-TOS 
make this compound a promising candidate for 
additional research and clinical development. 

 
5. OTHER METABOLIC FACTORS 

 
5.1. Introduction to other metabolic factors 

Thus far, this review has focused on systemic 
modulation of energy balance and nutritional status to 
optimize innate and adaptive immune function and 
responses to antigen-directed cancer immunotherapy 
(Tables 1 and 2).  However, there is a growing body of 
evidence demonstrating that nutrient metabolism at the 
level of the tumor microenvironment (tumor cells, 
stroma, and tumor-draining lymph nodes) is employed 
by the growing tumor to induce peripheral immune 
tolerance and tumor escape (reviewed in (297)).  Below, 
we have reviewed complex immunosuppressive 
networks in which arachidonic acid metabolism, the 
catabolism of the amino acids arginine and tryptophan, 
and the depletion of glucose from the tumor 
microenvironment contribute individually, and in 
combination to inactivate effector T cell function and 
promote a tolerogenic state (Figure 1).  Where available, 
we have provided examples of small molecule inhibitors 
that target these pathways and their utility in 
combination with cancer vaccines (Table 3). 
 
5.2. Arachidonic acid metabolism 

Arachidonic acid is a 20-carbon 
polyunsaturated fatty acid hydrolyzed from membrane 
phospholipids by the enzyme phospholipase A2 (298).  
The cyclooxygenase-2 enzyme, COX-2, is the rate-
limiting step in the metabolism of arachidonic acid to 
the prostaglandins (PGE2, PGF2α, PGD2, PGI2) and the 
thromboxanes (TXA2) (298).  Overexpression of COX-2 
activity has been reported in preneoplastic lesions as 
well as gastric cancers and carcinomas of the lung, 
colon, and breast (299).  The synthesis of PGE2 
contributes to tumor promotion and progression through 
its effects on apoptosis, inflammation, angiogenesis, 
tumor invasiveness, and immunosuppression (298).  
Tumor or macrophage-derived PGE2 production induces 
immunosuppression by impairing B and T cell 

proliferation, inhibiting NK cell cytotoxicity, and 
inducing FoxP3 expression and regulatory T cell (Treg) 
function in naïve CD4+CD25- cells (298;300;301).  
Additionally, PGE2 inhibits the production of TNF-
alpha while promoting the expression of the 
immunosuppressive cytokine, IL-10 (302).  Clinically, 
COX-2 and PGE2 expression were correlated with 
reduced Th1 and increased Th2 serum cytokine levels 
and impaired DC and T cell function in breast cancer 
patients (303).  Thus, selective COX-2 inhibition is 
reported to reverse tumor immunosuppression by 
reducing intratumoral CD4+CD25+FoxP3+ Treg cells, 
increasing the production of IFN-gamma by tumor 
infiltrating lymphocytes (TILs), and normalizing the 
balance between Th1 (IL-12) and Th2 (IL-10) cytokines 
(297;298;301;304). 

 
Stolina and colleagues (304) were the first to 

report that COX-2 inhibition could promote anti-tumor 
immunity.  In this study of Lewis lung carcinoma, the 
selective COX-2 inhibitor, SC-58236, led to a reduction 
in IL-10, an increase in IL-12 production by APCs, 
significant tumor growth inhibition, and prolonged 
survival (304).  Subsequent animal studies demonstrated 
that selective COX-2 inhibition significantly improves 
the efficacy of anti-tumor vaccines to inhibit tumor 
growth and promote survival in murine models of 
mesothelioma (305), breast (306;307), lung (301;306), 
and familial adenomatous polyposis (FAP) (308).  Due 
to the safety concerns regarding the selective COX-2 
inhibitors (309-311), efforts are now being made to 
develop small molecule inhibitors that target the 
prostaglandin receptors (EP1-4) through which PGE2 is 
known to induce cell signaling such as the induction of 
FoxP3 expression in Treg cells (297).  Thus, the available 
evidence provides ample rationale for combining 
strategies for targeted inhibition of arachidonic acid 
metabolism such as COX-2 inhibition or PGE2 receptor 
antagonism with antigen-directed cancer 
immunotherapy. 
 
5.3. Arginine metabolism 

L-arginine is a conditionally essential amino 
acid and its local catabolism by tumor cells, tumor-
associated macrophages (TAMs), and myeloid-derived 
suppressor cells (MDSCs) is reported to modulate 
tumorigenesis and immune function (297;312;313).  The 
catabolism of arginine is catalyzed by two classes of 
enzymes: 1) arginase (ARG) encoded by the ARG1 and 
ARG2 genes, and 2) nitric-oxide synthase (NOS) 
encoded by the NOS1 (neuronal or nNOS), NOS2 
(inducible or iNOS), and NOS3 (endothelial or eNOS) 
(297;313).  As a component of the urea cycle, the ARG1 
isoform is highly expressed in the liver where it 
catalyzes the conversion of L-arginine to L-ornithine 
and urea (297).  The enzyme ornithine decarboxylase 
(ODC) acts on L-ornithine to initiate the first step in the 
biosynthesis of the polyamines (putrescine, spermidine, 
and spermine), a class of organic by-products of L-
arginine catabolism known to act as endogenous tumor 
promoters (314).  The intracellular accumulation of 
polyamines have been reported to be a consequence of 



[Frontiers in Bioscience 12,5001-5000, September 1, 2007] 

 

 
 

Figure 1.  Nutrient metabolism in the tumor microenvironment contributes to immunosuppression and tumor escape from 
immune surveillance.  A) Tumor-derived cytokines and others soluble factors such as interleukin-10 (IL-10), transforming 
growth factor-beta (TGF-beta), vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and colony stimulating 
factor (CSF) promote the expansion of immunosuppressive cell populations such as myeloid-derived suppressor cells (MDSCs), 
tumor-associated macrophages (TAMs), and tolerogenic dendritic cells (DCs).  B) Both tumor cells and immunosuppressive cell 
types can inhibit CD4+ and CD8+ effector T cells through the: 1) release of TGF-beta and IL-10, and 2) activation of 
CD4+/CD25+/FoxP3+ regulatory T (TREG) cells.  C) The enzymatic activity of indoleamine 2,3-dioxygenase (IDO), inducible 
nitric oxide synthase (iNOS), arginase I (ARG), and cyclooxygenase-2 (COX-2) found in tumor cells and tolerogenic cells 
contributes to effector T cell inactivation by depleting local concentrations of nutrients such as tryptophan, arginine, and 
producing the immunosuppressive factor, PGE2.  D) Hypoxia generated in rapidly growing tumors further induces a tolerogenic 
state in the tumor microenvironment in a HIF-1-dependent manner by depleting glucose concentrations through increased uptake 
and metabolism, lowering the pH through lactate production, depleting arginine concentrations through upregulation of iNOS, 
and increasing the production of PGE2 through COX-2 induction, and increased angiogenesis through transcriptional activation 
of VEGF expression.   
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elevated ARG and ODC-mediated arginine 
catabolism in tumor cells (312;315).  Consistent with 
these findings, elevated ARG activity has been reported 
in patients with non-small cell lung cancer (NSCLC), 
skin, colorectal, breast, and prostate cancer (313).  
However, other studies suggest that MDSCs and TAMs 
are the more significant source of tumor-associated 
arginine catabolism (316-319).   

 
Myeloid-derived suppressor cells, expressing ARG 
and/or NOS activity, induce arginine catabolism in the 
tumor microenvironment and contribute to 
tumorigenesis and immunosuppression by several 
mechanisms (Figure 1).  First, MDSC- or TAM-derived 
ARG1 activity has been shown to inhibit the function of 
adjacent effector T cells by down-regulating the 
expression of the T cell receptor (TCR) CD3 zeta chain 
(313;318;320).  Second, Chang and colleagues (316) 
demonstrated that murine macrophages overexpressing 
ARG1 promote the proliferation of ZR-75-1 breast 
cancer cells through the conversion of L-arginine to L-
ornithine and the subsequent activation of polyamine 
biosynthesis.  This proliferative effect was inhibited by 
the arginase inhibitor, L-norvaline (316).  These 
observations gain support from findings in patients with 
metastatic renal cell carcinoma (RCC) in which the 
arginase activity of peripheral blood mononuclear cells 
(PBMCs) was significantly higher while TCR CD3 zeta 
chain expression, IL-2, and IFN-gamma production 
were significantly lower in RCC patients compared to 
age- and gender-matched healthy controls (321).  
Depletion of the CD11b+/CD14- subpopulation from 
RCC samples restored T cell proliferative capacity, IL-2 
and IFN-gamma production, and TCR CD3 zeta chain 
expression suggesting a role for MDSC-derived ARG1 
activity in local immunosuppression (321).  Third, the 
catabolism of L-arginine via the iNOS pathway results 
in the production of nitric oxide (NO) and L-citrulline.  
The NO produced by MDSCs abrogates the effector 
function of adjacent T cells by inhibiting IL-2 receptor 
signaling and IL-2 production (reviewed by (313)).  
Finally, activation of both the ARG1 and iNOS enzymes 
synergize to induce effector T cell apoptosis through the 
previously described mechanisms and the production of 
cytotoxic peroxynitrites (313;317;319).   

 
De Santo and colleagues (322) demonstrated 

that T cell proliferation and cytotoxicity were inhibited 
by CD11b+ MDSCs expressing both ARG and NOS.  In 
this study, an inhibitor of ARG and NOS, nitroaspirin 
(NCX-4016), was shown to reverse the effects of 
MDSC-mediated immunosuppression.  In tumor-bearing 
mice, the combination of NCX-4016 and DNA-based 
vaccination increased the number of tumor-specific 
CTLs and significantly extended survival (322).  These 
findings suggest a role for combining pharmacological 
inhibitors of L-arginine catabolism with cancer 
immunotherapy.  As with celebrex, NCX-4016 targets 
multiple immunosuppressive pathways by inhibiting 
COX-1, COX-2, ARG1, and iNOS activities in the 
absence of the gastrointestinal toxicities observed with 
traditional aspirin.   

5.4. Tryptophan metabolism 
Local concentrations of the essential amino 

acid tryptophan can be depleted through the activity of 
the cytosolic enzyme indoleamine 2,3-dioxygenase 
(IDO) which catalyzes the conversion of tryptophan to 
its major metabolites, known collectively as the 
kynurenines (297).  Munn and colleagues were the first 
to show that IDO-mediated typtophan catabolism 
induced peripheral immune tolerance in pregnant mice 
carrying allogeneic concepti (323).  A specific, 
pharmacologic inhibitor of IDO, 1-methyl-tryptophan 
(1-MT), was shown to reverse maternal tolerance in this 
model (323).  As illustrated in Figure 1, localized 
immunosuppression leading to tumorigenesis and 
immune escape is hypothesized to be the result of 
cumulative tryptophan catabolism by IDO-positive cell 
types in the tumor microenvironment including tumor 
cells, stroma, tolerogenic DCs, MDSCs, and TAMs 
(297).   

 
Mechanistic studies suggest that IDO-mediated 

tryptophan catabolism regulates adaptive T cell 
immunity (324).  Fallarino and colleagues (325) 
demonstrated that the absence of tryptophan and the 
presence of the immunotoxic kynurenines can inhibit the 
cytotoxic effector function of murine CD8+ T cells 
through down-regulation of the TCR CD3 zeta chain.  
Prolonged tryptophan deprivation and exposure to 
kynurenine metabolites, or co-incubation with IDO-
expressing DCs induces a TGF-beta dependent 
regulatory phenotype in naïve CD4+CD25- T cells (326).  
Antigen-specific anergy is thought to be mediated by 
IDO-expressing tolerogenic DCs which have been found 
to accumulate in the tumor draining lymph nodes of 
both mice (327) and humans (297).  The cytotoxic T 
lymphocyte antigen-4 (CTLA-4) on Tregs engages B7 
receptor molecules on tolerogenic DCs to promote the 
release of IFN-gamma which acts in an autocrine 
feedback loop to activate IDO expression in tolerizing 
DCs (297).  Immunosuppression in the tumor 
microenvironment is maintained when IDO-positive 
DCs promote Treg expansion, differentiation, and local 
production of the immunosuppressive cytokines, IL-10 
and TGF-beta (297). 

 
A large number of human tumors are reported 

to constitutively express IDO including but not limited 
to prostatic, colorectal, pancreatic, cervical, and ovarian 
carcinomas (327) and the level of IDO expression is 
negatively correlated with survival in colorectal (328) 
and ovarian (329) cancer patients.  The serum ratio of 
kynurenine to tryptophan, an indirect marker of IDO 
activity, has been shown to increase with age (330) and 
predict all-cause mortality in nonagenarians (331).  
Murine MC57G fibrosarcoma cells transfected with IDO 
inhibit CD8+ T cell function in vitro (332) and IDO-
transfection of P815 mastocytoma cells prevents the 
rejection of P815 tumors in mice vaccinated against the 
P1A tumor associated antigen (327).  The IDO inhibitor, 
1-MT, inhibits the growth of Lewis lung carcinomas 
(LLC) by antagonizing the immunosuppressive effects 
of IDO-positive mononuclear cells in LLC tumors and 
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the tumor-draining lymph nodes (333).  Recently, 
tumor-induced COX-2 activity was shown to positively 
regulate IDO expression in a murine model of mammary 
carcinogenesis, PyV MT mice (334).  The combination 
of celecoxib plus a DC-based vaccine improved IFN-
gamma production and cytotoxicity of CD8+ T cells 
from the tumor-draining lymph nodes, slowed the 
growth of mammary tumors, prevented lung metastases, 
and improved survival (334).  These data suggest a role 
for the pharmacologic management of 
immunosuppression with selective inhibitors of 
inflammation (e.g., COX-2 with celecoxib) and/or 
tryptophan metabolism (e.g., IDO with 1-MT) in 
combination cancer immunotherapy. 
 
5.5. Glucose metabolism 

In an experiment comparing the gene 
expression profiles of naïve and primed CD8+ effector 
CTLs, the effector state was associated with a 
significant increase in the expression of genes encoding 
glycolytic enzymes such as α-enolase, pyruvate kinase, 
triosephosphate isomerase, hexokinase II, and 6-
phosphofructokinase type C (335).  Consistent with 
these findings, effector CD8+ T cells display greater 
glucose uptake, a higher glycolytic rate, and increased 
lactate production than naïve cells (336).  In this study, 
glucose deprivation was shown to inhibit IFN-gamma 
gene expression suggesting that CD8+ effector T cell 
function is uniquely sensitive to glucose availability 
(337).  Despite the greater glucose uptake and utilization 
by effector versus naïve T cells, tumor cells are reported 
to take up and metabolize 10 to 100 fold more glucose 
per unit of time (336).   

 
Enhanced glucose metabolism and 

angiogenesis are hallmarks of the cellular response to 
hypoxia in cancer.  The central regulator of this 
response is the transcription factor hypoxia inducible 
factor 1 (HIF-1) which functions as a heterodimer 
between HIF-1-alpha and HIF-1-beta (338).  Under 
normoxic conditions, intracellular HIF-1-alpha 
concentrations are regulated through interaction with the 
von Hippel-Lindau (VHL) tumor suppressor protein 
which induces ubiquitination and proteosomal 
degradation of HIF-1-alpha (339).  Under hypoxic 
conditions (Figure 1), HIF-1-alpha is stabilized, 
heterodimerizes with HIF-1-beta, and binds to hypoxia 
response elements in the promoter regions or enhancer 
elements of genes involved in glucose metabolism 
(glucose transporters and glycolytic enzymes), 
angiogenesis (VEGF), inflammation (COX-2), and 
arginine metabolism (iNOS) (340-345).  Similarly, 
under normoxic conditions in VHL-deficient renal cell 
carcinomas, HIF-1-alpha is stabilized (339) and glucose 
uptake is increased (346).  Thus, tumors adapt to 
hypoxia by shunting ATP production away from the 
tricarboxylic acid (TCA) cycle and oxidative 
phosphorylation in favor of glycolysis (342).  The 
microenvironments of many solid tumors are reported to 
be acidic (347) and the greater reliance on glycolysis 
contributes to this acidification by increasing the export 
of lactic acid into the tumor microenvironment (348).  

An acidic microenvironment may also contribute to 
metastasis by increasing the expression and activity of 
extracellular matrix-degrading proteases such as the 
collagenases (349). 

 
Collectively, these findings suggest that 

hypoxia in the developing tumor acts as a master 
regulator of glucose metabolism, inflammation, 
angiogenesis, and metastasis.  As such, HIF-1-alpha-
directed immunotherapy offers the specificity of 
targeting hypoxic or VHL-deficient tissues and the 
opportunity to modulate glucose uptake and metabolism, 
neovascularization of the tumor, and the 
immunosuppressive effects of PGE2 production and 
arginine depletion (Figure 1).  This strategy is plausible 
given that HIF-1-alpha antisense gene transfer was 
shown to significantly enhance B7-1-mediated 
immunotherapy of EL-4 tumors in preclinical studies 
(350).  Alternative immunotherapeutic strategies have 
targeted HIF-1-alpha-regulated gene products such as 
carbonic anhydrase IX, involved in pH control (351).  
Another strategy may lie in the use of NSAIDs such as 
ibuprofen which have been shown to upregulate the 
VHL protein leading to down-regulation of HIF-1-alpha, 
the Glut-1 transporter, VEGF, and the VEGF receptor, 
Flt-1 (352;353).  
 
6. FUTURE RESEARCH DIRECTIONS 

 
Reduction of obesity is an important health 

issue; however, additional preclinical and clinical work 
is needed to determine the effects of weight loss either 
through CR or exercise on immune function before any 
recommendations can be made about initiating weight 
loss prior to receiving a cancer vaccine.  Modulation of 
energy balance through exercise is the most promising 
energy balance related intervention to partner with 
therapeutic cancer vaccines.  Exercise interventions are 
safe, have high compliance levels and have significant 
positive effects on clinical outcomes in cancer patients. 
Exercise training has also been shown to have 
stimulatory effects on NK cell function, and antigen-
specific T cell proliferation and cytokine production.  
These data suggest that combining exercise 
interventions with therapeutic cancer vaccine strategies 
may enhance vaccine efficacy and improve clinical 
outcomes in cancer patients.  Future studies should 
focus on exploring the effects of combining physical 
activity with known cancer vaccine platforms to 
determine the dose, duration and frequency of exercise 
needed to achieve the maximum stimulatory effects of 
exercise on anti-tumor immune function. 

 
Synthetic analogs of vitamins A and E are 

shown to have significant chemopreventive and 
immunomodulatory activity.  Preliminary data suggests 
that vesiculated vitamin E succinate may synergize with 
cancer immunotherapy while the RXR-directed 
rexinoids offer intriguing potential in this regard.  A 
robust and growing body of literature suggests that the 
pharmacologic manipulation of nutrient metabolism in 
the tumor microenvironment may offset 
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immunosuppressive mechanisms activated by the 
growing tumor and tolerogenic cell populations induced 
by tumor-derived cytokines.  Several promising 
intervention strategies for translational development in 
combination cancer immunotherapy include COX-2 
inhibition with celebrex or PGE2 receptor antagonism, 
the use of NO-aspirin (NCX-4016), and the IDO 
inhibitor, 1-MT.  Finally, the diverse repertoire of 
metabolic, immunosuppressive, and angiogenic 
mechanisms induced by tumor hypoxia make HIF-1α-
directed immunotherapy a potential target for future 
vaccine development.   

 
In summary, changes in energy balance via 

exercise, supplementation with specific nutrients (e.g., 
synthetic analogs of vitamins A and E) and modulation 
of nutrient metabolism in the tumor microenvironment 
all are viable candidates for further study in 
combination with cancer vaccines. 
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