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1. ABSTRACT 
 

Human T-lymphotropic virus type I (HTLV-1) is 
the etiological agent of adult T-cell leukemia/lymphoma 
(ATL) and HTLV-1 associated myelopathy/tropical spastic 
paraparesis (HAM/TSP). HTLV-1 viral 
transactivator/oncoprotein, Tax, activates viral transcription 
and usurps regulatory mechanisms that are critical for cell 
growth and division to facilitate viral replication. The 
effects that Tax exerts on cells include potent NF-κB 
activation, cell cycle perturbation and cell transformation. 
How Tax influences ATL development is incompletely 
understood at present. While Tax-expression is needed at 
the early stages of cellular transformation, at later times 
most ATL cells do not express tax; therefore, genetic and 
epigenetic changes in HTLV-1-infected cells are believed 
to play an important role in the etiology of ATL. This 
review attempts to integrate recent literature on the 
biological activities of Tax and the properties of HTLV-1 
transformed T-cells and ATL cells, and speculate on what 
cellular changes may collaborate with Tax to effect cell 
transformation and ATL development.  

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Human T-cell lymphotropic virus type-1 (HTLV-
1) was isolated in 1980 from a T cell line, Hut102, 
established from a patient initially diagnosed with 
cutaneous T-cell lymphoma (1, 2). Shortly after its 
discovery, HTLV-1 became etiologically linked to adult T-
cell leukemia/lymphoma (ATL), a malignancy first 
described in 1977 in Japan (3, 4). Epidemiological studies 
indicate that HTLV-1 infection is endemic in parts of the 
Caribbean, the southern islands of Japan, parts of Africa, 
South America, and the Pacific islands of Melanesia and 
Papua New Guinea (5, 6). To date, HTLV-1 remains the 
only retrovirus associated with human malignancy. Unlike 
many other viruses, cell-free infection by HTLV-1 is highly 
inefficient, and most viral infection occurs via cell-cell 
contact.  Tropism of HTLV-1 is largely for T-cells with 
ability of the virus to infect both CD4+ and CD8+ cells.  In 
vivo, the virus is transmitted predominantly via breast milk, 
via transfusion of blood products containing HTLV-1-
infected cells, and by sex.  Interestingly, while HTLV-1 
preferentially transforms CD4+ T-cells; the related HTLV-
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2 virus has been shown to primarily induce proliferation of 
CD8+ T cells. The diseases caused by HTLV-1: adult T-cell 
leukemia (ATL), HTLV-1 associated myelopathy/tropical 
spastic paraparesis (HAM/TSP), HTLV-1 uveitis, HTLV-1 
associated rheumatoid arthritis (7), and other inflammatory 
skin diseases have their etiologies in the dysregulated 
proliferation of T-cells and/or ensuing immune dysfunctions. 
Presently, there is no effective treatment for HTLV-1 
infection and associated diseases. How HTLV-1 infection 
leads to the development of specific diseases also remain 
incompletely understood. 
 
3. HTLV-1 RELATED DISEASES 
 
3.1. Adult T-cell leukemia/lymphoma (ATL) 

ATL is a rare T-cell malignancy characterized by 
hypercalcemia, hepatomegaly, splenomegaly, 
lymphadenopathy, skin involvement and presence of 
abnormal lymphocytes (3, 4).  HTLV-1 causes ATL in a 
small percentage (2-6%) of infected individuals after a long 
latency period of up to 20-40 years.  ATL patients show 
evidence of a monoclonal integration of HTLV-1 proviral 
DNA in proliferating CD4+CD25+ leukemia cells. These 
ATL cells emerge from a pool of HTLV-1-positive CD4+ 
T-cells that persist for decades in the infected individual 
through oligoclonal expansion. The genetic or epigenetic 
events that trigger full-blown malignancy are currently 
unknown. There are four ATL subtypes: acute, 
lymphomatous, chronic, and smoldering.  The first two 
subtypes are associated with a rapidly progressing clinical 
course with a median survival time of 5-6 months.  
Smoldering and chronic ATL have a more indolent course 
and may represent transitional states towards acute ATL.  
ATL usually occurs at middle to old age among individuals 
who are infected in early childhood. 
 
3.2. HTLV-1 associated myelopathy/tropical spastic 
paraparesis (HAM/TSP), HTLV-1 uveitis, and 
inflammatory skin diseases 
 HAM/TSP is a chronic neurological disorder 
caused by an inflammatory condition that results in 
demyelination of the spinal cord. It is characterized by 
progressive weakness and hyperreflexia of the lower limbs, 
bladder dysfunction, and impotence. The T lymphocytes 
from HAM/TSP patients often undergo spontaneous 
proliferation when cultured in vitro. Importantly, compared 
to asymptomatic HTLV-1 carriers, HAM/TSP patients have 
significantly higher proviral loads, suggesting that active 
HTLV-1 viral replication plays a key role in the 
development of the disease. A recent study has shown that 
a high level of Tax expression and low CD8+ anti-viral 
efficiency are correlated with high proviral load and 
HAM/TSP development (8).  Unlike ATL, the onset of 
HAM/TSP may be rapid. HTLV-1 is also associated with 
uveitis, an inflammation of the iris.  Finally, almost all 
HTLV-1 associated diseases except HTLV-1 uveitis, have 
skin manifestations preceding or concurring with disease 
onset.  New data from a mouse model provides support that 
the observed dermatological pathology is due to an 
expansion of activated CD4+ T lymphocytes, driven by 
Tax-mediated activation of NF-κB, that traffic to the skin 
(9). 

4. HTLV-1 PATHOGENESIS AND VIRAL 
TRANSACTIVATOR, TAX 
 
 The long incubation period and the low 
frequency of clinical progression to ATL suggest that 
complex viral and cellular events are involved in HTLV-1 
pathogenesis. Indeed, statistical analysis has indicated that 
at least five independent genetic changes need to occur 
after HTLV-1 infection of T cells in vivo before 
development of ATL ensues (10).  The molecular events 
that cause HTLV-1 infection to progress from clinical 
latency to T-cell malignancy and HAM/TSP is not clear but 
involves the critical viral transactivator/oncoprotein, Tax, 
which is capable of activating viral transcription and 
usurping regulatory mechanisms critical for cell growth and 
division to facilitate viral replication.  
 
 How Tax influences ATL development is 
incompletely understood at present. Many lines of evidence 
support the importance of Tax in the leukemogenic process: 
(a) HTLV-1 proviral DNAs in a significant fraction of ATL 
cells contain deletions.  In these cells, however, the coding 
sequence of tax is preferentially retained, implicating a role 
of tax in ATL development (5, 6, 11). This 
notwithstanding, most ATL cells do not express HTLV-1 
transcripts, suggesting that tax most likely affects the early 
stage of the disease process and its persistent expression is 
not needed for maintenance of the neoplasm (12). This 
property of tax sets it apart from other viral oncogenes such 
as the human papilloma virus E6 and E7 whose constitutive 
expression is needed for cell transformation. (b) Transgenic 
mice expressing tax (driven by the HTLV-1 LTR) 
developed neurofibroma, a tumor of mesenchymal tissue 
(13). Interestingly, one group of LTR-tax transgenic mice 
developed thymic atrophy and died soon after birth, 
consistent with the notion that Tax is cytotoxic (13). (c) 
Large granular lymphocytic leukemia has been found in 
mice transgenic for tax that is expressed from the T-cell 
specific granzyme B promoter (14). Leukemia of CD4+ T-
cells, however, has not been observed in any of the tax-
transgenic systems. The basis for the differences between 
the transgenic models and HTLV-1 pathogenesis in humans 
remains unclear. (d) Tax can transform Rat-1 fibroblast 
cells in culture. (e) Tax can immortalize primary human T 
cells causing the cells to proliferate indefinitely (15); 
although currently complete transformation of primary 
human cells by Tax-alone has not been achieved.  (f) Tax 
exerts pleiotropic effects on cellular signal transduction 
pathways and cell cycle controls.  
 
5. MECHANISMS OF TAX ACTION AND ATL 
DEVELOPMENT 
 
5.1. Activation of HTLV-1 viral transcription by Tax  
 The mechanism by which Tax activates viral 
transcription is well understood. The viral transcriptional 
enhancer consists of three imperfect 21 bp repeats, each 
containing a cAMP response element (CRE) core flanked 
by 5’ G-rich and 3’ C-rich sequences. In the presence of 
Tax, gene expression driven by multiple copies of the 21-
bp repeat element can increase up to 100-fold or higher. 
Cellular basic domain-leucine zipper (bZip) transcription
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Figure 1.  Schematic representation of pathways used by Tax to activate NF-κB in cells.  Left, activation of the classical 
(canonical) NF-κB pathway; right activation of the alternative (non-canonical) NF-κB pathway.  
 
 factors—CREB and ATF-1, the 21-bp repeats, and Tax 
form stable ternary complexes (16-20). In these complexes, 
CREB/ATF-1 bind the CRE of the 21-bp repeats while Tax 
binds the bZIP domains of CREB/ATF-1 (21, 22, 22-24) 
and makes contacts with the DNA minor groove of the 
G/C-rich sequences that flank the CRE, thus achieving the 
exquisite DNA sequence specificity of LTR transactivation 
by Tax (25-32). In the context of the ternary complexes, 
Tax further recruits transcriptional co-activators, CREB 
binding protein (CBP)/p300 and possibly other 
transcription factors for potent gene activation (27, 33-37).  
Consistent with results from in vitro reconstitution, recent 
in vivo studies have indicated that a multiprotein complex 

that includes CREB, p300, and P/CAF is required for Tax’s 

activation of integrated LTR (38).  
 
5.2 Activation of NF-κB/Rel by Tax 

NF-κB/Rel family of transcription factors are 
controlled by inhibitory I-κB proteins—I-κBα, I-κBβ, and 
the I-κB-like domains in NF-κB1 and NF-κB2—that 
sequester NF-κB/Rel in the cytoplasm as multiprotein 
complexes (for a recent review, see (39)). Upon activation 
by extracellular stimuli such as interleukin-1 (40), tumor 
necrosis factor-α (TNF-α), bacterial lipopolysaccharide 
(LPS), or by Tax, I-κBα and I-κBβ become serine 
phosphorylated by I-κB kinase (IKK). This marks them for 
polyubiquination and rapid degradation via proteasome-
mediated proteolysis (Figure 1). 

 
The holo-IκB kinase (IKK) consists of 2 catalytic 

subunits, IKKα and IKKβ, together with a regulatory 
subunit, IKKγ/NEMO (NF-κB essential modulator, referred 
to as IKKγ herein). In the canonical NF-κB pathway, IKKβ 

is both necessary and sufficient for phosphorylation of 
IκBα and IκBβ to effect IκB degradation and nuclear 
localization of NF-κB. The role of IKKα in the classical 
pathway is less clear. The proteasome-mediated processing 
of p105, the precursor to p50 NF-κB1, occurs 
constitutively. By contrast, the processing of p100, the 
precursor of p52 NF-κB2, requires activation of the non-
canonical NF-κB pathway. The non-canonical pathway 
depends on IKKα, which phosphorylates p100 and causes 
its ubiqutination and proteasome-mediated processing to 
produce the active p52. The non-canonical pathway is 
important for B-cell proliferation and lymphoid 
organogenesis and is activated in response to a subset of 
NF-κB inducers such as lymphotoxin β and B cell 
activating factor (BAFF) (39).   

 
 Whereas different physiological inducers of NF-
κB activate either the canonical or non-canonical pathway, 
Tax can activate both. Activation of I-κB kinase (IKK) by 
Tax is due in part to a direct interaction between Tax and 
IKKγ (41-45).  Specifically, Tax binds directly to the 201-
250 amino acid residues in IKKγ (46). Recent data have 
indicated that via a tripartite interaction, Tax, protein 
phosphatase 2A (PP2A) and IKKγ form a stable ternary 
complex. In this context, PP2A activity is inhibited or 
diminished (47). These results suggest that PP2A is a 
negative regulator of activated, phospho-IKK, and PP2A 
inhibition by IKKγ-bound Tax maintains IKK in a 
phosphorylated and active state, causing constitutive 
phosphorylation and degradation of I-κB, nuclear 
translocation of NF-κB/Rel, and potent activation of genes 
under NF-κB/Rel control (Figure 1). 
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  The non-canonical pathway is mediated by the 
NF-κB-inducing kinase (NIK) and IKKα, and is

 
 
Figure 2.  A summary of some of the cell cycle steps and checkpoint factors affected by Tax.  This figure illustrates some 
examples and is not intended to be an exhaustive representation of all described Tax effects. 
 
independent of IKKγ (48, 49). Phosphorylation of p100 by 
activated NIK-IKKα complex targets p100 for 
ubiquitination and processing (50, 51). Tax-mediated p100 
processing, however, requires both IKKα and IKKγ (52-
54). Tax appears to alter p100’s conformation by direct 
binding to two short amino-terminal helices (αA and αβ) in 
p100 (55) and at the same time activate IKKγ/IKKα to 
facilitate p100 phosphorylation and processing (53, 54, 56). 
Because the non-canonical pathway is silent in T-
lymphocytes, its aberrant activation by Tax in T-cells may 
play an important role in Tax-mediated T-cell activation 
and transformation. On the other hand, while ex vivo cell-
transfection experiments support the importance of Tax as a 
potent intracellular NF-κB inducer, it should be noted that 
cells from ATL patients have elevated NF-κB activity even 
when Tax-expression is ultimately shut-down.  This finding 
suggests that Tax may be used to initiate but may not be 
needed to maintain NF-κB activation (57).  In fact, Higuchi 
et al. (58) have proposed that CD30 serves a role in Tax-
independent activation of NF-κB.  CD30 is a member of 
the TNF receptor superfamily and interestingly is a marker 
of malignancy in Hodgkin’s lymphoma (59).  Finally, NF-
κB activation by Tax up-regulates many cellular genes 
including those of IL-2 receptor α chain, costimulatory 
surface receptors OX40/OX40L, IL-13, IL-15, ICAM1, and 
anti-apoptotic proteins such as IAP1 (60-62). The roles of 
these proteins in proinflammatory response and lymphocyte 
survival are well documented and are likely to be critical to 
the development of HAM/TSP and ATL. 
 
5.3. Tax and cell cycle abnormalities 
 Tax perturbs critical steps of cell cycle 
progression [(63-73); also see (74) for review] and some of 
the cell cycle effects of Tax are thought to be important for 
cell immortalization and cell transformation (13, 14, 75, 
76). Tax has been shown to activate G1/S entry (65, 77, 78) 
(Figure 2). Depending on the experimental setting, Tax can 
induce or prevent apoptosis (79-82) or  require a second 
stress signal in order to promote cell death (83) Tax is also 
implicated in inactivating the functions of tumor 
suppressors p53 and p16INK4a (84-86). More recently, Tax 
has been reported to (i) inhibit DNA repair (87, 88); (ii) 
cause clastrogenic changes and micronuclei formation (89, 
90); (iii) inactivate the spindle checkpoint by binding the 
MAD1 protein and induce aneuploidy and formation of 
binucleated cells (70, 91, 92); (iv) binds a Chk2-containing 
complex that is involved in DNA damage checkpoint 
control (93); and finally, comparative studies of HTLV-1 

Tax and HTLV-2 Tax have suggested that the COOH 
terminal region of HTLV-1 Tax may interact with PDZ-
domain-containing proteins to facilitate cell transformation 
(94). 
 
5.4 .Tax and spindle checkpoint 

Unlike cells of other leukemia, ATL cells are 
often aneuploid with complex chromosomal abnormalities 
including trisomy 3, trisomy 7, a partial deletion of 6q, and 
abnormalities of 14q11 (95). Large lymphocytes with 
cleaved/cerebriform nuclei are also frequently seen in 
HTLV-I-positive individuals (96-99). These pathological 
findings are likely to be associated with the ability of Tax 
to induce formation of micro-, bi-, and multi-nucleated 
cells. While Tax clearly causes chromosome instability, 
whether this activity can be explained by a disruption of the 
spindle checkpoint due to Tax-HsMAD1 interaction has 
been questioned, in part because the initially reported 
HsMAD1 sequence had a nucleotide error which although 
leaving unchanged the first 662 N-terminal amino acid 
residues, frame-shifted the HsMAD1 protein sequence after 
residue 663, thereby extending the C-terminus to a protein 
of 803 residues (91, 100). Re-sequencing of the plasmids 
used in that study confirmed that the HsMAD1 clone used 
in fact correctly-encoded a 718 amino-acid-residue 
HsMAD1 protein, and that there was a mistake in the 
original sequencing.  More recent findings defined the 
functional portion of HsMAD1 to its N-terminal sequences 
with C-terminal deletions retaining the checkpoint function 
(101).  Additionally, it was reported that human spindle 
assembly checkpoint factors HsMAD1 and HsMAD2 were 
mislocated from the nucleus to the cytoplasm in HTLV-I 
Tax-expressing cells (102). This altered localization of 
HsMAD1 and HsMAD2 was thought to correlate with loss 
of mitotic checkpoint control. The interaction between Tax 
and HsMAD1 alone, however, may not fully explain the 
mitotic aberrations induced by Tax. Expression of tax in 
naïve cells leads quickly to multiple mitotic aberrations 
and, depending on experimental conditions, results in 
frequent losses in cell viability and proliferative capacity in 
many eukaryotic cells including budding yeast, S. cerevisiae 
(103).  Interpretation of these results are complicated by the 
fact that eukaryotic yeast cells are clearly viable without a 
functional spindle checkpoint (e.g. a genetic deletion of 
MAD2); but mammalian cells without a spindle checkpoint 
appear to succumb to apoptotic death unless the p53 protein is 
also inactivated (104-108).  Further studies are needed to 
understand better whether Tax’s interaction with spindle 
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checkpoint and its ability to inactivate p53 function are 
cooperative phenomena for transformation.    
 

We note that in some assays, tax-expressing 
HTLV-1 transformed T-cell line, MT4, continues to be 
sensitive to nocodazole-mediated mitotic arrest (109), 
suggesting that the spindle checkpoint in MT4 cells may be 
weakened but may not be entirely lost.  That the spindle 
assembly checkpoint is weakened, but not completely lost, 
is an increasingly common finding observed for many 
different types of cancers (110).  Finally, the cell cycle 
target of Tax appears to be highly conserved, since many of 
the Tax-induced mitotic abnormalities can be modeled in S. 
cerevisiae (109). It should be emphasized, however, that 
there are differences between yeast and mammalian 
biology, such as the absence of p53 and NF-κB functions 
from S. cerevisiae, which limits the utility of the S. 
cerevisiae system to specific aspects of cell cycle 
dysfunctions induced by Tax.  More recently, Tax, like the 
HPV E6 and E7 oncoproteins, has been found to induce 
supernumerary centrosomes in human cells (111).  This 
new finding suggests that more complex mechanisms 
beyond Tax–spindle checkpoint interaction are needed to 
explain aneuploidy in ATL cells. 
 
5.5. Tax and anaphase promoting complex 

Recent evidence has suggested that the mitotic 
pathology inflicted by Tax may be associated with 
unscheduled and premature activation of the anaphase 
promoting complex/cyclosome (APC/C, referred to as APC 
henceforth), a multiprotein E3-ubiquitin ligase that is 
required for the onset of anaphase and the exit of mitosis 
[see (112-116) for reviews]. The levels of cyclin A, cyclin 
B and the anaphase inhibitor: securin/Pds1p (precocious 
dissociation of sister chromatids) were found to be 
significantly reduced in tax-expressing HeLa, MT4, and S. 
cerevisiae cells (103, 109). Based on analyses of yeast 
mutants defective in specific APC components, the 
diminution of Pds1p and Clb2p brought on by Tax is 
thought to be mediated via APCCdc20 (109). 

 
Activation of APC during the cell cycle is 

mediated through its phosphorylation by Cdk1/cyclin B1 
and/or polo-like kinase (Plk1), and sequential association 
with Cdc20 and Cdh1. Cdc20 and Cdh1 are WD40 repeat-
containing proteins that are highly conserved in evolution. 
Both proteins function as substrate-specific activators of 
APC. APCCdc20 is required for the onset of anaphase and 
APCCdh1 is required for the exit of mitosis.  APCCdc20 

becomes active during mitosis and controls metaphase to 
anaphase transition by targeting the destruction of critical 
mitotic regulators: cyclin A, securin—the anaphase 
inhibitor, and a subpopulation of cyclin B1 [see (112-116) 
for reviews].  

 
Direct biochemical analyses now indicate that 

Tax directly binds human APCCdc20 and activates it during 
the S phase, well ahead of schedule (109). This leads to the 
polyubiqutination and degradation of cyclin A, cyclin B1 
and securin before the onset of M phase (109). Loss of 
these mitotic regulators during S phase is associated with 
delay in cell cycle progression and multiple mitotic 

aberrations such as DNA aneuploidy and formation of 
micro-, bi-, and multi-nucleated cells (72, 103, 117, 118). 
How the chromosome instability and other mitotic 
abnormalities induced by Tax impact on ATL development 
is not clear at present.  
5.6. Tax and cell cycle arrest 

Previous studies have indicated that Tax can 
promote quiescent T-cells to enter into G1/S (65, 78). The 
potent activation of NF-κB by Tax can also be mitogenic and 
anti-apoptotic. In spite of these activities of Tax, constitutive 
expression of tax in most cultured mammalian cell lines is 
difficult to achieve. BHK, NIH3T3, and HeLa cells 
transduced with a tax retroviral vector gave rise to micro-, bi-, 
and multi-nucleated cells (72, 103, 117, 118). Recent 
evidence suggests that most of these cells are in a senescence-
like state (Kuo and Giam, unpublished results). Likewise, 
expression of tax in S. cerevisiae leads to growth arrest and 
loss of cell viability (103). In agreement with these studies, 
Tripp et al. have reported recently that expression of tax in 
CD34+ hematopoietic progenitor cells leads to a G0/G1 arrest 
(119). Consistent with this notion, Tax has been shown to 
potently activate p21CIP1/WAF1 expression previously (120-
123). These results suggest that cells activated by Tax to enter 
G1/S soon become arrested either immediately or after a 
limited number of cell divisions. Therefore, in spite of the 
potent mitogenic activities of tax, there is a strong selection 
against tax expression in previously HTLV-1-naïve cells.  
These phenotypes of tax, of course, stand in sharp contrast 
with those of HTLV-1-transformed human T-cell lines such 
as MT2, MT4, and C8166, which produce Tax abundantly, 
yet progress through cell cycle without any overt difficulties, 
albeit with delayed kinetics (103). It remains to be seen 
whether these cell lines harbor somatic mutations that allow 
them to escape the tax-induced senescence-like arrest and 
what these mutations may be. These new results also beg the 
question if HTLV-1 infection may lead to cell cycle arrest 
rather than cell proliferation as conventional wisdom has 
prescribed to date. Finally, it remains to be elucidated if and 
how some of the cell cycle aberrations caused by Tax that are 
outlined above may be linked mechanistically to the 
senescence-like G0/G1 arrest. 
 
5.7. Activation of the PI3 kinase pathway and the 
development of ATL 
 When p21CIP1/WAF1 and p27KIP1 levels in 
HTLV-1 transformed and HTLV-1 unrelated T-cells cells 
were compared, the former were found to express abundant 
p21CIP1/WAF1, but have barely detectable levels of p27KIP1 
(124, 125). Why doesn’t the over-expression of 
p21CIP1/WAF1 induced by Tax lead to cell cycle arrest? What 
mechanism is responsible for the loss of p27KIP1 from 
HTLV-1 transformed T-cells?  One possible answer to the 
former question is that a p21 CIP1/WAF1/cyclin D2/cdk4 
complex is not always an inhibitory complex and that 
p21CIP1/WAF1 could potentially function as an assembly 
factor for the cyclin D2/cdk4 complex in HTLV-1 infected 
cells (126).  Alternatively, it is of particular interest to note 
that a number of reports have implicated constitutive 
activation of the phosphoinositide 3-kinase (PI3K) pathway 
as a common feature of HTLV-1- and Tax-transformed 
cells. Treatment of IL-2-independent HTLV-1 transformed 
T-cells with inhibitors of PI3 kinase leads to a p27KIP1-
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dependent cell cycle arrest (124, 125). Transformation of 
Rat-1 fibroblast cells by Tax is also associated with 
activation of PI3K and its downstream kinase, Akt (127). 
Most recently, Fukuda et al. have shown that signaling 
through the activation-inducible lymphocyte 
immunomediatory molecule (AILIM)/inducible 
costimulator (ICOS) leads to PI3K/Akt activation, 
microtubule rearrangement, and formation of multi-
lobulated nuclei characteristic of the flower cells seen in 
acute ATL (128). Finally, signaling through the PI3K/Akt 
pathway is known to inactivate  p21CIP1/WAF1 and p27KIP1 
[reviewed in (129)]. Together, these reports point to the 
dysregulation of the PI3K pathway as a critical step in 
p21CIP1/WAF1 and p27KIP1 inactivation, which is potentially 
important for escape from Tax-induced cell cycle arrest and 
ATL development. In the future, it will be interesting to see 
if activating mutations of the PI3K pathway are present in 
all ATL cells, and whether these mutations may constitute 
the early oncogenic events which allow HTLV-1-infected 
cells to continue to proliferate despite Tax expression, and 
eventually collaborate with Tax to promote leukemia 
development. 
 
6. CONCLUSION 
 
 A mechanism to explain the role of HTLV-1 Tax 
in the etiology of adult T-cell leukemia needs to consider 
(a) the relative inefficiency by which HTLV-1 transforms 
T-cells in culture; (b) the long incubation period between 
virus infection and the onset of the disease; (c) the low 
penetrance of the disease in HTLV-1-infected population; 
(d) the lack of tax expression in ATL cells; (e) the unique 
karyotypic and morphological features of ATL cells; and 
(f) the complex and seemingly conflicting activities of Tax 
on G1/S entry,  DNA repair, inactivation of tumor 
suppressors, NF-κB activation, mitotic abnormalities, and 
cell cycle arrest. Recent results from many laboratories are 
beginning to shed lights on some of the cellular changes 
that may be needed to collude with Tax to cause cell 
transformation. It will be important in the future to see if 
findings from the cell-based systems can be validated in 
ATL cells, and to translate these basic science findings into 
treatments for the disease.  
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