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1. ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) is
the major hematopoietic cytokine involved in the control of
neutrophil production and thus serves as a critical regulator
of the innate immunity against bacterial infections. G-CSF
is applied on a routine basis in the clinic for treatment of
congenital and acquired neutropenias, diseases
characterized by a critical shortage of neutrophils, leading
to severe opportunistic bacterial infections. Very recently,
it has become clear that therapeutic application of G-CSF
may not be limited to different types of neutropenia, but
may extend to non-hematological conditions, in particular
cardiac and brain infarctions. G-CSF drives the
proliferation, survival and neutrophilic differentiation of
myeloid progenitor cells by activation of a receptor of the
hematopoietin receptor superfamily, which subsequently
triggers multiple signaling mechanisms. These mechanisms
exert positive as well as negative effects on the signaling
function of the G-CSF receptor. The integrated output of
these signaling pathways provide the appropriate balance
needed for accurate production of neutrophils under both
steady state and “emergency” conditions. Here we review
how these mechanisms are thought to act in concert to meet
with these demands and how perturbations in the function
of the G-CSF receptor are implicated in various types of
myeloid disease.
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2.  GRANULOCYTE
FACTOR(G-CSF)

COLONY-STIMULATING

G-CSF is a member of the cytokine class I
superfamily, which is structurally characterized by four
antiparallel alpha-helices (1). G-CSF controls proliferation,
survival and differentiation of neutrophilic progenitor cells in
vitro and supports the maintenance of steady-state neutrophil
levels in vivo (2-6). G-CSF is produced by multiple cell types
and activates a single transmembrane receptor ; it exerts a
nonredundant role in blood cell development, as is evident
from the fact that both G-CSF-deficient (gcsf-/-) and G-CSF-
receptor-deficient (gcsfi- -/-) mice are severely neutropenic,
with blood neutrophil levels at 15-30% of those in wild type
(wt) littermates. The number of myeloid progenitor cells in the
bone marrow of these mice is also significantly decreased (5-
8). G-CSF signaling is also required for “stress” granulopoiesis
in response to bacterial infections (5,7). In addition, G-CSF
enhances multiple neutrophil effector functions, such as
superoxide anion generation, release of arachidonic acid and
production of leukocyte alkaline phosphatase and
myeloperoxidase (9,10). In the clinic, G-CSF has been used in
treatment of various forms of neutropenia , and leukemia as
well as anemia . A potential application for G-CSF is to reduce
febrile neutropenia in cancer patients after chemotherapy, but
the clinical and cost benefits of this approach have remained
controversial and may be limited to restricted groups of
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patients (11). G-CSF treatment has also been applied with
variable results to improve the response to chemotherapy of
acute myeloid leukemia (AML) patients, under the premise
that leukemic stem cells and progenitor cells enter the cell
cycle upon G-CSF stimulation and thereby become (more)
sensitive to cytotoxic agents (12,13). Currently, there are two
established niches for the application of G-CSF in the clinic.
First and foremost, G-CSF is now routinely administered to
patients with severe congenital or chronic neutropenia (SCN),
a disease characterized by a myeloid maturation arrest in the
bone marrow leading to a drastic reduction in the peripheral
neutrophil level and greatly increased susceptibility to fatal
opportunistic ~ bacterial  infections. G-CSF  treatment
ameliorates the neutropenia and associated infections in the
majority of SCN patients (14-16). A second major application
of G-CSF is founded on its ability to induce the release of
hematopoietic stem and progenitor cells from the bone marrow
into the peripheral blood. This has resulted in the widespread
use of G-CSF for the mobilization and isolation of peripheral
hematopoietic stem cells for transplantation purposes (17). The
mechanism by which G-CSF mobilizes these cells is not yet
fully understood but involves multiple effector pathways,
including proteolytic enzyme release, activation of chemokine
receptors, particularly CXCR4, and modulation of adhesion
molecules (18,19). Notably, these effects are not necessarily
direct and may involve modulatory effects on accessory cell
types. For instance, production of the chemokine CXCL12 by
osteoblasts, thought to play a major role in the homing of
hematopoietic stem cells through the activation of CXCR4, is
inhibited by G-CSF (20). G-CSF also induces mobilization of
neutrophils from the bone marrow, probably in part via similar
mechanisms (21). Intriguingly, recent studies have assigned
a role for G-CSF in myocardial regeneration following
cardiac infarction by a direct action on cardiomyocytes
(22,23). In addition, it was recently shown that G-CSF
inhibits programmed cell death in neuronal cells caused by
acute ischemic stroke and stimulated the proliferation of
neural progenitor cells, thereby reducing the volume of the
brain infarct (24). This study demonstrated that neurons of
the central nervous system express both G-CSF and G-CSF-
R, suggesting an autocrine protective mechanism. As yet,
these findings are limited to experimental rodent models,
but may herald important novel therapeutic applications of
G-CSF in cardiac and brain infarctions.

3. G-CSF RECEPTOR

The G-CSF receptor (G-CSF-R) is a member of
the hematopoietin receptor superfamily (25,26), which is
structurally characterized by four highly conserved cysteine
residues and a tryptophan-serine repeat (WSXWS) in the
extracellular domain. Both motifs are located within the so-
called cytokine receptor homology (CRH) region. Murine
and human G-CSF-receptors are single transmembrane
proteins of 812 and 813 amino acid residues, respectively,
with 62.5% homology at the amino acid level (27). The
extracellular domain of the G-CSF-R contains 603 amino
acid residues and includes an immunoglobulin-like module,
the CRH domain, and three fibronectin type III (FNIII)
modules.

The CRH domain comprises two “barrel-like”
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modules, each formed by seven beta strands. Similar to the
CRH domains of gpl130, the growth hormone (GH)
receptor, and the erythropoietin receptor (Epo-R), these
barrels are connected by a proline-rich linker that positions
them at an approximately perpendicular angle (28).
Crystallography studies of receptor/ligand complexes,
epitope mapping with monoclonal antibodies and alanine
scanning mutagenesis indicated that G-CSF and the G-
CSF-R form a 2:2 tetrameric complex (29). It was initially
proposed that this involved “pseudo-symmetric” binding of
G-CSF to two sites within the CRH domain of the G-CSF-
R, but it is now clear that G-CSF binds to a site within the
CRH domain, via its type II binding motif, and to another
site located within the Ig-like domain, via type III motif
binding (30). This configuration is similar to that proposed
for the IL-6/gp130 complex (28). The role of the FNIII
domains in G-CSF-R function has only been studied to a
limited extent. Interestingly, the second FNIII module of
the G-CSF-R confers ligand-independent activation to a
chimeric G-CSF-R/gp130 receptor in COS cells (31).
Although this suggests that the FNIII domain may be
involved in the formation of an active receptor complex,
the significance of this mechanism for G-CSF-R activation
under more physiological conditions remains to be
established.

The intracellular domain of the G-CSF-R has only
limited sequence homology to other hematopoietin receptor
superfamily members. It does contain two motifs in the
membrane-proximal region, called box 1 and box 2, which
are also found in other members of the family, e.g., the
Epo-R, gp130, and in the beta chains of the IL-2 and IL-3
receptors (32,33). Box 1 is proline rich and contains a
conserved P-X-P motif. Box 2 is less conserved and
comprises a cluster of hydrophobic amino acids, followed
by acidic and one or 2 positively charged amino acids. The
entire box1/box2 region, in particular also a conserved
tryptophan residue (W650) in the in-between amino acid
stretch, is essential for the transduction of proliferation
signals (34). It is now well established that this region is
crucial for the binding of JAK kinases to the receptor
chains. The C-terminal (membrane-distal) region of the G-
CSF-R has been implicated in the control of G-CSF-
induced differentiation of myeloid progenitor cell lines and
more recently also in the transduction of phagocytic signals
in mature neutrophils (35-37). Importantly, as will be
discussed later in this review, mutations have been reported
in SCN patients, which result in the truncation of this C-
terminal region. The cytoplasmic domain of human G-CSF-
R further contains four conserved tyrosine residues, at
positions 704, 729, 744 and 764 (equivalent to 703, 728, 743
and 763 in the murine G-CSF-R), which upon
phosphorylation function as docking sites for multiple SH2-
containing signaling proteins.

G-CSF-R expression has been demonstrated on a
variety of hematopoietic cells, including myeloid
progenitors, mature neutrophils, monocytes, myeloid and
lymphoid leukemia cells and normal B and T lymphocytes
(38-47).  G-CSF-receptors are also found on
nonhematopoietic tissues, for instance at the materno-fetal
interface, on vascular endothelial cells, in a wide variety of
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Figure 1. Signalling mechanisms activated by the WT G-
CSF receptor. Schematic representation of the intracellular
domain of the G-CSF receptor upon ligand binding. The
tyrosines of the receptor become phosphorylated by Jak
kinases and then function as docking sites for several
signaling molecules with SH2 domains. In addition, several
signaling routes are activated independent of G-CSF-R
tyrosines. See main text for functional implications.

fetal organ tissues and on cardiomyocytes and neuronal
progenitors (22-24,48-51). However, G-CSF-R probably
plays a minimal or redundant role in embryogenesis, since
newborn G-CSF-R deficient mice are normal, without any
detectable abnormalities other than severe neutropenia
(6,8). In addition to the wild type form of the G-CSF-R, at
least 6 isoforms have been described, all of which are
products of alternative mRNA splicing. The expression levels
of these isoforms in bone marrow progenitor cells are low or
undetectable compared to the WT G-CSF-R, suggesting that
their physiological role in normal myelopoiesis is minimal.
However, as will be discussed later in this review,
overexpression of certain isoforms has been reported in cases
of acute myeloid leukemia that result in disturbed G-CSF
responses in leukemic progenitor cells (52-54).

4. SIGNALING PATHWAYS COUPLED TO THE G-
CSF RECEPTOR

In the past decade, many of the basic principles of
hematopoietin receptor signaling have been elucidated. The
Jak/STAT pathways are generally seen as the pivotal
signaling mechanisms of these receptors. Indeed, studies in
mouse knockout models have assigned both specific and
more general roles for Jaks and STATs in cellular
responses to growth factors and cytokines (55-57). The
Jak/STAT signaling components activated by G-CSF-R are
Jakl, Jak2, Tyk2, STATI, STAT3, and STATS (58-62). As
is the case for most other hematopoietin receptors, the
p21Ras and phosphatidylinositol 3-kinase (PI-3K)/protein
kinase B (PKB) signaling pathways are activated by the G-
CSF-R, and both pathways were found to contribute to G-
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CSF-induced survival and proliferation (Figure 1) (8,63-
66). Studies in the chicken B cell system DT40 suggested
that activation of PI-3K depends on the presence of p55™"™.
This pathway is thought to involve association of Lyn with
¢-Cbl, and subsequent docking of the p85 subunit of PI-3K
to Y731 of Cbl (67-70). In a recent study, it was
demonstrated that activation of this pathway is involved in
the induction of reactive oxygen species, leading to
increased proliferation signaling by G-CSF-R (71).

4.1. Jak/STAT pathways

Although it has been established that G-CSF
activates Jakl, Jak2 and Tyk2, the specific roles of these
kinases in G-CSF signaling are still not entirely clear (58-
60). By employing a Jak-deficient human fibrosarcoma cell
model, Shimoda et al. showed that Jak1, but not the other
activated Jak-family members, is critical for receptor
phosphorylation and STAT activation (60). In contrast, co-
expression of dominant negative forms of either Jak1, Jak2
or Tyk2 with a wt G-CSF-R in COS cells completely
blocked G-CSF-induced STATS activation in these cells
(64). Moreover, Jakl-deficient mice possess normal
numbers of neutrophils, which would also argue against a
major and non-redundant role of Jakl in granulopoiesis
(72). Among the different STAT family members, STAT1
is only weakly and transiently activated by G-CSF and
studies in STATI-deficient mice suggest that it is
redundant for granulopoiesis (73-75). In contrast, STAT3 is
robustly activated by the G-CSF-R. Y704 and Y744 of the
G-CSF-R are major docking sites for STAT3 (Figure 1). At
low ligand concentrations, STAT3 activation depends
largely on the availability of at least one of these sites
(62,66,73,76). On the other hand, investigations in Ba/F3
cells and primary bone marrow cultures have established
that at saturating G-CSF concentrations STAT3 can also be
activated via a tyrosine-independent route. The latter
mechanism requires the presence of the membrane-distal
region of the G-CSF-R (77,78). Although the exact nature
of this tyrosine independent route is still unclear, it was
suggested that different mechanisms for STAT3 activation
might be involved in the control of steady-state
granulopoiesis at a low G-CSF level (mainly tyrosine-
dependent) versus “emergency” granulopoiesis initiated by
an increased level of G-CSF (tyrosine-independent) (77).

The question of how STAT3 contributes to G-
CSF-controlled granulopoiesis has been addressed in both
in vitro and in vivo models. Introduction of dominant
negative (DN) forms of STAT3, which either prevent
dimerization or DNA binding of STAT3 complexes, in
myeloid cell lines resulted in a lack of growth arrest and a
block in neutrophilic differentiation (79,80). Importantly,
following forced G1 arrest, cells expressing DN-STAT3
fully regained their ability to differentiate, suggesting that
STAT3 is required for cell cycle exit, a prerequisite for
myeloid differentiation, but not for execution of the
differentiation program itself (80,81). Studies in conditional
knockout mice with selective deletion of STAT3 in
hematopoietic progenitor cells showed that production of
functional neutrophils in vivo does not require STATS3,
thereby confirming the in vitro findings that STAT3 is not
essential for neutrophil differentiation per se. In fact, these
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conditional STAT3 knockout mice developed a
neutrophilia, which was driven by a hyperproliferative
response of bone marrow progenitors to G-CSF (82).
STAT3 has been suggested to be not only critical for G-
CSF-induced growth arrest and differentiation, but also for
proliferation of myeloid progenitors (83). This conclusion
was based on a mouse model expressing a truncated G-
CSF-R, in which the remaining STAT3 binding site (Y704)
is mutated (d715F). The d715F mice demonstrated a
complete loss of STAT3 activation in response to G-CSF
and were severely neutropenic. G-CSF-driven proliferation
of myeloid progenitors from d715F mice in colony cultures
was restored by introduction of a constitutively active form
of STAT3 (STAT3C), suggesting that STAT3 activation
via Y704 plays a major role in proliferative responses. This
appears in contradiction with the data obtained in the
conditional STAT3 deficient model. However, signaling in
the d715F model is aberrant in more ways than in just its
inability to activate STAT3. For instance, internalization of
the truncated receptors is severely affected, thereby
drastically altering both signaling abilities and duration
(84). Moreover, the introduced constitutively active STAT3
protein is an oncoprotein that in addition to G-CSF
signaling likely perturbs other pathways (85).

The mechanisms by which STAT3 controls cell
cycle exit in myeloid progenitor cells are not fully
elucidated. It has been suggested that the cyclin-dependent
kinase (cdk) inhibitor p27""*" is involved in this process
(80). Indeed, G-CSF induced the expression of p27P'in
32D cells, which was blocked by dominant-negative forms
of STAT3. Furthermore, a putative STAT3 binding site was
identified in the promoter region of p27<P' that was
functional in both electrophoretic mobility shift assays and
in luciferase reporter assays. Supporting the above
conclusions, myeloid progenitors from p27%P!-deficient
mice showed significantly increased proliferation and
reduced differentiation in response to G-CSF, compared
with wild-type controls. These findings suggested that
STAT3 controls cell cycle arrest of myeloid cells, at least
partly, via transcriptional upregulation of p27%P! However
transcription of p275P !is also, and more robustly, induced
by transcription factors of the Forkhead family, which are
negatively controlled by phosphorylation through the PI-
3K/PKB pathway (86,87). Arguably, a much more
prominent mechanism whereby STAT3 negatively controls
G-CSF-induced proliferation is via the upregulation of the
suppressor of cytokine signaling (SOCS) protein SOCS3
(see below).

As mentioned above, an entirely novel role for G-
CSF in the prevention of cardiac remodeling after
myocardial infarction was recently discovered (22,23).
Cardiomyocytes were found to express G-CSF-R, and G-
CSF activated Jak2 and Stat3 in these cells. G-CSF
treatment improved cardiac function after myocardial
infarction by inhibiting apoptotic death of cardiomyocytes.
In addition, G-CSF reduced apoptosis of endothelial cells
and increased the vascularization in the infarcted hearts.
These effects were abolished by overexpression of a
dominant-negative Stat3 mutant, suggesting an involvement
of Stat3 target genes in promoting survival of affected
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cardiomyocytes (22). In another recent study, it was
demonstrated that G-CSF has beneficial long-term effects
also on established heart failure, by inducing hypertrophy in
cardiomyocytes and by reducing myocardial fibrosis. Also
in this context, G-CSF induced activation of Stat3 was
implicated, although this could not yet be clearly linked to
prevention of apoptosis (23).

Activation of STATS is mediated by the
membrane proximal region of the G-CSF-R, independent of
tyrosine residues (88). STATS recruitment to the G-CSF-R
complex most likely involves direct recruitment to Jak
kinases (89) (Figure 1). In contrast to STAT3, which is
activated in a sustained fashion, activation of STATS is
transient, with maximal activation levels 10 to 30 minutes
after receptor activation (84,90). STATS5 has been
implicated in proliferation and survival signals provided by
the G-CSF-R (88). However, double-knockout mice
lacking both the STATSA and STATSB isoforms have only
moderately reduced colony numbers in response to G-
CSF- and show no overt neutropenia, indicating that the
role of STATS in steady-state granulopoiesis is limited
(91). Whether STATS is involved in G-CSF-driven
“emergency” granulopoiesis has not been established.

4.2. Role of the protein tyrosine phosphatase SHP-2

Generation  of different mouse models
demonstrated that SH2 domain-containing phosphatase 2
(SHP-2) is important for the formation of myeloid,
erythroid and lymphoid cells (92-95). SHP-2 has 2 SH2
domains and a C-terminal phosphatase domain, and needs
recruitment to a phosphotyrosine for its activation (96).
SHP-2 has multiple functions; it is able to dephosphorylate
STATS, interacts with Jaks and is also required for efficient
activation of the p21 Ras to Erk MAP kinase pathway in
response to a number of stimuli (28,92,97-102). The
mechanisms of SHP-2 recruitment to the G-CSF-R are not
yet fully clear. Although interactions between phospho-
Y704 and Y764 with SH2 domains of SHP-2 were
demonstrated using Far Western technology, high affinity
interaction between phospho-Y764 and SH2-SHP2 could
not be detected using a Biocore biosensor (66,103). It now
appears that recruitment of SHP2 is predominantly
mediated via two distinct mechanisms, one involving
phosphorylated Y729 and one involving the distal C-
terminus of G-CSF-R (104).

4.3. p21Ras/MAP kinase and PI-3K/PKB pathways
Y764 of the G-CSF-R plays a major role in
proliferation signaling in cell line models as well as in
primary myeloid progenitor cells (8,63,78). Once
phosphorylated, Y764 forms a binding site for the SH2
domains of Shc and Grb2, signaling intermediates of the
p21Ras/Raf/MAPkinase pathway (Figure 1)
(63,66,105,106). Grb2 can also be recruited via docking to
She (107-110). Loss of Y764 results in a significant
reduction of p21Ras activation, and accelerated neutrophil
differentiation (63,106,111) and in the ability of primary
myeloid progenitors to multiply in vitro (78). Conversely,
adding back Y764 in a tyrosine “null” receptor background
greatly increased the proliferation of myeloid progenitors
(8). MAP kinase pathways are activated upon
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phosphorylation by MAP kinase-kinases in a cascade-like
manner in response to a variety of stimuli such as growth
factors, cytokines or cellular stress. Depending on the cell
context and type of stimulus, MAP kinase activation
contributes to cell proliferation, differentiation or apoptosis.
A number of studies showed that the Erk1/2 MAP kinases
are the major effectors downstream from p21Ras involved
in proliferative signaling in myeloid progenitor cells
(78,111-117).  Activation of other MAP kinases
downstream of p21Ras, i.e., the p38MAP kinase and Jun
N-terminal kinase (JNK) is also controlled mainly via
Y764, but the role of these kinases in G-CSF signaling is
less clear (103,106,114). Finally, Erk5, also known as
BMKI1, is also activated via the C-terminus of G-CSF-R
(118). ErkS is strongly activated by G-CSF in neuronal
cells and has been implicated in promoting neuronal
survival, providing a plausible signaling mechanism for the
recently described neuroprotective effects of G-CSF
(24,51). As is the case for most cytokine receptors, G-CSF-
induced activation of the PI-3K/PKB pathway is mainly
associated with stimulation of cell survival by inhibiting
apoptotic cascades, which provides an additional pathway
for the cell protective effects of G-CSF in mature
neutrophils as well as neuronal cells (64,119).

5. NEGATIVE REGULATION OF G-CSF SIGNALING

The inhibition of cytokine responses is governed by
multiple mechanisms including dephosphorylation of signaling
molecules by phosphatases, receptor endocytosis, and
proteasomal targeting. Mechanisms that have been implicated
in downregulation of G-CSF signaling are discussed below.

5.1. Protein tyrosine phosphatase SHP-1

The role of the SH2 domain-containing protein
tyrosine phosphatase SHP-1 as a negative regulator of
granulopoiesis has been established utilizing so-called
“moth-eaten” (me") mice, which possess a mutation in the
SHP-1 gene resulting in reduced phosphatase activity (120-
122). These mice exhibit aberrant regulation in several
myeloid and lymphoid lineages, including substantial
increases in the number of immature granulocytes (123-
125). SHP-1 protein levels are increased in a post-
transcriptional manner during G-CSF-induced
differentiation of 32D cells. Ectopic overexpression of
SHP-1 in these cells inhibited proliferation and stimulated
differentiation, whereas introduction of a phosphatase-dead
SHP-1 mutant gave the opposite result (126). In contrast to
the Epo-R or the GM-CSF/IL-3/IL-5-R common beta chains,
G-CSF-R tyrosines do not serve as docking sites for the SH2
domain of SHP-1, suggesting that intermediate signaling
molecules may be involved in the recruitment of SHP-1
into the G-CSF-R complex (125-127).

5.2. SH2-containing inositol phosphatase SHIP

A 145 kDa phosphorylated protein was detected
following G-CSF stimulation in both Shc and in GRB2
immunoprecipitations. The formation of these complexes
depended on the presence of Y764 of the G-CSF-R (Figure
1) (105). This protein was later identified as the SH2-
containing inositol phosphatase (SHIP) protein (65).
Studies in SHIP-deficient mice showed that this

804

phosphatase is important for modulating hematopoietic
signaling, particularly in the myeloid lineage. SHIP -/- mice
die early, most likely due to the extensive infiltration of
myeloid cells observed in the lungs. The numbers of
neutrophils and monocytes in these mice are increased, due
to an elevated number of myeloid progenitors in the bone
marrow (128). Furthermore, survival of neutrophils lacking
SHIP is prolonged following apoptosis-inducing stimuli or
growth  factor  withdrawal.  Finally, PI(3,4,5)P3
accumulation and PKB activation are both increased and
prolonged in SHIP-/- cells. Taken together these data
suggest a role for SHIP as a negative regulator of growth
factor-mediated PI-3K/PKB activation and survival of
myeloid cells (88).

5.3. Suppressor of cytokine (SOCS) proteins

Suppressor of cytokine signaling (SOCS)
proteins are important mediators of negative feedback in
response to many cytokines. To date, the SOCS protein
family contains 8 known members: SOCS1-7 and CIS. All
SOCS proteins contain an SH2-domain and a C-terminal
conserved domain called the SOCS box; for a review, see
(129). SOCS1 and SOCS3 have two extra conserved
domains in common, the extended SH2 subdomain (ESS)
and the kinase inhibitory region (KIR) (130-132). Different
SOCS proteins use different mechanisms for inhibition of
signaling. They can compete with positively acting
signaling substrates for receptor tyrosine docking, as was
demonstrated for inhibition of GH-induced STATS
signaling by CIS (133). The second mechanism is only
used by SOCS1 and SOCS3. These proteins utilize their
ESS and SH2 domains for recruitment to activated Jak
kinases. Subsequently, the KIR acts as a pseudosubstrate
and inhibits kinase activity (130,131,134). SOCS1 directly
binds to Jak kinases with high affinity (129-131,135).
SOCS3 requires recruitment to phosphotyrosines in
activated receptors for efficient signal inhibition (136-139),
Y729 in the case of G-CSF-R (8,104,140,141). The third
mechanism of inhibition of signaling by SOCS proteins
involves the C-terminal SOCS box. Elongins B and C bind
the SOCS box and although the exact composition of the
resulting protein complex is still unclear, it is postulated to
have E3 ubiquitin ligase activity (142-144). This may
contribute to ubiquitination and subsequent proteasomal
degradation of signaling molecules (142-145). In addition, the
SOCS box has also been suggested to regulate the stability of
SOCS proteins themselves, although conflicting reports exist
as to whether the SOCS box contributes to SOCS protein
stability or degradation (142,143,146-148).

Expression of SOCS proteins is under the direct
transcriptional control of STATs (129,149-151). Among
the different SOCS family members reported to be
upregulated by G-CSF, SOCS3 is most prominently
induced (140,152). G-CSF-induced SOCS3 expression is
severely reduced in STAT3-/- mice, indeed suggesting that
SOCS3 is the major STAT3 target responsible for
inhibition of G-CSF signaling (82). While transcription of
SOCS3 is strongly induced during G-CSF-stimulated
neutrophilic differentiation, SOCS1 remains present at a
relatively low and constant level (153). Thus, although both
SOCSI1 and SOCS3 are able to attenuate G-CSF signaling
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Figure 2. Schematic representation of the intracellular
domain of G-CSF receptor wild type and mutants, and their
differential sensitivity to SOCS1 and SOCS3-mediated
inhibition of STAT3 and STATS activation. Boxes 1 and 2
represent sub domains conserved in the hematopoietin
superfamily. - : No inhibition; +++ : maximal inhibition;
ND: not determined

under experimental conditions, SOCS3 is the most
prominent physiological inhibitor (141,153). G-CSF also
induces the expression of SOCS2 and CIS in hematopoietic
cells, although conflicting data have been reported
concerning a role of CIS in G-CSF signaling (140,152).
Whereas one report suggested that CIS binds to and inhibits
the signaling function of G-CSF-R, inhibitory effects of
CIS were not observed in two other studies (154,141,153).
Interestingly, in these latter studies, SOCS2 appeared to
exert an enhancing effect on G-CSF signaling. A plausible
explanation for this is that SOCS2 binds to SOCSI and
SOCS3 and mediates their proteasomal degradation (155).

Conditional knockout mice lacking SOCS3
expression in bone marrow cells show a hyperproliferative
response to administration of G-CSF (156,157). In this
respect, they closely resemble the knock-in mice expressing
a truncated G-CSF-R (gcsfr-delta715) derived from SCN,
which provides in vivo evidence that loss of SOCS3
recruitment via Y729 of G-CSF-R contributes significantly
to the gesfr-delta715 phenotype. Quite unexpectedly, loss
of Y729 alleviated the inhibitory effects of SOCS3 on the
activation of STATS, involved in proliferation and survival
signaling from G-CSF-R, but not STAT3, implicated in G-
CSF-mediated growth arrest and differentiation (104).
Significantly, deletion of the SOCS box largely abrogated
the inhibitory action of SOCS3 on G-CSF-induced STAT
activation and colony formation by bone marrow
progenitors, suggesting that targeting for ubiquitination,

805

rather than abrogation of Jak activity is the dominant
inhibitory mechanism (153). How this affects the function
and intracellular fate of the G-CSF-R complex is presently
unclear.

Although SOCS1 and SOCS3 are prominent
inhibitors of Jak/Stat signaling, they may also affect other
pathways. For instance, SOCSI1 inhibits c-Kit and FIt3
receptors and has been shown to associate with the tyrosine
kinases Tec, Pyk2 and FGF receptor, the docking molecule
Grb2, and the hematopoietic signaling protein Vav (158-
161). SOCS3 has been shown to bind to the Src-like
tyrosine kinase Lck, FGF receptor and Pyk2 and more
recently Cacalano and colleagues reported that SOCS3
contributes to degradation of the negative regulator of Ras
signaling RasGap, thereby enhancing Erk activation in
response to cytokines and growth factors (135,162). How
these alternative mechanisms affect G-CSF responses of
myeloid progenitor cells is unknown.

5.4. SHP-2 versus SOCS3-mediated inhibition of G-CSF
responses

G-CSF-R-Y729 is an important recruitment site
for SOCS3 as well as for SHP-2 (104)(Figure 1). This is
not unique for the G-CSF-R. For instance the leptin
receptor and gpl30, the signal transducing subunit of
Oncostatin M (OSM), Leukemia inhibitory factor (LIF),
IL-6 and IL-11 receptors, have combined docking sites for
SOCS3 and SHP-2 (136-138,163). A number of studies
have addressed the roles of negative feedback by SOCS3
and SHP-2 in gp130 and leptin signaling. Both SHP-2 and
SOCS3 inhibit gp130 signaling in response to LIF and IL-6
(148,164). In contrast, OSM signaling is inhibited via Y759
of gpl130, even in the absence of SOCS3 and SHP-2,
implicating involvement of another yet unknown inhibitor
acting either directly or indirectly via this tyrosine (165). A
direct comparison of the data from these different receptors
with those reported on the G-CSF-R is complicated for two
reasons. Firstly, Y759 of gpl130 is also involved in the
activation of the Erk route via SHP-2, whereas such a role
for Y729 of the G-CSF-R could not be demonstrated
(166,106). Secondly, most of the cytokines that were tested
in these reports do not activate STATS and therefore, a
possible role of SHP-2 as a STATS5 phosphatase (see
below) could not be tested in these models (167,168).

5.5. Differential effects of SOCS inhibition on G-CSF-
induced STAT activation

A surprising finding was that the mechanisms by
which SOCS proteins suppress G-CSF-induced activation
of STAT3 and STATS are discrepant. This became evident
by studying the effects of SOCS1 and SOCS3 on a panel of
G-CSF-R mutants in luciferase reporter assays (104, van de
Geijn: unpublished data) (Figure 2). The first prominent
difference is seen when WT G-CSF-R and G-CSF-R-d715
are compared. Whereas the inhibitory effects of SOCSI
and SOCS3 on activation of STAT3 by G-CSF-R-d715 are
preserved, inhibition of both SOCS proteins on activation
of STATS is completely lost. This clearly indicates that, in
contrast to inhibition of STAT3, SOCS-induced inhibition
of STATS requires additional mechanisms controlled by
the G-CSF-R C-terminus. Comparison of the action of



G-CSF receptor signaling in granulopoiesis

CRH

[egion A319 (SCN)

Fibronectin

type Il
repeats

cytoplasmic|
domain| y—

Thr 17— Asn (AML)
— Asn GSOArg 631—p Lys 630 (MDS)

Pro 2%—» His (SCN)

Clo] [-RVETGET]
(AML)

L Gln 716,718,720,726,731 » STOP (SCN]AML)

- Glu 78—y Lys (MDS)

Figure 3. Mutations and polymorphisms in G-CSF receptor identified in myeloid disorders. Different domains within the G-CSF-
R extracellular and intracellular domains are indicated. In red, conserved stretches in the intracellular domain (boxes 1-3) are
indicated. AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; SCN: severe chronic neutropenia.

OCS1 and SOCS3 on more subtle G-CSF-R mutants
provided some leads about the possible nature of these
mechanisms.

STATS activation by G-CSF-R-d715 is resistant
to inhibition by both SOCS1 and SOCS3. This result was
expected for SOCS3, which requires recruitment to Y729
of G-CSF-R, but not for SOCS1. SOCS1 directly interacts
with JAK kinases, which bind to the membrane proximal
region of G-CSF-R and therefore does not involve
recruitment to G-CSF-R tyrosines (34,129,135). Indeed,
this is corroborated by the observation that STATS
activation by the G-CSF-R null mutant is fully sensitive to
inhibition by SOCSI. Strikingly however, Y729 becomes
crucial for the effects of SOCS1 on STATS activation in G-
CSF-R deletion mutant d735 (Figure 2). Thus even though
Y729 is dispensable for SOCS1 function in the context of
the full length G-CSF-R, its presence is essential for
inhibition of STATS activity of truncated G-CSF-receptors.
Although the reason for this differential requirement of
Y729 for inhibition of STATS by SOCSI is currently
unknown, these results imply that SOCS]1 itself is unable to
abrogate STATS signaling by G-CSF-R-d735, unless
combined with another mechanism projected by Y729
and/or the G-CSF-R C-terminus. STATS
dephosphorylation by SHP-2 (which is recruited to Y729)
is a candidate mechanism that could explain the
requirement of Y729 in the truncated receptors
(104,167,168). The finding that Y729 is not critical for the
effects of SOCS1 on the null mutant could imply that the
G-CSF-R C-terminus is also able to recruit SHP-2. Indeed,
we were able to show that mutant d715-735, which lacks
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Y729 but retains the receptor C-terminus, can still bind a
significant amount of SHP-2 (104).

5.6. Constitutive and ligand-induced internalization of
G-CSF-R

The intracellular distribution and internalization
kinetics of G-CSF-R in living cells was studied using
fusion constructs of wild type or mutant G-CSF-R and
enhanced green fluorescent protein (EGFP) (169). Under
steady-state  conditions the  G-CSF-R  localized
predominantly to the Golgi apparatus, late endosomes, and
lysosomes, with only low expression on the plasma
membrane. Endosomal and lysosomal localization was due
to slow, spontaneous internalization. Internalization of the
G-CSF-R was significantly accelerated by addition of G-
CSF. This ligand-induced switch from slow to rapid
internalization required the presence of G-CSF-R residue
Trp650, shown to be essential for JAK binding and
activation (34). Both spontancous and ligand-induced
internalization depended on 2 distinct amino acid stretches
in the G-CSF-R COOH-terminus, amino acids 749-755,
containing a dileucine internalization motif, and amino
acids 756-769. Ser749 at position —4 of the dileucine motif
appeared to play a major role in the switch to rapid
internalization, suggesting a possible involvement of an as
yet unidentified serine/threonine kinase in this process.

6. G-CSF-R IN MYELOID DISORDERS

A number of mutations or rare polymorphisms in
the GCSFR gene have been reported in myeloid disorders
and these were found to perturb signaling functions of the
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receptor (Figure 3). Elucidation of the functional
consequences of these abnormalities has contributed
significantly to our understanding of the role of specific
domains of the G-CSF-R in signaling.

G-CSF-R mutations are regularly found in severe
congenital neutropenia (SCN). The most frequent
mutations are nonsense mutations in a critical glutamine-
rich stretch, which result in C-terminal truncation of the G-
CSF-R. Clones harboring such acquired mutations are
detected in the neutropenic phase of the disease in
approximately 20% of patients (170,171). In some cases,
affected myeloid cells arise from minority clones,
originally making up only 1 to 2 % of the myeloid
progenitor cell compartment. However, clones with G-
CSF-R mutations become overt in more than 80% of the
SCN cases upon progression to MDS and AML, suggesting
that G-CSF-R truncations represent a critical step in the
expansion of the (pre-) leukemic clones (172). An
important question in this context is how G-CSF treatment
contributes to the outgrowth of the leukemia. The Severe
Chronic Neutropenia International Registry reported
evolution of SCN to MDS or AML in 35 of 387 patients,
with a cumulative risk of 13% after 8 years of G-CSF
treatment. However, there was no apparent relationship to
duration or dose of G-CSF treatment (14). The role of these
truncation mutations in leukemic transformation has been
analyzed in further detail in mouse models in which the
nonsense mutation was introduced in the G-CSF-R gene by
knock-in strategies (gcsfi-delta715) (173,174). Mice
expressing the truncated G-CSF-R exhibit
hyperproliferation of myeloid progenitor cells in reponse to
G-CSF but do not develop leukemia. However, recent
studies have shown that G-CSF-induced ROS production is
significantly increased in cells derived from of gesfi-
delta715 mice, a feature that was associated with increased
DNA damage and leukemogenesis (71). Moreover, in a
mismatch repair deficient (Msh2-/-) background, gcsfi-
delta715 mice developed tumors with a significantly
shorter latency than gesfr-wt mice (Prasher et al,
manuscript submitted). These findings support the role of
G-CSF-R truncations in leukemic progression of SCN.
Multiple signaling abnormalities have been linked with G-
CSF-R  truncations, including defective receptor
internalization (175). This is in part due to the loss of a
serine type di-leucine motif in box 3 (amino acids 749-755)
and the immediate downstream sequence stretch of amino
acids 756 to 769 (90,169). Mutation of this di-leucine motif
results in reduced receptor endocytosis and delayed
attenuation of signaling (90,169).

Due to lack of the C-terminus in G-CSF-R-d715,
negative feedback by SHP-1 and SHIP is lost as well
(65,127). Furthermore, activation of the PI-3K/PKB
pathway is increased and STATS activation is drastically
prolonged (64,84). Although the exact underlying
molecular mechanisms remain to be elucidated, the
increased STATS/STATS3 activation ratio of the G-CSF-R-
d715 is implicated in prolonged survival and proliferation
of G-CSF-R-d715 cells (84). SOCS3 efficiently suppressed
STAT3 and STATS activation by WT G-CSF-R in
luciferase reporter assays. In contrast, while SOCS3 still
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inhibited STAT3 activation by G-CSF-R-d715, STATS
activation was no longer affected (104) (Figure 2). This
was largely due to the loss of the SOCS3 recruitment site
Tyr729, with an additional minor contribution of the
internalization defects of G-CSF-R-d715. Because Tyr729
is also a docking site for the protein tyrosine phosphatase
SHP-2, which binds to and inactivates STATS5, a model is
suggested in which the loss of recruitment of both SOCS3
and SHP-2 to the activated receptor complex determine the
increased STATS/STATS3 activation ratio and the resulting
signaling abnormalities projected by truncated G-CSF-R
mutants (104).

Mutations affecting the extracellular domain of
G-CSF-R have only very rarely been reported in SCN (176~
178). Although such anecdotal cases do not unveil a more
general disease mechanism, they have given new insights
in G-CSF-R function and intracellular routing. For
instance, in an SCN patient who failed to respond to G-CSF
treatment, a mutation in the extracellular domain of the G-
CSF-R mutation was found that changed a conserved
proline residue in the "hinge" motif located between the
NH2- and COOH-terminal barrels of the CRH domain
resulting (176). This mutation prevents the formation of 2:2
ligand/receptor complexes. Contrary to the C-terminal
truncations, this mutant receptor showed drastically
reduced activation of STATS and was severely hampered in
proliferation and cell survival signaling in 32D cells, while
differentiation-inducing properties were retained.

In de novo AML, activating mutations in receptor
tyrosine kinases FLT3 and c-KIT occur in more than 25%
of cases. These mutations result in ligand independent
activation of the receptors and have a significant impact on
disease prognosis (179). In contrast, such activating
mutations have only rarely been reported for G-CSF-R. An
activating mutation in the transmembrane domain of G-
CSF-R was identified in 2/555 AML patients (180). This
mutation confers growth factor independence on Ba/F3
cells and results in the constitutive phosphorylation of
signaling substrates (Jak2, Stat3, ERK1, ERK2) as well as
the receptor itself. A mutation leading to overexpression of
a nonfunctional splice variant of G-CSF-R was reported in
1 out of 70 cases analyzed (54). This variant receptor has
the alternative C-terminal 34 amino acids of the class IV G-
CSF-R (alternatively known as D-7), linked to amino acid
682, which is just C-terminal of box-2. It thus lacks most of
the functional domains, including all the tyrosine based
docking motifs, which explains why it lacks most of its
signaling abilities. Although so far this case appears to be
unique, altered ratios of Class I (wild type)/ClassIV G-
CSF-R levels have been reported in more than 50% of
AML samples, which could be suggestive of a more
general role for abnormal G-CSF-R function in AML (72).
Significantly, even at relatively low levels of expression,
the Class IV variant was reported to interfere with
differentiation induction mediated via the wt G-CSF-R in
32Dcl3 cells (181).

Awaya et al. reported an increased occurrence in
MDS of a novel splice variant of G-CSF-R with an
alteration in the juxtamembrane region of the receptor
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(182). Via an as yet unknown mechanism, this variant
conferred increased proliferative signals in response to G-
CSF compared to the wild type G-CSF-R. However,
because this receptor variant is also found at low
frequencies (2%) in normal bone marrow cells and is still
only detectable in less than 8% of the myeloid progenitor
cells in MDS, its role in the pathogenesis of this disease
remains uncertain. A second polymorphism was recently
reported to be associated with the development of high risk
MDS (183). This single nucleotide polymorphism results in a
substitution of glutamic acid (Glu) by lysine (Lys) at amino
acid position 785 (G-CSF-R_785Lys). Glu785 is located in a
conserved amino acid stretch in the most distal part of G-CSF-
R C-terminus (GIn-Glu-Asp-Asp-Cys-Val-Phe-Gly-Pro),
which has not previously been implicated in signaling or in
receptor internalization. Intriguingly, contrary to the G-CSF-R
truncation mutants in SCN/AML, G-CSF-R_785Lys shows
reduced instead of increased proliferation signaling in primary
hematopoietic progenitor cells (183). How the glutamic acid to
lysine substitution affects the signaling function and
intracellular fate of the G-CSF-R is unknown. Conceivably,
Lys785 serves as a target for protein modification by
ubiquitination and thus could be involved in lysosomal or
proteasomal routing of G-CSF-R. Alternatively, ubiquitinated
Lys785 may form a binding site for proteins with a modular
ubiquitin-binding domains and recruit alternative signaling
mechanisms to the G-CSF-R (184).

7. PERSPECTIVE

During the last one and a half decade, G-CSF has
become an established therapeutic for patients suffering
from neutropenia. In addition, G-CSF is now routinely used
to mobilize hematopoietic stem cells into the peripheral
blood of healthy donors, so that the stem cells can be
harvested conveniently by apheresis for transplantation
purposes. Moreover, recent studies suggest that G-CSF
may have therapeutic applications that go beyond the
hematopoietic system and may e.g., perhaps be beneficial
for patients suffering from stroke or heart attack. Finally,
abnormal responses to G-CSF due to G-CSF-R dysfunction
are implicated in (pre-)malignant myeloid diseases. These
major clinical aspects will undoubtedly maintain a lively
interest in the signaling properties of the G-CSF-R.
Important questions that still need to be addressed relate,
e.g., to how the kinetics of receptor routing to early and late
endosomes affect signaling, the role of receptor
ubiquitylation herein, and how this influences the balanced
output underlying the appropriate stimulation of
proliferation and differentiation. Another major challenge
is to investigate the entire physical complexity of the G-
CSF-R complex and possible heterologous interactions
with other receptors, e.g., via scaffolding structures. This
will not only be of interest from a biological/biochemical
point of view, but may also lead to further advances in
therapy development of hematological and perhaps other
types of disease.
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