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1. ABSTRACT 
 

Granulocyte colony-stimulating factor (G-CSF) is 
a key regulator of granulopoiesis via stimulation of a 
specific cell-surface receptor, the G-CSF-R, found on 
hematopoietic progenitor cells as well as neutrophilic 
granulocytes. It is perhaps not surprising, therefore, that 
mutations of the G-CSF-R has been implicated in several 
clinical settings that affect granulocytic differentiation, 
particularly severe congenital neutropenia, myelodysplastic 
syndrome and acute myeloid leukemia. However, other 
studies suggest that signalling via the G-CSF-R is also 
involved in a range of other malignancies. This review 
focuses on the molecular mechanisms through which the G-
CSF-R contributes to disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
2.1. G-CSF and its receptor 

Neutrophilic granulocytes are white blood cells 
that play an essential role against infection, especially of a 
bacterial or fungal nature. These cells are generated from 
bone marrow stem cells via intermediate myeloid 
progenitors that expand in number and differentiate in 
response to external signals. G-CSF plays a crucial role in 
the production and function of neutrophilic granulocytes 
(1-3). It is able to mobilize various precursor cells, 
stimulate the proliferation and differentiation of cells along 
the neutrophilic lineage, as well as activate the functions of 
mature neutrophils (4-6). The various biological effects of 
G-CSF are mediated through a specific cell surface 
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receptor, the G-CSF-R, a member of the hematopoietin 
receptor superfamily that binds as a homo-oligomeric 
complex to its ligand (7-10). The G-CSF-R, like other 
hematopoietin receptors, lacks intrinsic tyrosine kinase 
activity but activates several associated cytoplasmic 
tyrosine kinases (2,7). These include Janus tyrosine kinases 
(Jaks), particularly Jak1 and Jak2 (11-14), and members of 
the Src kinase family, particularly, Lyn and Hck (15-19). 
Key downstream pathways are the signal transducer and 
activator of transcription (STAT) proteins, especially 
STAT3 and STAT5 (12,14,20-23), the Ras-MAPK 
pathway (24-26), the PI 3-kinase-Akt pathway (19,27,28). 
These are negatively regulated by members of the SOCS 
family (29-31), as well as various phosphatases (27,30-32).  
 
2.2. Neutropenia and other relevant disorders 

Neutropenias represent a series of potentially life-
threatening disorders characterised by a reduction in 
circulating neutrophils. Since neutrophils play a major role 
in host defense against bacteria, neutropenia patients suffer 
from frequent episodes of opportunistic bacterial infections 
(33). Severe congenital neutropenia (SCN) is a 
heterogeneous group of disorders characterized by a severe 
decrease in the number of blood neutrophils (<0.5×109/l), 
and a maturation arrest of bone marrow progenitor cells 
mainly at the promyelocyte/myeloid stage (34,35). 
Although SCN was originally described as an autosomal 
recessive disorder in Swedish families, this form is now 
recognized as a separate syndrome, Kostmann’s 
neutropenia, which produces even lower neutrophil counts 
(<0.2×109/l) (36). Instead, SCN exists in both sporadic and 
autosomal dominant forms. A major clinical concern for 
SCN patients is their increased risk of developing 
myelodysplastic syndrome (MDS) and/or acute myeloid 
leukemia (AML) with poor prognosis for survival (37,38). 
The incidence of progression to leukemia among SCN 
patients is at least 7 %, but possibly as high as 15 % 
(39,40). 
 
2.3. G-CSF therapy 

Since G-CSF plays a crucial role in the 
stimulation of granulopoiesis (3,8), this cytokine has been 
widely used in the treatment of SCN (40). Although 
myeloid progenitor cells from SCN patients frequently 
show reduced responsiveness to G-CSF (41,42), treatment 
with pharmacological doses of G-CSF are able to restore 
the neutrophil count in the majority of SCN patients (33), 
leading to a concomitant reduction in infection-related 
events (33,42-44). It has also been employed in other 
neutropenic conditions, including those associated with 
chemotherapy (45-47). However, the ability of G-CSF to 
mobilize hematopoietic stem cells (HSCs) has seen it 
extensively used in the harvesting of HSCs from the 
periphery, thereby obviating the need for traditional bone 
marrow transplantations in many instances (48,49).  
 
3. DIRECT ROLE OF G-CSF-R MUTATIONS IN 
MYELOID DISORDERS 
 

A considerable number of independent mutations 
in the gene encoding the G-CSF-R, designated CSF3R, 
have been described. These mutations fall into a number of 

distinctive classes that relate to the type of mutation as well 
as their biological and clinical consequences. Mostly these 
relate to perturbations of the myeloid lineage, as might be 
expected. 
 
3.1. “Hyperresponsive” intracellular truncations 

By far the most studied clinical abnormalities of 
the CSF3R gene are a series of acquired nonsense 
mutations identified in a subset of SCN patients (50,51). 
These mutations truncate between 82 and 98 amino acids 
from the carboxyl-terminus of the receptor (Figure 1), a 
region implicated in maturation induction and growth arrest 
(52,53). Such truncated receptors show normal affinity for 
G-CSF (52). However, when expressed in myeloid cell 
lines these truncated receptors transduce a strong growth 
signal but fail to induce maturation (50). Co-expression of 
wild-type and truncated receptors has revealed that 
receptors truncated at their C-terminus act in a dominant-
negative manner over wild-type receptors to enhance 
proliferation at the expense of maturation (50). 
 
3.1.1. Clinical details 

The role of truncated G-CSF-Rs in neutropenia 
appears to be modest. Only around 20% of SCN patients 
harbor such truncating CSF3R mutations, and these are 
only represented in a proportion of transcripts in the bone 
marrow, often a relative minor percentage (54). These 
levels may remain constant for several years, or even 
disappear spontaneously (55). In addition, mutations have 
been found to appear after the onset of neutropenia (56).  
 

However, SCN patients carrying truncating G-
CSF-R mutations show a strong predisposition to both 
MDS and AML (57) (as well as in more than one case of 
ALL (58,59)). Indeed in SCN patients progressing to AML, 
the most common mutations identified are in the CSF3R 
gene (82%), followed by Ras mutations (~50%) and 
monosomy 7 (60). It has been suggested that this is a result 
of an underlying genetic instability (33), although it is 
unclear what might cause this. What is clear is that when 
CSF3R mutations are present, 100% of blasts in these 
patients carry the mutation (50,60). However, since 
mutations are not always seen in AML and can 
spontaneously disappear (55), progression to leukemia does 
not seem to be inevitable. However, even the most 
skeptical concede that at the very least truncating G-CSF-R 
mutations may confer a survival advantage to HSCs that 
leads to the common involvement of such mutations in 
MDS/AML (54). 
 

There have been considerable discussions 
regarding the possible role of G-CSF administration in the 
selective expansion of G-CSF-R mutant clones. However, 
the data are complex and the conclusions controversial. In 
one study there was no statistically significant relationship 
between the age of onset of MDS/AML and G-CSF dose or 
duration of therapy (60). Another study of 101 SCN 
patients determined that the risk of leukemia increased with 
the degree of G-CSF exposure (61). However, higher doses 
may be reflective of a more severe disease and so a 
naturally higher propensity to MDS/AML. Moreover, 
Kostmann’s patients developed AML prior to the advent of
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Figure 1. G-CSF-R perturbations in disease. Schematic representation of the mature G-CSF-R, showing important subdomains 
and residues conserved among members of the hematopoietin receptor superfamily.  The relative positions of various classes of 
mutation are indicated along with the respective clinical manifestations of these and other G-CSF-R perturbations. Abbreviations: 
Ig – immunoglobulin-like; CRH – cytokine receptor homology; SCN – severe congenital neutropenia; MDS – myelodysplastic 
syndrome; AML – acute myeloid leukemia). 
 
G-CSF therapy. One study has reported an SCN patient that 
progressed to CMML in the absence of G-CSF treatment, 
who expressed a truncated G-CSF-R (as well as mutant Ras 
and monosomy 7) (62). Thus it is possible that the mutant 
receptor form may have a selective advantage in the 
absence of treatment, perhaps due to the elevated G-CSF 
levels seen in SCN patients as a result of their neutropenia 
(60). G-CSF therapy may then accelerate the propensity of 
AML in these patients. This is consistent with the analysis 
of SCN patient that initially possessed no CSF3R mutation 
but, following treatment with G-CSF, developed AML with 
a truncating CSF3R mutation. These blasts decreased to 
undetectable levels when G-CSF was withheld in the 
absence of chemotherapy, although the G-CSF-R mutation 
could still be detected (63). In another patient there was a 
step-wise increase in the number of independent CSF3R 
mutations, which correlated with transformation to AML 
(64). Others have argued that these mutations merely act as 

a “bystander” (40), correcting the neutropenia and 
prolonging survival, allowing time for malignant 
transformation to occur. More work is needed to resolve 
these conflicting conclusions.  
 
3.1.2. Mouse models 

To assess the contribution of C-terminal G-CSF-
R truncations to the pathogenesis of SCN and AML, 
several groups have sought to recapitulate the clinical 
situation in mice. We showed that mice with a targeted 
“knock-in” truncating mutation possessed reduced basal 
levels of circulating neutrophils (65). Heterozygote animals 
showed intermediate levels of peripheral neutrophils, 
suggesting the presence of a wild-type receptor was unable 
to fully compensate for the mutation (65). These results are 
supported by another study that generated mice 
transgenically expressing a truncated human G-CSF-R, 
which exhibited peripheral neutrophil counts one-third of 
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normal and impaired resistance to bacterial infection (66). 
These data are in agreement with the hypothesis that 
truncated G-CSF-R proteins interfere with the function of 
wild type G-CSF-R in a dominant-negative manner (50). In 
each case, there was an increased percentage of immature 
myeloid cells in the respective mice, with these cells 
showing a maturation defect in vitro (66,67). In contrast, 
another study analysing an independently targeted receptor 
truncation in mice failed to show basal neutropenia, 
although in this case the truncated from of the receptor 
appeared to be overexpressed, perhaps counteracting an 
intrinsic neutropenia (68). However, all three studies 
showed a hyper-responsiveness to G-CSF, such that mice 
administered exogenous G-CSF showed elevated 
neutrophil counts compared to wild type controls 
(65,66,68), due to increased proliferation of myeloid 
progenitors (66,67). 
 

Together these studies suggest that the C-
terminus of G-CSF-R exerts a differential effect on 
neutrophil production in vivo. Firstly, truncation of the G-
CSF-R can give rise to neutropenia under basal conditions, 
even in the presence of a full-length receptor, suggesting 
that truncating CSF3R mutations can indeed contribute to 
the etiology of SCN. However, the neutropenia seen in the 
mouse studies was not as severe as in SCN. One possibility 
is that this difference is related to differences between mice 
and man. A more likely explanation is that the CSF3R 
mutation may not be the initial cause of severe neutropenia, 
but rather that other genetic defects are responsible for the 
SCN phenotype, such as ELA2 (69,70), GFI1 (71) and 
WASP (72). However, the expansion of a population of 
cells with an acquired CSF3R truncation mutation – 
possibly due to G-CSF treatment – could then further 
exacerbate the neutropenic condition. Secondly, the strong 
hyperproliferative function of the truncated G-CSF-R in 
vivo provides a compelling indication of how this type of 
mutation once present in neutropenia patients may 
contribute to their frequent progression to MDS/AML. 
Notably, expression of the truncated receptor in mice is not 
by itself leukemogenic, since no spontaneous leukemias 
have been reported in mice hetero- or homozygous for the 
mutation (65,68). Apparently other genetic defects are 
required for cells to become transformed. However, the 
CSF3R mutation clearly contributes to a potentially pre-
leukemic state. 

 
3.1.3. Molecular mechanisms 
 The results from mouse and cell line models 
indicate that truncating G-CSF-R mutations act in a 
dominant-negative manner to exert three effects on 
responsive cells, specifically: (i) decreased differentiation; 
(ii) increased sensitivity to ligand and, perhaps most 
importantly, (iii) enhanced proliferation. This is largely 
consistent with observations in SCN/AML patients, since 
truncating CSF3R mutations affect just a single allele 
(50,53,57), with the mutations associated with a block in 
differentiation (neutropenia) and susceptibility to 
unrestrained proliferation (clonal expansion, 
myelodysplasia and leukemia). We are beginning to 
understand the molecular basis for these effects. 

 The inability of truncated receptors to mediate 
differentiation strongly suggests that an important signaling 
pathway activated via the C-terminal region of the receptor 
has been removed by the truncation. One candidate is 
STAT3, which is prominently activated by G-CSF (11,20), 
and has been shown to be involved in both macrophage and 
neutrophilic differentiation and survival (73-76). G-CSF 
induced activation of STAT3 depends on the recruitment of 
STAT3 to the G-CSF-R via binding of STAT3 SH2 
domains to multiple phosphotyrosines of the activated G-
CSF-R (23,75,77), including those located in the C-
terminal region. Using bone marrow cells from mice 
harboring a targeted G-CSF-R truncation (gcsfr-∆715) (65), 
we have shown that STAT3 activation from the truncated 
G-CSF-R is reduced, even at saturating G-CSF 
concentrations. In addition, there is an altered dose-
response of STAT3 activation, such that at lower G-CSF 
concentrations the STAT3 deficiency is even more 
pronounced, a result confirmed in myeloid 32D cells 
(67,78). Given the relative dose-response properties, this 
would seem to be primarily due to loss of the Y744-
dependent route of STAT3 activation. However, while 
STAT3 has been shown to be a vital factor in G-CSF-
dependent differentiation (74,76), more recent studies have 
that STAT3 deficiency results in neutrophilia (79). Thus, 
rather than contributing to the basal neutropenia, defective 
STAT3 activation more likely contributes to the G-CSF-
induced neutrophilia seen in gcsfr-∆715 mice (65). 
 
 Cells expressing truncated G-CSF-R receptors 
are hypersensitive to G-CSF (50,80). We have shown that 
these cells exhibit an altered dose-response of STAT3 
activation compared to STAT5 activation in both cell lines 
and mice, such that the ratio of STAT3:STAT5 is 
drastically reduced at low concentrations of ligand (78). 
There is now considerable evidence that STAT5 
contributes to proliferative responses to G-CSF (81,82), 
while STAT3 activation is inhibitory (74,76,79). Therefore, 
the reduced STAT3:STAT5 ratio in cells with truncated 
receptors at low G-CSF concentrations may shift the 
balance of toward proliferation, providing a plausible 
explanation for the hypersensitivity of these cells to G-CSF 
(50,52). 
 

Truncated G-CSF-Rs lead to hyperproliferation 
in response to G-CSF in both mice and myeloid cell lines, 
with truncated receptors acting dominantly over wild-type 
receptors (50,65). Furthermore, SCN patients with mutation 
of a single CSF3R allele show clonal expansion of the 
mutant population and are predisposed to AML, suggesting 
an equivalent effect in these patients. Several groups have 
identified molecular mechanism(s) that help explain this 
dominant hyperproliferative function of truncated G-CSF-
Rs. 
 

Compared to wild-type receptors, truncated 
receptors showed prolonged activation, due to a much 
slower “off-rate” (67,78,83). This appears to be the result 
of several independent mechanisms. The first is a defective 
internalization of truncated receptors, which act in a 
dominant-negative manner over wild-type receptors in this 
regard (67,78,80). This is due to the combined loss of a 
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conserved di-leucine containing motif in Box 3 (31,78,80), 
and a less well defined motif located between residues 756 
and 769 (31). However, other studies have shown that the 
receptor truncation interferes with several negative 
pathways. This includes the loss of recruitment sites for 
two members of the SOCS family, CIS (at Y729 and Y744) 
(30) and SOCS3 (at Y744) (31), the latter exacerbated by a 
60% reduction in SOCS3 transcripts caused by the decrease 
in STAT3 activation by truncated receptors (31). In 
addition, the docking sites for the receptor-associated 
tyrosine phosphatases, SHP-1 (at an undefined site in the 
C-terminus) (32) and SHP-2 (at Y744) (31) are lost, as are 
those for the inositol phosphatase, SHIP (at Y764 and 
Y744?) (30). 
 

Consistent in all of these studies is that each 
mechanism impacts on the length of receptor activation, 
and particular of STAT5 (31,32,67,78,83), and pathways 
downstream of PI 3-K, such as Akt (28,84). Several 
laboratories have now shown that constitutive activation of 
STAT5 plays a key role in myeloid cell proliferation, 
including malignancy (82,85,86). Indeed, we have shown 
that dominant-negative STAT5 strongly inhibits the 
hyperproliferative function of truncated G-CSF-Rs (ACW 
et al., unpublished). Others have also shown that PI 3-K, 
MAPK and STAT3 play supporting role(s) in proliferation 
and/or survival (84,87), consistent with our observations 
(ACW et al., unpublished). 
 
3.2. “Crippling” extracellular mutants 

Around 10% of SCN patients do not respond to 
normal G-CSF treatment. In several of these patients 
mutations have been identified in the extracellular domain 
of the G-CSF-R that appear to be responsible. These 
mutations have in common the property of not only being 
defective themselves, but also crippling co-expressed wild-
type receptor. The first of these mutations, Pro206His, 
converts a highly conserved proline that is part of a proline-
rich “hinge” motif located between the N- and C-terminal 
“barrels” of the cytokine receptor homologous domain (88). 
When expressed in myeloid cells this mutant receptor was 
defective in both G-CSF-mediated proliferation and 
survival, which correlated with greatly diminished 
activation of the receptor complex, and altered dose-
response properties. The mutant receptor showed a normal 
Kd of ligand binding, but a reduction in the number of 
binding sites per receptor, suggesting that the mutation 
perturbed the architecture of the ligand/receptor complex 
with severe consequences for intracellular signal 
transduction. It also suppressed the activity of co-expressed 
wild-type receptors in a dominant-negative manner (88). 
The second mutation, ∆322, represented a 182 bp deletion 
of the CSF3R gene in the region encoding the extracellular 
domain, commencing within the WSxWS motif. The 
resulting change in reading frame lead to a receptor that 
possessed around half of its normal extracellular sequence, 
followed by a novel sequence and a premature stop. This 
severely truncated receptor also acted in a dominant-
negative manner to suppress wild-type responses (89). The 
third mutation, ∆319, resulted from a similar 191 bp 
deletion, extending 9 bp further upstream, producing a 
slightly more truncated receptor. This product was found to 

constitutively heterodimerized with the wild-type receptor, 
thereby affecting its trafficking and function (10). Finally, 
an extracellular mutation has been reported in a case of 
chronic idiopathic neutropenia, again involving a 
frameshift that truncated the intracellular domain of the 
receptor, although in this case it was after the fibronectin 
type III domains. This receptor was unable to signal in 
response to ligand. Interestingly, the patient went on to 
develop acute myeloid/natural killer cell leukemia, 
although whether the CSF3R mutation played a role in the 
latter was not determined (90). Collectively, this class of 
extracellular “crippling” mutations are consistent with 
studies showing that disruption of the Gcsfr gene in mice 
resulted in severely reduced neutrophil numbers (8,9). They 
also serve to further suggest a role of CSF3R mutations and 
aberrant G-CSF signaling in the etiology of SCN. 
 
3.3. “Activating” transmembrane mutants 

A study of 555 de novo AML patients revealed 
that two possessed activating Thr617Asn mutations in the 
transmembrane domain of the receptor. This mutation lead 
to growth factor-independent growth in Ba/F3 cells, 
including phosphorylation of the receptor, JAK2, STAT3 
and ERK, apparently due to stabilisation of transmembrane 
helix-helix interactions in the absence of ligand (91). This 
class of mutation has parallels in the GM-CSF-R system 
(92). 
 
3.4. Other mutants 

Three other CSF3R mutations have been 
identified in MDS and de novo AML. The first is a three 
nucleotide deletion that changes Asn630Arg631 to Lys 630 
in MDS. This leads to prolonged activation of signalling 
(93). Another is a SNP in the intracellular region, 
Glu785Lys, seen in 6% of the population, which shows a 
highly significant correlation with the development of high-
risk MDS (94). Although the mechanism of action remains 
unknown, the receptor appears functional, but leads to a 
reduction in colony formation. Finally, the blasts of a de 
novo AML patient showed high expression of a new 
CSF3R splice variant, termed SD, in which the carboxyl 
terminus was altered due to a change in the reading frame, 
caused by a single base change adjacent to a cryptic splice-
donor site involved in the alternative RNA splicing. (95). 
This variant was unable to transduce proliferation and 
maturation signals in murine cell systems. Furthermore, the 
primary AML blast cells of the patient failed to respond to 
G-CSF in proliferation assays in vitro, while the 
responsiveness to IL-3 or GM-CSF was maintained.  
 
4. INDIRECT INVOLVEMENT OF THE G-CSF-R IN 
DISEASE 
 
 A number of studies have also described a role 
for altered G-CSF-R signalling as a contributing factor to a 
range of hematological malignancies. For example, 
expression of the CSF3R gene is increased by two 
oncogenic fusions, directly in the case of E2A-Pbx1 (96), or 
indirectly (via C/EBPε) by AML1-MTG8 (97). In the latter 
case, this lead to increased G-CSF-dependent proliferation 
(97). In addition proliferative responses of leukemia cells 
from CML in blast crisis or BCR-ABL-positive ALL are 
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frequently stimulated by G-CSF (98). G-CSF-R is also 
highly expressed in acute promyelocytic leukemias 
(APL), with APL cells predominantly proliferating in 
response to G-CSF treatment (99). It has also been 
reported that AML cells show a tendency for 
significantly increased levels of a normally minor 
CSF3R transcript, class IV (100), which encodes a 
maturation-deficient receptor form (95). The authors 
argue that the altered balance of class IV to normal 
(class I) receptors might contribute to AML, although 
only indirectly affecting proliferation, via its effects on 
maturation. These observations collectively suggest a 
direct role for G-CSF-R signalling in the perturbations 
of cell growth control observed in leukemogenic 
transformation. Interesting, the response of APL cells to 
G-CSF has been used to sensitise the cells to cell-cycle-
dependent agents, as a therapeutic strategy (99), 
highlighting the importance of understanding the role 
played by cytokines and growth factors in disease. 
 

The G-CSF-R also appears to play a role in 
malignant states of a non-hematological nature. Both G-
CSF and its receptor are frequently expressed in ovarian 
cancers– possibly in a truncated form – leading to the 
potential involvement of autocrine and paracrine loops in 
over 90% of primary ovarian carcinomas (101,102). 
Expression of G-CSF and G-CSF-R appears to be an early 
event during malignant transformation in some bladder 
cancers (103). In addition, dysplastic and squamous cell 
carcinomas have been shown to exhibit higher G-CSF-R 
expression than normal controls (104,105). Expression of 
G-CSF was also increased in SCC (105), although in this 
case expression of G-CSF-R rather than its ligand 
correlated with poor prognosis, including survival and 
chance of relapse (106), suggesting paracrine activation is 
important. While the mode of action of G-CSF-R in these 
cases remains unclear, it is known to regulate expression of 
MMP-2 in head and neck carcinoma cell lines (107) and 
increase expression of β-integrin in bladder cancers (103), 
thereby contributing to adhesion and tissue invasion 
(103,107). This is of considerable clinical interest as G-
CSF is used clinically to overcome neutropenic periods 
during chemotherapy for a range of cancers (45-47). 
 

Finally, mutation of the gene encoding 
neutrophil elastase (NE), ELA-2, has been identified as 
an important mediator of both CN and SCN (69,70,108). 
However, there is considerable evidence that such 
mutations exert their effects, at least in part, via the G-
CSF-R. Indeed, both G-CSF-R (109) and its ligand 
(109,110) are targets of NE. G-CSF is rapidly cleaved 
and rendered inactive by the enzyme (110), while 
expression of NE reduces surface expression of the 
receptor (109), leading to compromised G-CSF-
stimulated viability and proliferative responses (109). 
Consistent with the “crippling” G-CSF-R mutations, 
these negative effects on G-CSF-R signaling could be a 
principal mediator of the neutropenia. Some have also 
argued that the mutant NE leads to reduced survival of 
cells of the neutrophil lineage, which can then be 
compensated by truncating G-CSF-R mutations that 
restore normal survival (40).  

5. CONCLUSIONS 
 

G-CSF therapy has proven to be an effective 
treatment in a range of life-threatening conditions. 
However, it is clear that altered signaling from the G-CSF-
R – caused by mutation or misexpression – also contributes 
to several disorders. Importantly, many of these are 
malignant conditions in clinical settings where G-CSF may 
be administered. This is not to say that G-CSF treatment 
should be stopped in these settings. However, in each case, 
appropriate analysis of CSF3R mutations or misexpression 
is recommended to ensure that this information is factored 
into the judicious consideration of the most beneficial 
therapeutic option.  
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