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1. ABSTRACT 
 

In the post-genome era, researchers are 
systematically tackling gene functions and complex 
regulatory processes by studying organisms on a global 
scale; however, a major challenge lies in the voluminous, 
complex, and dynamic data being maintained in 
heterogeneous sources, especially from proteomics 
experiments. Advanced computational methods are needed 
for integration, mining, comparative analysis, and 
functional interpretation of high-throughput proteomic data. 
In the first part of this review, we discuss aspects of data 
integration important for capturing all data relevant to 
functional analysis. We provide a list of databases 
commonly used in genomics and proteomics and explain 
strategies to connect the source data, with especial 
emphasis on our ID mapping service. Next, we describe 
iProClass, a central data infrastructure that supports both 
data integration and functional annotation of proteins, and 
give a brief introduction to the data search/retrieval and 
analysis tools currently available at our website 
(http://pir.georgetown.edu) that researchers can use for 
large-scale functional analysis. In the last part, we 
introduce iProXpress (integrated Protein eXpression), an 
integrated research and discovery platform for large-scale 
expression data analysis, and we show a prototype that has 
been useful for organelle proteome analysis. 

 
2. INTRODUCTION 
 

The traditional one-gene-at-a-time approach, 
though critical for revealing detailed molecular functions of 
individual genes, does not provide a global view of gene 
function or of the temporal and spatial regulation of all 
genes at different physiological states or developmental 
stages. In the post-genome era, researchers are beginning to 
systematically tackle gene functions and complex 
regulatory processes by studying organisms on a global 
scale: genomes, transcriptomes, proteomes, metabolomes 
(1), and interactomes (2). 

 
Gene expression profiling using microarray 

technologies has been extensively used in the past decade. 
An enormous amount of data and knowledge have been 
obtained from studies ranging from yeast gene expression 
to human cancer biomarker identification. In addition to 
expression profiling at the transcript level, large-scale 
expression profiling at the protein level using mass 
spectrometry technology is now a widely used approach. 
Proteomics aims to identify, characterize, and quantify all 
proteins expressed in cells grown under a variety of 
conditions (3). As most physiological, developmental, and 
pathological processes are manifested at the protein level, 
proteomics has unique and significant advantages as an 
important complement to genomic and transcriptomic 
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approaches. As a result, there is intense interest in applying 
proteomics to foster a better understanding of basic 
biology, as well as of disease processes (4, 5). Proteomics 
has been widely used for the analysis of complex biological 
systems (6). The use of quantitative mass spectrometry 
provides a powerful approach to the comprehensive 
analysis of macromolecular complexes (7). 

 
The accelerated growth of proteomics and other 

large-scale “omics” data presents both opportunities and 
challenges. Numerous bioinformatics databases have been 
developed to organize and annotate the biological 
information for individual genes and proteins, and to 
facilitate sequence and functional analyses of genes and 
proteins. The collective richness of the data allows 
researchers to ask complex biological questions and gain 
new scientific insights, as illustrated in the integrated 
global profiling approach for studying the molecular basis 
of human cancer (8). One major challenge, however, lies in 
the voluminous, complex, and dynamic data being 
maintained in heterogeneous sources, particularly for 
proteomic data, due to the complexity of protein dynamics 
and the vast amount of information required for 
characterizing the proteome. Advanced computational 
methods are needed for integration, mining, comparative 
analysis, and functional interpretation of high-throughput 
proteomic data. 

 
Due to its robustness, sensitivity and efficiency, 

tandem mass spectrometry (MS/MS) has become the 
method of choice for identification of proteins in high-
throughput proteomics studies (9). This approach subjects 
protein mixtures to proteolytic digestion prior to liquid 
chromatography separation and MS/MS analysis of the 
resulting peptides. Many bioinformatics tools have been 
developed for the management and analysis of proteomics 
data (e.g., http://www.proteomecommons.org/tools.jsp). A 
number of database search programs (e.g., SEQUEST (10), 
Mascot (11) and X!Tandem (12)) are used to assign 
probable peptide sequences to MS/MS spectra and to infer 
protein identities. Tools such as PeptideProphet (13) and 
ProteinProphet (14) are designed to improve the accuracy 
of peptide and protein identification, while DBParser (15) 
consolidates redundant protein assignments. Several search 
algorithms have been benchmarked for sensitivity and 
specificity (16) and a pipeline developed for experiment 
annotation, database searching, peptide mining, and protein 
identification (17).  

 
Once proteins are identified from the biological 

samples, they can be analyzed for functions and processes. 
Many programs have been developed for the biological 
interpretation of large lists of genes, mostly for microarray 
gene expression data, with a few being extended to 
proteomics data. As the Gene Ontology (GO) (18) has 
become the common standard for genome annotation, most 
programs provide functional analysis in the context of GO 
(http://www.geneontology.org/GO.tools.microarray.shtml). 
A few examples include: (i) GoMiner (19), which presents 
genes in GO hierarchical views, (ii) MAPPFinder (20), 
integrating GO with GenMAPP pathways, (iii) NetAffx 
(21), rendering GO graphs to display Affymetrix probe 

sets, (iv) DAVID (22), which includes additional 
information on Pfam domains (23) and KEGG pathways 
(24), and (v) Babelomics (25), which includes InterPro 
(26), KEGG, and Swiss-Prot keywords (27). 

 
While bioinformatics tools have greatly assisted 

proteomic data analysis, a careful review of the major steps 
and flow of data in a typical high-throughput analysis 
reveals gaps that need to be addressed. There are unmet 
needs in the areas of protein identification and functional 
interpretation. One issue in proteomics and MS/MS protein 
identification is that the available general purpose protein 
sequence databases leave out many alternative splice 
isoforms. As a result, proteomics analysis may fail to 
identify bona fide protein products of alternative splice 
isoforms because the target sequence was not present in the 
database being searched. A second issue is the lack of 
standardization when dealing with a large list of 
proteins annotated in different places. Different protein 
IDs/names may be used for the same protein if a 
different underlying database is used for MS/MS protein 
search. Even different versions of the same database 
may result in different IDs if the database identifier is 
not stable. The lack of standards presents a challenge for 
integrating annotations from heterogeneous sources for 
biological interpretation of proteomic data. 
Consequently, expression analysis is often carried out in 
an ad hoc manner, with a fragmented and inefficient use 
of rich annotations available in numerous resources. In 
this article we will discuss the mapping and integration 
of heterogeneous molecular biology databases and the 
functional analysis of gene expression and proteomic 
data using an integrated expression analysis system 
(iProXpress). We then use organelle proteome analysis 
as a case study to illustrate the application of the 
iProXpress system. 
 
3. DATA INTEGRATION 
 

Molecular biology databases often have large 
volume and complex data structure. They are distributed 
through the Internet and are organized in a wide variety of 
formats. Each year, the Journal Nucleic Acids Research 
publishes an update for a list of several hundreds of 
molecular databases in its annual database issue (28). To 
effectively utilize this vast amount of data, it is essential to 
provide researchers with an integrated view of all data 
relevant to functional analysis. Using such integrated view, 
researchers can uncover important biological relationships 
among the large set of genes/proteins from their 
experiments for scientific discovery.   
 
3.1. Data Sources 

Databases commonly used in functional analysis 
of gene expression and proteomic data are listed in Table 1 
under 13 categories: protein sequence, gene and genome, 
taxonomy, gene expression, protein peptide ID databases, 
protein expression, function and pathway, genetic variation 
and disease, ontology, interaction, modification, structure, 
and classification. Most of these molecular biology 
databases are uniquely structured, reflecting different 
underlying biological models. In order to use these data
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Table 1. Molecular biology databases commonly used in functional analysis of gene expression and proteomic data 
Database Description URL 
Protein Sequence  
UniProtKB, 
UniRef100, UniParc 

UniProt protein sequences http://www.uniprot.org 

RefSeq, GenPept, NR NCBI protein sequences http://www.ncbi.nlm.nih.gov 
Gene and Genome  
GenBank/EMBL/DD
BJ 

DNA sequence databases http://www.ncbi.nlm.nih.gov 

UniGene Non-redundant set of eukaryotic gene-oriented clusters of transcript sequences http://www.ncbi.nlm.nih.gov 
FlyBase Drosophila sequences and genomic information http://flybase.bio.indiana.edu 
MGD Mouse genome database http://www.informatics.jax.org 
SGD Saccharomyces genome database http://db.yeastgenome.org 
WormBase Data repository for C.elegans and C.briggsae http://www.wormbase.org 
TAIR The Arabidopsis information resource http://arabidopsis.org 
TIGR TIGR Microbial Database http://www.tigr.org 
Taxonomy  
NCBI Taxon NCBI taxonomy database http://www.ncbi.nlm.nih.gov 
NEWT UniProt taxonomy database http://www.ebi.ac.uk/newt 
Gene Expression  
GEO gene expression profiles http://www.ncbi.nlm.nih.gov 
CleanEx Expression reference database http://www.cleanex.isb-sib.ch 

SOURCE Functional genomics resource for human, mouse and rat http://source.stanford.edu 
Proteomic Peptide ID Databases  
GPMDB Global Proteome Machine Database http://gpmdb.thegpm.org 
PRIDE PRoteomics IDEntifications database http://www.ebi.ac.uk/pride 
PeptideAtlas Peptide database identified by MS experiments http://www.peptideatlas.org 
Protein Expression  
Swiss-2DPAGE Annotated 2D gel electrophoresis database http://www.expasy.org 
PMG 2D gel data from Protein mapping group http://proteomes.pex.anl.gov 
Function and Pathway  
EC-IUBMB Enzyme Nomenclature http://www.chem.qmul.ac.uk 
KEGG Metabolic and regulatory pathways http://www.genome.ad.jp 
BioCyc Microbial pathway/genome databases  http://biocyc.org 
Genetic Variation and Disease  
OMIM A catalog of human genetic and genomic disorders http://www.ncbi.nlm.nih.gov 
HapMap Resource for human DNA sequence variation http://www.hapmap.org 
Ontology   
GO Gene Ontology database http://www.godatabase.org 
Interaction  
IntAct Protein–protein interaction data http://www.ebi.ac.uk/intact 
DIP Database of interacting proteins http://dip.doe-mbi.ucla.edu 
Modification  
RESID Post-translational protein modifications http://srs.ebi.ac.uk/srsbin 

Phosphosite Database of phosphorylation sites http://www.phosphosite.org 

Structure  
PDB Protein structure databank http://www.rcsb.org 
SCOP Structural classification of proteins http://scop.mrc-lmb.cam.ac.uk 
CATH Protein domain structures database http://cathwww.biochem.ucl.ac.uk 
MMDB Database of 3D structures http://www.ncbi.nlm.nih.gov/Structure/mmdb 
PDBsum Summaries and analyses of PDB structures http://www.ebi.ac.uk/pdbsum/ 
Modbase Annotated comparative protein structure models http://modbase.compbio.ucsf.edu 
Classification  
PIRSF Family/superfamily classification of whole proteins http://pir.georgetown.edu 
UniRef50,90 UniProt non-redundant reference clusters http://www.uniprot.org 
PFam Protein families of domains http://www.sanger.ac.uk 
InterPro Integrated resource of protein families, domains and functional sites http://www.ebi.ac.uk/interpro 
PANTHER Gene products organized by biological function http://www.pantherdb.org/panther 
COG Clusters of orthologous groups of proteins http://www.ncbi.nlm.nih.gov/COG 
SMART Resource for protein domain identification and the analysis of protein domain 

architectures 
http://smart.embl-heidelberg.de/smart/ 

TIGRFAMs TIGR protein families http://cmr.tigr.org/tigr-scripts/CMR 
 

effectively, one must understand the database schemas in 
each data source and their relationship. Data sources often 
contain overlapping or similar data elements, such as 
database identifiers, organism names, protein names and 
sequences, which are the keys to connecting the source 
data.  However, there may be conflicting data definitions 
among data sources. Therefore, bioinformatics tools, such 
as ID mapping tools, are needed to uncover the relationship

 
among databases and to map data from one database to 
another, regardless the names or descriptions that are given 
to corresponding objects and attributes in those databases.  
 

As an example, we take a set of MS data from an 
organelle proteome study on various stages of 
melanosomes from human melanoma cell lines (43) to 
illustrate the use of source data for data mapping, 
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integration and interpretation. This data set is a list proteins 
represented by NCBI gi numbers and/or peptide sequences. 
To analyze the data, first we need to map the protein to 
UniProt Knowledgebase (UniProtKB) database entries for 
rich annotation, then to integrate all protein information for 
functional analysis. 
 
3.2. Data mapping 

Common data elements serve as keys for data 
mapping. In primary sequence (protein or gene) databases, 
only four elements, namely, database unique identifier 
(UID), name, source organism, and sequence, are 
commonly used to identify a gene or protein object in 
databases. UID is the ID and/or accession number assigned 
by an individual database to uniquely identify each 
sequence entry. Unlike the gene object, where there is a 
widely acceptable UID (i.e., GenBank/EMBL/DDBJ ID), 
there is no standard UID for a protein object. Various 
secondary databases use different UIDs to reference the 
same object from different protein sequence databases.  
Protein name is the word or phrase used to indicate a 
specific protein object in the scientific literature and 
biological databases. There is, however, a long-standing 
problem of nomenclature for proteins, where “profligate 
and undisciplined labeling is hampering communication.” 
as discussed in Nature (29). Scientists may name a newly 
discovered or characterized protein based on its function, 
sequence features, gene name, cellular location, molecular 
weight, or other properties, as well as their combinations or 
abbreviations. The same protein is often named differently 
in different databases, and occasionally different proteins 
may share the same name.  

 
To unambiguously identify a protein object, one 

also needs to know the source organism of the protein, as 
different organisms may share the same protein sequence. 
While there is a widely adopted standard for taxonomy 
(i.e., NCBI taxonomy), several problems are associated 
with the taxonomy of source organisms and their mapping 
among primary sequence databases. The problem may stem 
from non-specific names provided by biologists during 
direct submission of DNA sequence entries to GenBank. 
Often such names cannot be mapped to the taxonomy even 
at the species level (such as Mus sp.). To be useful, the 
source organism information should be specific, including 
the strain (or cultivar for plant) if possible, but many early 
submissions do not contain this information. There may 
also be a mapping problem when two databases describe 
the same protein object at different taxonomy levels, such 
as species vs. strain. The primary source of protein 
sequences is conceptual translation of GenBank DNA 
sequences. There are many possible sources of error. The 
translations may be made with an incorrect genetic code, in 
the wrong reading frame, with incorrect splice boundaries, 
or without corrections for RNA-editing and translational 
frame-shifting. In some complete bacterial genome reports 
where peptide sequences were available, early initiators had 
been chosen 20% of the time. Cases have been observed of 
late initiators having been chosen, revealed as carboxyl 
ends of incomplete homology domains at amino ends of 
translations. Other types of sequence variation may result 
from representations of alternate splice/initiator forms, 

precursor and mature forms, identical sequences from 
different loci, allelic variants, and post-translational 
modifications. 

 
Data mapping typically involves the 

aforementioned four data elements. BioThesaurus 
(http://pir.georgetown.edu/pirwww/iprolink/biothesaurus.sh
tml) provides very detailed mappings of a comprehensive 
collection of protein and gene names to UniProtKB entries 
(30). Among the four data mappings, ID mapping is the 
most common type, and we will discuss this in detail in the 
following section. 

 
ID mapping can be one of two types: 1) mapping 

among the biological objects, for an example, mapping 
between gi number and UniProtKB AC is a protein to 
protein mapping; 2) mapping from biological objects to 
their properties, such as mappings from gi number to 
Pathway or to GO ID. This type of mapping typically will 
produce many-to-one mapping. We will focus on the first 
type of mapping. ID mapping establishes the links between 
database identifiers, an important step for data integration. 
ID mapping is often directly used in gene expression and 
proteomic data analysis. Because of the data source 
heterogeneity, mapping between database identifiers can be 
very complex. There are three basic approaches for 
establishing the relationship between two IDs: the first and 
the most straightforward approach is to use the database 
cross-references from well curated databases, such as 
UniProtKB, which includes many cross-references in each 
protein entry, such as GenBank accession, KEGG pathway 
and GO ID. The second approach is to use other database 
identifiers as a bridge.  For example, one can use GenBank 
accession to map from NCBI gi number to UniProtKB 
accession because both gi number and UniProtKB AC may 
cross-reference the same GenBank accession. Many 
mappings fall into this category.  Finally, one can use 
computational approaches to establish the relationship 
between two database identifiers. For instance, one can 
compare the sequence identity between the entries from 
RefSeq and UniProtKB for the same organism to map the 
RefSeq accession and UniProtKB accession. Many 
methods, such as string match, BLAST (31) and FASTA 
(32), can be used for the sequence comparison. Usually, a 
100% sequence identity is required for the mapping.  In 
cases where this cannot be achieved, related entries with 
less than 100% identity will be mapped.  The advantages of 
the computational approach are: 1) it does not require a 
third database; and 2) it can give useful mappings to related 
proteins, e.g., mapping uncharacterized protein entries to 
entries with valuable information, such as pathway 
information. The disadvantage of this approach is that it is 
usually computationally intense.      

 
There are many ID mapping tools available on the web. 

AliasServer (http://cbi.labri.fr/outils/alias/) is a tool for identifier 
translation for about 35 species. MD Anderson GeneLink 
(http://bioinformatics.mdanderson.org/GeneLink.html) 
provides ID translation and search service for human IDs. 
MatchMiner (http://discover.nci.nih.gov/matchminer/index.jsp) 
provides ID translation service for mouse and human. 
Ariadne Genomics ID Mapping Service
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Table 2. Database identifiers supported by PIR ID mapping 
service 

Sequence ID Other ID 
ECOGENE ID GO ID 
EMBL ID InterPro ID 
Entrez Gene ID Medline ID 
FLYBASE ID NCBI Taxon ID 
GENEDB_SPOMBE ID OMIM ID 
GERMONLINE ID PFAM ID 
GI Number PIRSF ID 
GRAMENE ID PRINTS ID 
HIV ID PRODOM ID 
IPI ID PROSITE ID 
PDB ID PubMed ID 
PIR ID SMART ID 
REBASE ID Taxon Group ID 
Refseq Accession TIGRFAMs ID 
SGD ID   
TRANSFAC ID   
UniProtKB ID   
UniProtKB Accession   
WORMPEP ID   

 
(http://www.ariadnegenomics.com/services/idmap.html) is 
a tool for identifier translation, supporting 13 species and 
mapping between 15 different ID types, mainly for proteins 
and genes. NetAffx 
(http://www.affymetrix.com/products/software/specific/netaffx
.affx) provides ID translation services for Affy probe set IDs. 
The caBIG GeneConnect project will provide ID mapping 
services for 10 different ID types supporting human, mouse 
and rat. At PIR, we provide an ID mapping service 
(http://pir.georgetown.edu/pirwww/search/idmapping.shtml) 
that maps between UniProtKB and more than 30 other data 
sources (Table 2) to support data interoperability among 
disparate data sources and to allow integration and 
querying of data from heterogeneous molecular biology 
databases. UniProt provides a mapping service to convert 
common gene IDs and protein IDs (such as NCBI gi 
number and Entrez Gene ID) to UniProtKB AC/ID and 
vice versa. Some mappings are inherited from cross-
references within UniProtKB entries, some are based on the 
existing bridge between EMBL and GenBank entries, and 
others make use of cross-references obtained from the 
iProClass database. A subset of the latter (such as between 
UniProtKB and NCBI gi number) require matching based 
on sequence and taxonomy identity. Thus, it is possible to 
map between numerous databases using only a few sources 
for the mapping itself; these include UniProtKB, iProClass, 
RefSeq, GenBank, and nr. 
 

For the melanosome data set mentioned earlier, 
the analysis first involved mapping of peptide sequences 
and protein lists (NCBI gi numbers from the nr database) 
derived from the MS data to UniProtKB entries. From a 
total of 2,298 gi numbers, 1,253 (55%) could be directly 
mapped to UniProtKB following ID mapping, while 1,506 
(66%) mapped based on peptide sequences. When the 
results from both mappings were combined, 1,936 (84%) gi 
numbers were mapped to 1,438 UniProtKB sequences. The 
mapping revealed that the NCBI gi is an unstable database 
identifier, with many gi numbers changing from version to 
version or becoming obsolete. The result also indicates that 
the nr database is more redundant, with many gi numbers 
representing identical proteins that map to the same 
UniProtKB entries. 

3.3. Data integration 
Approaches for data integration can be divided 

into two major categories: 1) the data warehousing 
approach, and 2) the federated approach.  The data 
warehouse approach put data sources into a centralized 
location with a global data schema and an indexing system 
for fast data retrieval. It requires reliable operation and 
maintenance, and stable underlying databases. On the other 
hand, the federated approach does not require a centralized 
database. It maintains a common data model and relies on a 
schema mapping to translate heterogeneous database 
schema into the target schema for integration. Therefore, it 
is modular, flexible and scalable.  

 
Designed to address the data integration issue 

arising from voluminous, heterogeneous, and distributed 
data, iProClass (33, 34) uses data warehousing approach for 
fast data retrieval. It contains full descriptions of all known 
proteins with up-to-date information from many sources, 
thereby providing much richer annotation than can be 
found in any single database (35).  The current version of 
the iProClass database provides value-added reports for 
about 4 million protein entries, including all entries in the 
UniProtKB (36) and unique NCBI (37) entries. It provides 
rich links and executive summaries from more than 90 
databases of protein sequence, family, function, pathway, 
protein-protein interaction, post-translational modification, 
structure, genome, ontology, literature, and taxonomy. 
Source attribution and hypertext links facilitate exploration 
of additional information and examination of discrepant 
annotations from different sources. iProClass is 
implemented in the Oracle database management system. 
The underlying database schema and update procedures 
have been modified to interoperate with UniProtKB. 
iProClass also provides comprehensive views for more than 
35,000 PIRSF protein families (38). PIRSF families are 
curated systematically based on literature review and 
integrative sequence and functional analysis, including 
sequence and structure similarity, domain architecture, 
functional association, genome context, and phyletic 
pattern. The results of classification and expert annotation 
are summarized in PIRSF family reports, with graphical 
viewers for taxonomic distribution, domain architecture, 
family hierarchy, and multiple alignment and phylogenetic 
tree (39). 

 
iProClass, hosted on both the PIR and UniProt 

websites, now serves as the central data infrastructure at 
PIR/UniProt that supports both data integration and 
functional annotation of proteins. Coupled with the PIRSF 
classification, the data integration in iProClass reveals 
interesting relationships among protein sequence, structure 
and function, and facilitates functional analysis in a 
systems biology context. The integrative approach leads to 
novel prediction and functional inference for 
uncharacterized proteins, allows systematic detection of 
genome annotation errors, provides sensible propagation 
and standardization of protein annotation (40, 41), and 
assists comparative studies of protein function and 
evolution (39). 

 
The database cross-references in iProClass
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underlie an ID mapping service (36) at PIR that maps gene 
and protein IDs from about 30 data sources to UniProtKB. 
The cross-references are also used to develop BioThesaurus 
(30), a web-based system for finding gene/protein 
synonyms for given proteins and for solving name 
ambiguities of proteins sharing common names. Currently 
covering more than 4 million UniProtKB proteins, 
BioThesaurus consists of over 5.7 million names collected 
from 23 biological databases, including gene and protein 
sequence databases and model organism databases.  

 
For the 1438 melanosome proteins mapped to 

UniProtKB, comprehensive information from iProClass 
was retrieved and integrated into the data set, including 
protein sequence, family, function, pathway, protein-
protein interaction, post-translational modification, 
structure, genome, ontology and literature, and taxonomy. 
The rich annotation for the protein set allowed to 
proceedwith functional profiling and functional analysis of 
the melanosome proteomes. 

 
3.4. Data search and retrieval 

Data integration provides a platform for 
researchers to efficiently query the databases. From the PIR 
website, the user has many options for data search and 
retrieval, including ID mapping (discussed previously), 
peptide search, batch retrieval, and text search. In this section, 
we focus on interactive data analysis using tools provided at 
PIR website. In an effort to develop an integrated expression 
analysis system for large scale transcriptomic and proteomic 
data, we initially built an prototype system, iProXpress 
(discussed in section 4), for analysis of large set of proteins, 
such as the melanosome MS data set.  
 
3.4.1. Entry retrieval and batch retrieval 

The PIR website provides a very simple way to 
retrieve protein entries by a single protein ID or one of 
many other sequence database identifiers. It also allows 
retrieval of protein entries using a batch of database identifiers. 
As discussed in the previous section, due to the diversity of 
databases and the lack of consistency in protein/gene names 
and/or identifiers in the literature, it can be difficult to retrieve 
multiple entries when protein and gene identifiers come from 
different sources. The batch retrieval tool 
(http://pir.georgetown.edu/pirwww/search/batch.shtml) 
overcomes this problem and provides high flexibility, 
allowing the retrieval of multiple entries from the iProClass 
database by selecting a specific identifier or a combination 
of them. The main sources of widely used identifiers are 
included: sequence databases (organism specific genome 
databases, NCBI and UniProt databases), function/feature 
databases (including EC-IUBMB, KEGG, RESID, and 
Gene Ontology), classification databases (PIRSF, PFam, 
COG, and PROSITE), organism databases (taxon group 
and taxon), and others (Entrez Gene, PDB, OMIM and 
PubMed). Batch retrieval of PIRSF families using a subset 
of these identifiers can be done as well. 

   
3.4.2. Peptide search 

 Peptide sequences, such as those obtained by 
MS/MS, can be used as queries to search proteins 
containing exact matches to the peptide sequence from the 

UniProtKB or UniRef100 database. In the first case, the 
search can be performed on the whole set of proteins or on 
only those from taxon group or a specific organism, as in 
the example shown in Figure 1. Peptide Search may reveal 
protein sequence regions that are completely conserved in a 
certain group of organisms and that could be important for 
function. 
 
3.4.3. Text search 

This is a widely used way to search the database, 
especially when a specific field needs to be searched. For 
proteomic/genomic data, common searches may include (but 
are not limited to): organism name, keywords such as 
“complete proteome” or a subcellular location, and pathway. 
Following the melanosome data set example, we could look 
into what proteins are annotated as melanosomal proteins in 
UniProtKB, using the corresponding controlled vocabulary for 
this subcellular location. Because there is a limit of 20,000 
entries for retrieval, in some cases it may be necessary to 
download and parse the database. Figure 2A shows how to 
access the iProClass text search; Figure 2B shows the text 
search form. In this example the search has been restricted to 
Organism Name “homo sapiens” and KEGG pathway “TGF-
beta” (Figure 2B). Figure 2C shows a partial section of the 
result page obtained after submitting the query displayed in 
Figure 2B.  

 
Although all links and data can be found in the 

individual protein records, sometimes it is more convenient, 
for easy comparison, to have an overview of the information 
contained in selected fields. The Display Option box (Figure 
2C, 1) gives the user options to customize the columns to be 
displayed. Any of the searchable fields can be selected, for 
example, it might be of interest to display the KEGG database 
metabolic or signaling pathway ID or name, to display OMIM 
ID to see entries that have an associated phenotype, or UniRef 
clusters to investigate homologous proteins (shown in this 
Figure 2C, 4). 
 
3.4.4. Sequence similarity 

The most widely used bioinformatics approach to 
assess function is by searching for homologous proteins. PIR 
provides four approaches for sequence similarity search and 
retrieval: 1) by real time BLAST or FASTA searches; 2) by the 
Related Sequence database; 3) by UniRef clusters; and 4) by 
the PIRSF database. Typically, people use BLAST or FASTA 
for sequence similarity search. This can be very time 
consuming due to the large size of the sequence database. In 
contrast, the other three databases provide several different 
ways for quick identification of sequence homologous 
sequences to the query sequence as discussed below. 

 
Related Sequences (Figure 2C, 3): The Related 

Sequences column, which is present by default in the text 
search and batch retrieval result pages, serves at least two 
purposes: (1) to show proteins similar to the query, 
significantly faster than running BLAST in real time, and 
(2) to evidence tight protein clusters, since by expanding 
this column, the number of similar sequences at three 
different E-value cut-offs is shown (Figure 3). Figure 3 
shows an example for two fungal proteins with unknown 
function. The number of related sequences for these entries 
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Figure 1. Organism specific Peptide Search. An example of the peptide search form, where Homo sapiens has been selected and 
the peptide sequence query entered in the blank box. The result page is shown next to the red arrow. 
(http://pir.georgetown.edu/pirwww/search/peptide.shtml). 
 
is very distinct. Q7SBU9 belongs to a large group of 
proteins since the number of related sequences reached the 
limit (299 sequences) even at the lowest E-value. 
Inspecting the related sequence link reveals that this 
hypothetical protein is highly similar to a large group of 
proteins that has glucosidase activity. In contrast, Q756W7 
has very few related sequences, suggesting that this protein 
belongs to a very tight group. In this case, looking into the 
similar sequences reveals that this protein is similar to a 
specific RNA polymerase I-specific transcription initiation 
factor found in fungi (although it should be noted that a 
tight cluster should not be translated into lineage 
specificity). In conclusion, related sequences might help to 
quickly investigate similar sequences and to detect tight 
sequence clusters.  

 
UniRef clusters: The UniRef databases provide 

clustered sets of sequences from UniProtKB (including 
splice variants and isoforms) and selected UniParc records 
in order to obtain complete coverage of sequence space at 
several resolutions while hiding redundant sequences (but 
not their descriptions) from view. The UniRef100 database 
combines identical sequences and sub-fragments with 11 or 
more residues (from any organism) into a single UniRef 
entry, displaying the sequence of a representative protein. 
UniRef90 and UniRef50 are built by clustering UniRef100 
sequences that have at least 90% or 50% sequence identity, 
respectively, to the representative sequence. UniRef90 and 
UniRef50 yield a database size reduction of approximately 
40% and 65%, respectively, providing for significantly 
faster sequence searches. In addition to speeding searches 
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Figure 2. iProClass text search. (A) Ways to access iProClass from the PIR Web site (http://pir.georgetown.edu). (B) text search 
form including a query for human proteins that are annotated  in the TGF-beta pathway in the KEGG database. (C) Example of 
the result page obtained after performing a text search for human proteins with TGF-beta pathway annotation in KEGG database. 
On top, the search terms are shown, which can be modified to either refine results, or to do a new search. Below is the Display 
Option (1) button that allows customizing the table columns. There are two saving options: as Table to save the information 
displayed in the table, or as FASTA to save sequences in this format. Most of the analysis tools are listed in the gray bar and all 
numbered items are described in the text. 
 
and being more comprehensive, UniRef clusters can be 
useful for functional analysis. The UniRef cluster columns 
(Figure 2C, 4) can be added using the Display Option box 
(Figure 2C, 1). Some information about a protein with 
unknown function may be inferred if any of the clusters to 
which it belongs contains characterized members. The 
more similar it is to a characterized protein, the more likely 
the proteins are to be orthologous and, therefore, to have 
the same or very similar function. As an example, 

UniProtKB entry Q2TAS2 corresponding to a frog protein 
annotated as hypothetical, belongs to UniRef clusters: 
UniRef100_Q2TAS2 that contains only this entry, 
UniRef90_Q9HAU4, Smad ubiquitination regulatory factor 
2 related cluster, that includes a characterized member from 
human known as Smurf2, and the UniRef50_Q9HCE7 
Smad ubiquitination regulatory factor 1 related cluster, 
which contains not only Smurf2 but also its paralog 
Smurf1. In human, Smurf1 and Smurf2 differ in which
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Figure 3. View of expanded Related Sequences column. The number of sequences obtained by pre-computed BLAST is shown 
at three different E-value cut-offs: e-20, e-5, e10 . The maximum number is 299 sequences. Below is the related sequences table for 
the cut-off value e-5. In the case of Q7SBU9, only a partial view of the result is displayed. 
 
Smad partners they bind, and that may determine whether 
they regulate the TGF or the BMP signaling pathway. 

 
PIRSF database: This is the most reliable source 

for functional assessment. The PIRSF protein classification 
system is a network with multiple levels of sequence 
diversity, from superfamilies to subfamilies, that reflects 
the evolutionary relationship of full-length proteins and 
domains. PIRSF is based on whole proteins rather than on 
the component domains; therefore, it allows annotation of 
generic biochemical and specific biological functions, as 
well as classification of proteins without well-defined 
domains (38). Automatically generated protein clusters are 
manually curated for membership, domain architecture, 
annotation of sequence features, and specific biological 
functions and biochemical activities, when possible. 

 
PIRSF is one of the default columns in the result 

pages for text and sequence related searches (Figure 2C, 5). 
If an entry is a member of a PIRSF, then the PIRSF ID(s) 
will be displayed in this column. Proteins with the same 
PIRSF ID belong to the same family, as is the case for the 
entries shown in Figure 2C that belong to the family 
PIRSF037286. However, some of the entries in this family 
belong to different subfamilies, usually reflecting 
functional specialization. Selection of a particular PIRSF 
ID links to the family report that contains information 
about membership, taxonomic distribution, PIRSF 
hierarchy, multiple alignment and domain architecture. 
Even if the protein of interest is not assigned to a PIRSF, if 
one of the best BLAST hits is a protein that belongs to a 
curated PIRSF, one may be able to infer some functional 
properties of the protein.  
 
3.5. Data Analysis 

At the PIR website, sequence analysis tools are 
integrated into the data search and retrieval result pages to 

assist functional analysis of the retrieved data set. These 
tools, which are located in the gray bar below the Display 
Option box, include: FASTA and BLAST for sequence 
similarity searches, multiple alignment with tree display, 
domain display, and pattern match. Of special interest for 
functional analysis is the GO Slim tool as described below.   

 
GO Slim is a light version of the Gene Ontology, 

containing a subset of the terms residing at the high level 
(node) of GO term hierarchy. The GO terms in GO Slim 
give a broad overview of the ontology content without the 
detail of the specific fine grained terms. GO slims are 
particularly useful for summarizing the results based on the 
GO annotation of a genome or proteome when broad 
classification of gene product function is required. From 
the results page, one can view the GO slim terms by 
selecting the “Show GO Slim” button (Figure 2C, 2, and 
Figure 4) in the analysis tool bar. One can then view 
statistics for the individual ontologies (Molecular Function, 
Cellular Component, and Biological Process) by checking 
entries of interest and selecting the ontology to show 
(Figure 4). This will lead to the functional profiling of a set 
of proteins. 

 
4. INTEGRATED EXPRESSION ANALYSIS 
SYSTEM 

 
As discussed in previous sections, analyzing 

large expression data such as the melanosome MS 
proteomic data requires at least three steps: 1) protein 
mapping, 2) functional annotation and 3) functional 
profiling.  To provide an integrated research and discovery 
platform for large-scale gene expression and proteomic 
data analysis, we have developed methods and prototype 
software tools specifically designed to address the 
limitations and gaps in the current methods and systems for 
protein mapping and functional annotation of proteomic 
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Figure 4. The GO Slim functionality. Three columns corresponding to the GO components molecular function, cellular 
component and biological process are displayed when the GO Slim button is selected. The available GO annotation for a subset 
of terms is shown with links to AMIGO. In addition, the statistics for a particular ontology can easily be viewed by selecting 
entries and then GO statistics. 
 
data. A prototype expression analysis system, integrated 
Protein eXpression (iProXpress), was recently developed at 
PIR and has been applied to several studies (42) (43) (44). 
A public iProXpress website 
(http://pir.georgetown.edu/iproxpress) is accessible for 
browsing the published proteomics data sets. 

 
4.1. System design 

An overview of the iProXpress system design is 
shown in Figure 5. The system contains several 
components, including a data warehouse composed of the 
UniProtKB and iProClass databases, and analysis tools for 
protein mapping, functional annotation and expression 
profiling. Sequence homology analysis tools are included in 
the protein mapping tools. System integration by 
iProXpress also supports iterative functional analysis for 
algorithm enhancement.  
 
4.2. Major functionalities 

The major functionalities provided by the 
iProXpress system include the mapping of gene/protein 
sequences with different types of IDs from gene expression 
and proteomic data to UniProtKB protein entries, and the 
functional annotation and profiling of the mapped proteins 

for functional analysis. This integration of bioinformatics 
tools and databases from a large number of resources 
supports functional annotation and function/pathway 
profiling of proteomic data in a systems biology context. 
 
4.2.1. Protein Mapping 

As rich annotation, minimal redundancy, and a 
high degree of data integration are critical for gene 
expression and proteomic data interpretation, the protein 
mapping tool is designed to map these data to 
corresponding UniProtKB entries to facilitate functional 
analysis. The accepted input data will be protein IDs and 
their associated peptide sequences when available, which 
may be generated from search programs such as 
SEQUEST, MASCOT or X!Tandem. To integrate with 
other high-throughput data types, the iProXpress system 
will also accept gene expression data such as lists of gene 
probes from cDNA microarray experiments.  

 
Protein lists and peptide sequences are mapped to 

UniProtKB entries based on ID and peptide mapping, 
respectively. The PIR ID mapping service maps 
protein/gene IDs from about 30 data sources (see data 
mapping section) to UniProtKB. To cross-validate the ID
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Figure 5. Overview of the iProXpress system design. 
 
mapping results, the peptide sequence of each mapped 
protein is matched against the cross-referenced UniProtKB 
sequence to confirm the assignment. For many-to-one 
mappings, as is often the case for gi numbers, the mapping 
effectively removes redundancy. For proteins not mapped 
through ID mapping, their peptide sequences are matched 
against the UniRef100 library. In one-to-one mapping, where 
the peptide matches exactly one UniProt protein, that protein is 
given the assignment. In one-to-many mapping, where the 
peptide sequence matches to more than one UniProt entry, 
sequence variations are identified by UniRef90 clusters in 
which members share at least 90% sequence identity to the 
representative sequence. If the proteins belong to different 
UniRef90 clusters, manual validation with retro-inspection of 
the original MS/MS protein identification results is required 
to make reliable assignment. The proteins not mapped after 
ID and peptide mapping to UniRef100 are mapped to the 
unique UniParc sequence library. Finally, the remaining 
proteins not mapped by the above steps are mapped by 
sequence similarity. 

 
Gene lists are mapped to UniProtKB based on 

gene/protein IDs, sequences, or gene/protein names. Genes 
with common identifiers such as GenBank, UniGene or Entrez 

Gene are mapped based on the PIR ID mapping service, which 
continues to add cross-references. For genes with no ID match, 
the mapping uses sequence comparison, or uses name 
matching if the sequence is not available. Computer-assisted 
name mapping is provided using the PIR BioThesaurus, 
currently with nearly 5 million protein/gene names. When 
corresponding IDs are assigned to both genes and proteins, the 
system also links gene expression and proteomic data for 
comparative analysis. 
 
4.2.2. Functional Annotation  

After the protein mapping, rich annotation can be 
fully described in a protein information matrix based on 
sequence analysis and integration of information from the 
iProClass database. iProClass also includes pre-computed 
sequence analysis results (e.g. BLAST related sequences) to 
support reliable annotation transfer from well-curated 
homologs to poorly characterized proteins, which is useful 
because an estimated 40-50% of proteins from complete 
genomes are “hypothetical”, and a small fraction of proteins 
have experimentally validated annotations. We pre-compute 
and regularly update sequence features of functional 
significance for UniProt proteins, and make the sequence 
analysis tools available for online analysis of
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Figure 6. Functional profiling analysis: (A) protein information matrix, (B) functional categorization chart, (C) cross-comparison 
matrix, (D) graphical GO hierarchy. Abbreviations: GO: Gene Ontology, iProXpress: integrated Protein eXpression, LRO: 
lysosome-related organelle, MS/MS: tandem mass spectrometry, PIR: Protein Information Resource, UID: database unique 
identifier, UniProtKB: UniProt Knowledgebase. 

 
proteins/sequence variations not in UniProt. Sequence 
features pre-computed include homologous proteins in 
KEGG, BioCarta and other curated pathway databases to 
populate pathway annotation, InterProScan (45) for family, 
domain and motif identification, and Phobius for 
transmembrane helix and signal peptide prediction (46). 
Properties derived from homology-based inference will be 
presented in the information matrix with evidence 
attribution.  
 
4.2.3. Functional profiling 

Functional profiling analysis aims at discovering 
the functional significance of expressed proteins, the 
plausible functions and pathways, and the hidden 
relationships and interconnecting components of proteins, 
such as proteins sharing common functions, pathways, or 
cellular networks. As shown in Figure 6 (the example 
mockups), the extensive annotation in the protein 
information matrix (A) allows functional categorization and 
detailed analysis of expressed proteins in a given dataset, as 
well as cross-comparison of co-expressed or differentially-
expressed proteins from multiple datasets. For functional 
categorization, proteins are grouped based on annotations such 
as GO terms, and KEGG and BioCarta pathways, and then 
correlated with sequence similarity to identify relationships 
among individual proteins or protein groups. The functional 
categorization chart (B) displays the frequency (number of 
occurrences) of proteins in each functional category. 
Categorization and sorting of proteins based on functions, 
pathways, and/or other attributes in the information matrix 
generate various protein clusters, from which interesting 
unique or common proteins in different datasets can be 
identified in combination with manual examination. The cross-

comparison matrix (C) shows the comparative distribution of 
functional categories in multiple datasets. 

 
To correlate functional association of expressed 

proteins in different samples, the relative enrichment of a 
given functional category in each sample will be calculated 
to identify all samples that contain a statistically significant 
proportion of proteins that are associated with the given 
category. Likewise, the system will point to groups of 
proteins that show a statistically significant correlation with 
certain pathways or functions, thus enabling 
characterization of biological pathways. Evidence on 
differential protein expression, protein interactions, 
pathway membership and other attributes is combined to 
provide the evidence for pathway and network 
participation. This allows relative ranking of the proteins 
involved in the biological response to identify the critical 
nodes in the response pathway and hidden relationships.  

 
4.3. Analysis of proteomic data 

The prototype version of iProXpress system has 
been applied to the expression profile analysis for hCG-
induced changes in MA-10 mouse Leydig tumor cells (42), 
organelle proteome analysis of various melanosome stages 
from human melanoma cell lines (43), and the comparative 
analyses of lysosome-related organelle (LRO) proteomes 
(44). Here we use the organelle proteome analyses to 
illustrate the integrative approach for function and pathway 
exploration and knowledge discovery using iProXpress.  
 
4.3.1. Melanosome proteomes 

Melanosomes are membrane-bound organelles
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Table 3. Stage-related melanosome proteins (partial list) 
 UniProtKB Gene Name Protein Name Notes1 

P36955 PEDF Pigment epithelium-derived factor precursor 
P51148 RAB5C  Ras-related protein Rab-5C (RAB5L) (L1880) 
P05556 ITGB1 Integrin beta-1 

Validated 

Q9UMX9  Matp Membrane-associated transporter protein (SLC45A2) Homolog 

O14880   MGST3 Microsomal glutathione S-transferase 3 

Stage I 

Q14254  FLOT2  Flotillin-2 (Epidermal surface antigen) 
Proposed 

Q9UMX9  Matp Membrane-associated transporter protein (SLC45A2) 
Q04656   ATP7A Copper-transporting ATPase 1 

Homolog 

Q9P0L0  VAPA  Vesicle-associated membrane protein-associated protein A 
P53992  SEC24C Protein transport protein Sec24C 

Stage II 

O95782 AP2A Adapter-related protein complex 2 alpha- 1 subunit 
Proposed  

O95670  ATP6G2 Vacuolar ATP synthase subunit G 2 
Q71RS6  SLC24A  Sodium/potassium/calcium exchanger 5 precursor Validated 

P57729  Rab-38 Ras-related protein Rab-38 

P51159  RAB27A Ras-related protein Rab-27A (Rab-27)  

Q9Y4I1  Myo5a Myosin-5A (Myosin Va) 

Q99698  LYST Lysosomal trafficking regulator 

Homolog 

Q16643 DBN1  Drebrin 

P59998  ARPC4  Actin-related protein 2/3 complex subunit 4 

P18206 VCL  Vinculin (Metavinculin) 

P63000 RAC1 Ras-related C3 botulinum toxin substrate 1 (p21-Rac1) 

Stage IV 

P51148 RAB5C  Ras-related protein Rab-5C (RAB5L)  

Proposed 

1All proteins listed are identified in the melanosome proteomes. Validated –shown to be localized in melanosomes by 
immunostaining; Homolog – homologous to known mouse coat color genes; Proposed – proposed as protein of functional 
interest for validation. 

 
specialized in the production and distribution of melanin 
pigment and are conserved in structure from primitive 
organisms to mammals. Dysfunctions in pigmentation and 
melanosome biogenesis are associated with a wide variety 
of inherited genetic disorders and pigmentary diseases, 
including oculocutaneous albinism and Hermansky–Pudlak 
syndrome. Melanosome-specific proteins also provide 
important markers for malignant melanoma. In mammals, 
melanosomes mature from undifferentiated vesicles (stage 
I) to an elongated form with internal fibrils (stage II). In the 
presence of tyrosinase and other enzymes, melanin is 
synthesized and deposited on the internal fibrils (stage III) 
and can become uniformly dense (stage IV) in heavily-
pigmented melanocytes. As melanosomes mature, they are 
gradually transported to the peripheries of the melanocytes 
in which they form, and in human skin, they are transferred 
to neighboring keratinocytes. A detailed understanding of 
how melanosomes mature and move within and between 
cells requires a comprehensive knowledge of the proteins 
comprising them. A combination of immunoblotting, 
immunofluorescence microscopy, and bioinformatics 
analysis was used to characterize the protein profiles of 
melanosomes at various biogenic stages.  

 
The determined melanosome proteomes contain 

~1,500 proteins combined from all stages of melanosomes, 
with ~600 in any given stage. Protein information matrices 
were generated for corresponding UniProtKB entries of 
identified melanosome proteins, summarizing salient 
features retrieved from the underlying PIR data warehouse 
or inferred based on sequence homology. Iterative 
categorization and sorting of proteins were carried out to 

generate various protein clusters, from which interesting 
unique or common proteins at different stages of 
melanosome biogenesis were identified in combination 
with manual examination. The stage-related proteins 
provide direct evidence of protein sorting and trafficking to 
this organelle and provide information about their 
biogenesis as lysosome-related organelles. Approximately 
100 proteins shared by melanosomes from pigmented and 
non-pigmented melanocytes at all stages define the 
essential melanosome proteome. These common proteins 
are considered constituent or resident proteins throughout 
melanosome biogenesis. Melanosome stage-specific 
proteins were proposed using the functional information 
matrices, some of which have been subsequently validated 
for their melanosomal localization, including PEDF 
(pigment-epithelium derived factor) and SLC24A5 
(sodium/potassium/calcium exchanger 5, NCKX5).  

 
Based on the functional profiling, a more detailed 

melanosomal biogenic pathway has been proposed that will 
facilitate understanding of the dynamic process of 
melanosome biogenesis, including the contribution of 
elements and complex membrane protein traffic input from 
several other organelles (43). Besides proteins previously 
known as melanosome-specific proteins (e.g., Pmel17, 
TYR, Tyrp1), this study provided a comprehensive list of 
proteins comprising this dynamic organelle. Table 3 
selectively lists three groups of proteins that are 
functionally important at each stage of melanosomes: 1) 
newly identified and validated in this study (e.g., PEDF and 
SLC24A5); 2) human homologs of mouse color genes 
identified in this study (e.g., Atp7a and MyoVa); 3) 
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proposed stage-related proteins newly identified (e.g., 
Sec24 and Vinculin); 4) proteins known as melanosome 
proteins from previous studies (e.g., Pmel17 and TYR). 
Many proteins detected in stage IV melanosomes are 
molecular motor- and cytoskeleton-related proteins (not 
listed), which may be necessary for directing fully 
pigmented melanosomes towards the cell periphery and 
their eventual transfer to keratinocytes. Some proteins are 
found in all stages and are also common to other 
organelles, e.g., LAMP1 in lysosome. While it is obvious 
that multiple sources of cellular components contribute to 
the biogenesis of melanosomes, proteins more abundant in 
specific stages may define unique functions in that stage 
(e.g., the ion transporters VATPase and SLC24A5).  

 
Therefore, it is possible to deduce a set of 

signature proteins for melanosomes that will consist of 
previously known melanosome-specific proteins, the 
proposed melanosome stage-specific proteins, and other 
constituent proteins commonly found in several other 
organelles. This study illustrates that bioinformatics 
characterization of melanosome proteomes facilitates a 
better understanding of the biogenesis and function of 
melanosomes. 
 
4.3.2. Comparative organelle proteome analysis 

Due to a better understanding of complex 
pathways and interactions at the molecular level, organelles 
are no longer considered fixed entities, but rather are 
dynamic structures interacting with each other and 
remodeling themselves in response to various stimuli. 
Accordingly, it is unlikely that a discrete proteome can be 
assigned to any of the subcellular compartments. The same 
organelle in different tissues or cell types may have 
different profiles (47, 48). Many proteins may be associated 
with more than one organelle or subcellular component, 
and temporal and spatial regulation of organellar proteins is 
common (49). Due to the dynamic nature of organellar 
proteins, complete and accurate cataloging of protein 
subcellular localizations is challenging. Despite the 
technical challenges and the biological reality, large-scale 
MS proteomic profiling, coupled with separation 
techniques, represents the best current technology and has 
led to the characterization of a number of organelle 
proteomes, including those of mitochondria, the plasma 
membrane, the cytosol, the nucleus, and even subnuclear 
structures, such as the nucleolus.  

 
A systematic bioinformatics analysis of proteome 

profiles of lysosome-related organelles (LROs), a family of 
organelles that includes lysosomes, platelet dense bodies, 
and melanosomes, was recently conducted using the 
iProXpress system to provide functional insights for LRO 
biogenesis and functions (44). Proteins found in only one 
type of LRO and those found in a group of LROs are 
profiled, and large families of proteins, such as Rab family 
proteins, are examined for their distribution among all the 
LROs. The comparative organelle proteome analysis 
provides some interesting concepts regarding the 
biogenesis, interactions, and functions of LROs. Proteins 
detected in only one type of LRO are likely to contribute to 
the specific function of that organelle, while those shared 

by one or more LROs suggest common functions among 
them. The promiscuous localization of the majority of 
proteins in LROs also reflects their common origins as well 
as their transient and dynamic natures.  

 
In previous studies, lysosomes, melanosomes, 

and platelet dense bodies had been identified as LROs 
based on common defects seen in various diseases, such as 
Hermansky-Pudlak syndrome and Chediak-Higashi 
syndrome, where their various functions were significantly 
affected (50). More recently, proteomic analyses have 
revealed other members of the LRO family (e.g., 
neuromelanin granules, exosomes, and synaptosomes) 
which in retrospect is quite reasonable, based on their 
phenotypes and functions. This comparative LRO proteome 
study underscores the common biogenesis of those 
organelles and their interactions.  

 
The compiled catalogs of LRO proteomes also 

serve as “reference data” for the scientific community to 
query and browse for answering specific questions, such as 
“which proteins are most often seen in both melanosomes 
and neuromelanin granules?” As organelle proteomic 
research continues, this reference data set can be updated, 
thus providing a valuable resource for the LRO research.  
 
5. FUTURE DIRECTIONS 
 

While expression profiling based on the 
comprehensive protein information matrix provided by 
iProXpress allows functional views of the microarray and 
proteomic data, methods such as various classification 
schemes that provide quantitative assessment and global 
behavior of the expression data can be used to enhance the 
ability of iProXpress in studying differences among 
physiological or disease states or developmental stages. 
Current classification methods can be roughly divided into 
two categories, clustering and machine leaning. However, 
for clustering methods determining the number of clusters 
is challenging, and widely-accepted measures for 
performance evaluation are lacking. Although machine 
learning methods process gene/protein features jointly, 
group behaviors and interactions of genes/proteins are not 
taken into consideration. A novel ensemble dependence 
model has recently been developed and applied to the 
expression data analysis, which effectively captures the 
global behavior of genes and proteins from gene expression 
and proteomic data (51). The model has promising 
performance for the microarray and proteomic data 
classification and can be used to build a dependence 
network (51).  

 
A microarray gene expression data set for gastric 

cancer was analyzed using a network modeling method 
(52). Seven potential biomarkers for the cancer were 
identified, six with significantly increased expression levels 
and one with decreased expression. The seven genes have 
been shown to be biologically relevant in gastric and other 
cancers. The six up-regulated genes include extracellular 
matrix components and those that mediate cell-matrix 
interactions, which tend to be more highly expressed in 
tumors of the diffuse histological type. This is consistent 
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with greater propensity of the group of tumors for invasive 
growth, often provoking a dense fibrous reaction, and a 
reflection of reciprocal interactions between tumor and 
stromal cells that play important roles in tumor biology. 
Proteins encoded by three of the six biomarker genes 
(SPARC, COL3A1, and THY1) are known extracellular 
matrix components. Of special interest is that both SPARC 
and COL3A1 are concurrently observed in several studies 
as valuable biomarkers for gastric cancers (as connected 
core nodes in the network). The network modeling 
approach has provided a novel and consistent mathematic 
model to define potential cancer biomarkers, which imply 
functional associations or interactions that are important for 
the underlying cancer biology. Therefore, the network 
modeling method will be incorporated into the iProXpress 
system for functional and pathway discovery from gene 
expression and proteomic data in a broad range of 
biological systems. 
 

The prototype iProXpress system will be further 
developed into a pipelined expression analysis tool, which 
will be made available to the research community through 
the iProXpress website. The web interface will be 
interactive and will allow data input (e.g., batch IDs) and 
output (e.g., protein information matrix), and support 
browsing, sorting, and categorization of proteins based on 
individual or combined attributes in the protein matrix to 
identify hidden relationships among different functional or 
pathway categories or correlation of expression profiles to 
certain salient properties. 
 
6. CONCLUSION 

 
To effectively utilize the vast amounts of data 

generated from proteomics experiments, it is essential to 
provide researchers with an integrated view of all data 
relevant to functional analysis. From such an integrated 
view, researchers can infer important biological 
relationships for scientific discovery. The challenge lies in 
the diversity and large number of existing databases that 
have to be handled. Especially, the lack of standardization 
of protein/gene ID and names makes it very difficult to map 
to the same entity among different databases. 

 
For this reason, we believe that a key aspect of 

data integration is achieving a reliable mapping system to 
link these sources. As we discussed in the ID mapping 
section, there are two types of ID mappings: mapping 
among the biological objects, and mapping from biological 
objects to their properties, which usually produces many-
to-one mapping. The PIR ID mapping service allows 
integration and querying of data from heterogeneous 
molecular biology databases. We have successfully 
developed iProClass, which combines both data warehouse 
and hypertext navigation methods for integrating data, 
providing a comprehensive picture of protein properties 
that may lead to novel prediction and functional inference 
for previously uncharacterized "hypothetical" proteins and 
protein groups. In addition, we provide a user-friendly 
interface to search, retrieve, and analyze large amounts of 
data, and to assist in its functional analysis.  For example, 
we adopted GO Slim, a subset of the GO terms containing 

the more general nodes, which allows inspection of the 
general GO annotation on a set of selected proteins. We 
also provide easy ways to investigate homologous 
proteins: from pre-computed BLAST results and UniRef 
clusters that can give some preliminary idea of 
homologous proteins to the PIRSF database, whose 
manually curated families contain reliable information 
for functional inference.  

 
In our continuing effort towards facilitating 

this task further, we have developed an integrated 
research and discovery platform for large-scale gene 
expression and proteomic data analysis, called 
iProXpress. The prototype system has been very useful 
for organelle-related proteomic studies, and the 
complete system will be made widely available to the 
research community. iProXpress consists of three major 
components: (i) the PIR data warehouse with integrated 
protein information, (ii) analytical tools for sequence 
analysis and functional annotation, and (iii) graphical 
user interface for categorization and visualization of 
expression data. The major functionalities include 
gene/peptide to protein mapping, protein information 
matrix, and protein data analysis. Through iterative 
categorization and sorting of proteins in the information 
matrix, users can correlate expression/interaction patterns to 
protein properties for pathway and network discovery. 
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