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1. ABSTRACT 
  
 Transforming growth factor-β (TGF-β) is a 
multifunctional polypeptide that regulates cell growth, 
differentiation, and extracellular matrix formation. Studies 
on genetically engineered animal models have 
demonstrated that TGF-β-mediated signaling pathway 
plays a critical role in both normal development and 
tumorigenesis of the breast. In pathogenesis of breast 
cancer, the role of TGF-β appears featured with growth-
inhibitory effects at early stages of carcinogenesis, but 
aggressive oncogenesis with transition to more advanced 
malignant states. The TGF-β signaling pathway is also 
tissue-context and ligand content-dependent. Therein, 
therapeutic modulation of TGF-β signaling may be a 
multifactorial event. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
  
 The transforming growth factor β (TGF-β) ligand 
family is composed of several multifunctional growth 
factors, including TGF-β (TGF-β1/2/3 isoforms), activins, 
and bone morphogenetic proteins (BMPs) (1). The TGF- β 
was first discovered in relation to its capability of inducing 
a transformed morphology and clonogenic growth in soft 
agar of non-transformed, anchorage-dependent normal rat 
kidney cells and fibroblasts (2). However, subsequent 
studies demonstrated that TGF-β inhibits the growth of 
normal epithelial cells, demonstrating the complexity of the 
function (3). TGF-β ligands and receptors are expressed in 
nearly all types of cells, including epithelial, stromal, 
immune, lymphoid, and endothelial cells. In these cells, the 
TGF-β signaling regulates development, differentiation,
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Table 1.  TGF-β signaling molecules 
Signaling Molecules Function 
Type I receptor (TβRI) Bind to TGF-β/TβRII complex 

and phosphorylates Smad2/3 
Type II receptor (TβRII) Bind to TGF-β and activate TβRI 
Type III receptor (TβRIII) Unclear 
Receptor-activated Smad (Smad2, 
Smad3) 

Signal transmission/DNA binding 

Common mediator Smad (Smad4) Smad2/3 mediator 
Inhibitory Smad (Smad6, Smad7) TGF-β signaling inhibitors 

References: 4, 5, 26, 55 
 
extracellular matrix formation, cell cycle, angiogenesis, 
hematopoiesis, chemotaxis, and immune functions. Recent 
studies indicate that the TGF- β signaling demonstrates 
dual functions in mammary tumor development. TGF- β 
appears inhibitory at early stage of tumorigenesis, whereas 
tumor cells at advanced stages can evade antiproliferative 
control and undergo tumorigenic progression in response to 
TGF-β. In this review, discussion will focus on recent 
progress on the role of the TGF-β in mammary gland 
development and tumorigenesis, and its potential avenues 
toward cancer therapies. 
 
3. TGF-β LIGANDS AND THEIR RECEPTORS 
  
 The TGF-β ligands consist of three isoforms, 
TGF-β1/2/3 (1, 4). In the TGF-β signaling pathway, 
biological signals are transmitted via binding of the TGF-β 
ligands to two types of receptors, TGF-β type I (TβRI) and 
TGF-β type II (TβRII). The three TGF-β isoforms often 
elicit similar responses (5). Table 1 summarizes the key 
signaling molecules and their functions in this pathway.  
 
 Active TGF-β is produced through the maturation 
of a propeptide (6). For instance, TGF-β1 gene encodes a 
390 amino acid polypeptide. At the dibasic cleavage site 
(residue 278), this polypeptide is cleaved into a latency-
associated peptide (LAP) and TGF-β1 during post-
translational modification (6, 7). LAP and TGF-β1 form an 
inactive, noncovalently associated small latent TGF-β 
complex (SLC), which is secreted. Alternatively, this 
complex can be linked via a disulfide bond to a latent TGF-
β binding protein (LTBP) for storage. This trimolecular 
aggregate is called large latent complex (LLC). LTBP 
secures the ligands in extracellular matrix (ECM) via a 
cross-link at the N-terminus catalyzed by transglutaminase (8). 
This latent complex primarily mediates the biological activity 
of TGF-β, and therefore, TGF-β message RNA levels do not 
usually reflect the protein production or activity (9-11). Latent 
TGF-β can be activated by heat, chaotropic agents, pH, 
proteases, urokinase plasminogen activator, integrins, 
fibronectin fibrils, and thrombospondin-1 (12-16). 
Thrombospondin-1 stimulates TGF-β release by the interaction 
of a motif (K412RFK415) in thrombospondin-1 with the 
LSKL motif in LAP at the amino terminus (15). 
 
 There are three TGF-β receptors identified thus 
far. TβRI and TβRII are transmembrane serine-threonine 
kinase receptors (5). TGF-β binds to TβRII and then 
recruits TβRI, forming the heterodimeric TβRII/TβRI 
complex with bound TGF-β (Figure 1). Formation of the 
heterodimer allows the transphosphorylation of specific 
serine and threonine residues in juxtamembrane segment of 

TβRI by TβRII kinase, thereby activating TβRI kinase and 
initiating the signaling process (17). TGF-β receptor III 
(TβRIII), also known as betaglycan (18), is not signaling. 
The biological function of the TβRIII is unclear, but its 
short cytoplasmic domain and subsequent loss of intrinsic 
kinase activity may indicate its role as a co-receptor, 
enhancing ligand binding to TβRII (19).   
 
 Activated TβRI kinase phosphorylates C-terminal 
serine residues of Smad2 and Smad3, two distinct proteins 
in a subclass of R-Smads (receptor-activated Smads) (20). 
Phosphorylated R-Smads bind to a common mediator 
Smad4, also referred to as Co-Smad, forming a functional 
trimeric protein complex. This complex is translocated into 
the nucleus, binds to the Smad-binding element in promoter 
of the target genes, recruits transcription factors, and 
controls the transcription of these genes (20, 21). 
 
 The activity of the TGF-β signaling pathway is 
regulated by a negative regulatory feedback loop mediated 
by inhibitory Smads (I-Smad), Smad6 and Smad7. I-Smads 
competitively bind to TGF-β/receptor complex and inhibit 
the phosphorylation of R-Smad (22). In addition, Smad7 
can recruit phosphatases to dephosphorylate and thus 
inactivate the receptor complex.  
 
 Recent studies revealed that TGF-β mediates cell 
cycle through the RhoA/p160ROCK signaling pathway (23). 
In mammary gland epithelial cells, by activating RhoA, 
TGF-β stimulates p160ROCK translocation to the nucleus, 
alters the phosphorylation of the linker region of Smad2/3 
at Ser203 and Ser207 residues, and triggers downstream gene 
expression, such as p15INK4B and p21cip1/waf1. This results in 
inhibition of pRb phosphorylation and cell cycle arrest or 
triggers apoptosis through the regulation of various pro-
apoptotic and anti-apoptotic molecules: p53, Bad, Bax, Bik, 
Bcl-2, and Bcl-XL (24, 25).  
 
4. TGF-β SIGNALING IN MAMMARY GLAND 
DEVELOPMENT   
 
 The role of the TGF-β signaling pathway in cell 
proliferation and tissue formation is complicated. In 
mammalian breast development, the TGF-β signaling 
pathway is involved in establishing proper gland structures, 
maintaining epithelium in functionally undifferentiated 
status, and inducing apoptosis in the involuting gland (26).  
 

In mammary glands, the expression of TGF-β 
isoforms is strictly regulated with the development of 
mammary glands. In mice, all three TGF-β isoforms are 
expressed in epithelium in all developmental stages of the 
breast, where TGF-β acts as an inhibitor of ductal 
elongation and branch formation. During puberty, the TGF-
β activity is decreased in mammary ducts in response to 
proliferation signals, preparing for proliferation (27). In 
transgenic mice expressing TGF-β1 s223/225 (a 
constitutively active TGF-β) specifically in mammary 
epithelial cells, ductal tree hypoplasia occurred (28). TGF-β 
also regulates development of the alveolar epithelium. 
Transgenic mice harboring active TGF-β were unable to 
lactate because of the inhibition of secretory epithelium
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Figure 1.  TGF-β/Smad signaling transduction pathway. TGF-β binds to TGF-β receptor II (TβRII) on cell surface, 
which recruits and activates TGF-β receptor I (TβRI), a serine-threonine kinase. Activated TGF-β/TβRII/TβRI complex 
phosphorylates Smad2/3 that in turn associates with Smad4 and moves to nucleus. In the nucleus, Smad complex binds to DNA 
and regulates targeting gene expression through recruitment of transcriptional co-repressors or co-activators. Smad6 or Smad7 
are the inhibitory Smads which can competitively bind to TGF-β/TβRII/TβRI complex, inhibiting Smad2/3 phosphorylation.  

 
development stemming from early apoptosis in 
differentiating alveolar cells (29). On the contrary, 
disrupting TGF-β signaling also causes inappropriate 
alveolar development. Mice carrying TβRII antisense RNA 
controlled by the MMTV promoter displayed precocious 
lobuloalveolar development, indicating a critical role of 
TβRII in maintaining non-differentiated status of virgin 
mammary gland epithelium (30). Furthermore, treating 
mice with slow-release plastic pellets containing TGF-β 
resulted in reversible regression of the end-buds in 
developing mammary gland during puberty, but not in the 
alveolar buds in pregnancy (31). This selective regression 
action indicates that TGF- β functions in cell type and/or 
tissue context-dependent manners and that TGF-β activity 
is differentially regulated during distinct stages of 
mammary gland development (32).  

 
 During pregnancy, TGF-β1 expression is 
decreased while TGF-β2 and TGF-β3 are elevated until the 
onset of lactation (33). Studies using specific antibodies 
that recognize latent and active TGF-β indicated that TGF-
β1 activation was primarily localized in luminal epithelial 
cells, not in cap and myoepithelial cells (27). TGF-β1 
promotes apoptosis during involution. In the involuting 
gland, TGF-β1 arises from days 1 to 10 after weaning, with 
an expression peak at day 6. This expression profile is 
consistent with bulk mammary epithelial cell death during 

post-lactational mammary gland involution (34). Finally, 
the response of the cultured TAC-2.1 epithelial cells varies 
with the concentrations of TGF-β. At picomolar levels, the 
TGF-β inhibited branching morphogenesis, whereas it 
stimulated at fentomolar levels (35). Therefore, the TGF-β 
signaling not only holds a pleiotropic role in mammary 
gland development, but is also tissue context- and ligand 
dose-dependent.  
 
5. TGF-β SIGNALING IN MAMMARY GLAND 
TUMORIGENESIS 
 
 TGF-β promotes cell growth inhibition, 
apoptosis, and differentiation, and therefore, is considered 
as a potent tumor suppressor (36). However, recent studies 
indicate that TGF-β plays a dual role in mammary 
tumorigenesis. During advanced stages, TGF-β factually 
stimulates cancer cell invasion and metastasis (37, 38). 
 

The involvement of TGF-β signaling pathway in 
tumorigenesis was documented first by functional changes 
of the signaling molecules in this pathway, such as TGF-β 
receptor and Smad mutations (37, 39-41). In human breast 
cancer, however, the alterations of TGF-β signaling 
molecules are relatively rare, except for TβRII 
downregulation (42, 43). Pathological studies of archived 
breast samples, including benign lesions, ductal carcinoma 
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in situ (DCIS), and invasive mammary carcinomas (IMC), 
indicated that TβRII downregulation correlated with 
progression and aggression of both in-situ and invasive 
breast carcinomas (44, 45). In mice expressing dominant-
negative TβRII in mammary epithelium, spontaneous 
epithelial tumor occurrence was significantly increased 
(46). TβRI may also prevent mammary gland tumor 
formation. In mice carrying the Neu oncogene, active TβRI 
expressed specifically in the mammary epithelium 
diminished epithelial tumor appearance (47). In TGF-β1 
and TGF-α double-transgenic mice, the frequency of 
tumors was significantly reduced compared to that in TGF-
α transgene alone. In addition, mammary gland 
tumorigenesis induced by 7,12-dimethylbenz[a]anthracene 
was prevented by TGF-β expression (48).  

 
Although its biological function remains unclear, 

TGF-β receptor III (TβRIII) may act as a suppressor of 
breast cancer. TβRIII has a short cytoplasmic domain, and 
therefore, its intrinsic kinase activity and role in TGF-β 
signaling need to be defined. However, the decrease or loss 
of TβRIII expression occurred in approximately 90% of 
breast cancer at mRNA levels and 70% at protein levels. In 
addition, TβRIII loss occurred at substantially high levels 
in advanced, invasive breast carcinomas. Therefore, TβRIII 
loss may be a negative prognostic factor for patients with 
invasive breast cancer (49).  

 
Premature stem cells are involved in pathogenesis 

of mammary gland cancer (50). TGF-β induces premature 
senescence of mammary stem cells and thus may suppress 
tumorigenesis (50-52). This hypothesis was confirmed by a 
telomerase study. Telomerase underpins stem cell renewal 
and proliferation and thus enhances the occurrence of 
breast cancer. Li’s report indicated that TGF-β can repress 

telomerase reverse transcriptase (TERT) expression by 
stimulating rapid entrance of Smad3 into nucleus (53). In 
the nucleus, Smad3 associates with c-myc, binds to the 
promoter region of TERT gene, and suppresses its 
expression. This negative regulation of telomerase activity 
can be interrupted by the Smad3 antagonist, Smad7 (53). 
Currently, TERT is proposed as a diagnostic and prognostic 
biomarker of breast cancer, as well as a potential 
therapeutic target of this disease (54).  

 
On the contrary, considerable evidence indicates 

that TGF-β functions as a tumor promoter through the 
autocrine and paracrine actions, favoring tumor cell 
growth, invasion, and metastasis (55). In Neu transgenic 
mice, TβRI kinase activated c-myc and ligand-independent 
phosphatidylinositol-3 kinase (PI3K)/Akt in mammary 
cells, rendering cellular resistance to TGF-β-mediated 
growth arrest (56). In this model, TGF-β may synergize 
with the oncogene Neu to enhance survival and 
transformation of mammary epithelial cells.  

 
A reduced response of tumor cells to TGF-β 

signaling often accompanies an increase in secretion of this 
ligand (57, 58). In breast cancer patients with poor 
prognosis, TGF-β1 levels were often elevated in plasma, 
tumor cells, and associated stroma (59-61). Factually, in 
transgenic mice expressing either activated or dominant-
negative TGF-β ligands or receptors, a biphasic role of 
TGF-β signaling appeared in mammary tumor progression. 
In Neu transgenic mice, constitutively active TβRI 
increased the latency of mammary tumor formation, but 
enhanced the frequency of extravascular lung metastasis 
(47). On the contrary, the dominant-negative form of TβRII 
reduced tumor metastasis in Neu mice, but shortened the 

median latency of tumors induced by polyomavirus middle-
T (47, 59). Constitutive expression of active TGF-β1 did 
not affect tumor latency in transgenic mice but enhanced 
the tumor invasiveness and metastasis to lungs (62, 63). All 
these findings indicate a tumor stage-related dual function 
of TGF-β signaling in mammary tumorigenesis.  

 
The dual role of TGF- β in tumorigenesis also 

appears in human breast cancer. TβRII inactivation 
enhances the invasiveness of premalignant or low-grade 
breast tumor cells, but reduces the metastasis of high-grade 
tumors (64). As for TGF-β1, this ligand induces mammary 
epithelial-to-mesenchymal transition (EMT), resulting in 
the loss of epithelial polarity, disruption of cellular 
adhesion, and tumor cell invasion (65-67). TGF-β1 also 
upregulates integrin-linked kinase, increasing cellular 
motility (68). In addition, high levels of TGF-β1 mRNA 
correlated with enhanced angiogenesis and poor prognosis 
of breast cancer (69). Therefore, TGF-β may be an 
important regulating factor of tumor invasion and 
metastasis at later stages (63). 

 
 Tumor metastasis is a multifactorial event, 

including tumor cell invasion into stroma and formation of 
blood and lymphatic vessels (43). Investigations in the past 
decades have demonstrated the importance of peritumoral 

stroma in the development and/or evolution of tumors (70). 
Stromal cells support and facilitate tumor growth by 
secreting growth factors and/or proteases, such as vascular 
endothelial growth factor (VEGF), matrix 
metalloproteinases (MMPs), and TGF-β. These factors 
constitute a microenvironment that benefits tumor cell 
growth and progression (71, 72). Cheng’s work (73) 
demonstrated that co-transplanting TβRII knock-out 
mammary fibroblasts with carcinoma cells promoted 
growth and invasion of tumor cells, associated with an 
increase in activity of several tyrosine kinase receptors: 
erbB1, erbB2, RON, and c-Met. In an in vitro assay, cancer 
cells cultured under fibroblast-conditioned medium showed 
increased proliferation and motility (73), indicating the role 
of stromal TGF-β signaling in neoplastic progression.  
 
6. TGF-β PATHWAY AS A TARGET FOR CANCER 
THERAPY 

 
Therapeutic potential of the TGF-β signaling 

pathway is derived from its supportive function in late-
stage tumors, enhancing tumor invasion, neoangiogenesis, 
metastasis, and the escape of immunosurveillance (74). In 
addition, TGF-β signaling is also involved in anti-tumor 
drug resistance in in vivo and in vitro studies (75, 76). 
Current cancer therapeutic approaches that target the TGF-
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β pathway include antagonism of TGF-β ligand binding to 
heteromeric receptor complex, intracellular inhibition of 
TβRI kinase, and sequence-specific degradation of TGF-β 
mRNA. Among them, the most extensively investigated 
intervention agents are sorted into small-molecule and 
large-molecule inhibitors (77, 78).  

 
Ki26894, a TβRI kinase inhibitor, is a 

representative of small-molecule inhibitors. Systemic 
administration of Ki26894 via intraperitoneal injection 
effectively reduces the number and size of lung metastasis 
in both orthotropic xenografts and experimental metastasis 
models of human breast carcinomas (79, 80). Other small 
compounds such as SB-203580, an inhibitor of TβRI kinase 
(81), and SD-093 and LY580276, inhibitors of  epithelial-
to-mesenchymal transition (82, 83),  all showed promising 
potency in suppression of tumor cell invasion and 
metastasis. In addition, TGF-β signaling often promotes 
metastasis by activating survival signals, such as epidermal 
growth factor receptors (84, 85); therefore, Gleevec, a 
specific tyrosine kinase receptor inhibitor, effectively 
blocks TGF-β-induced proliferation of human 
osteosarcoma cells (86).  

 
Large-molecule inhibitors of the TGF-β signaling 

include peptides, monoclonal antibodies, and antisense 
oligonucleotides/antisense RNA (78). Short phospho-Smad 
peptide [pSmad3(-3), KVLTQMGSPSIRCSS(PO4)VS] is a 
specific substrate of active TβRI, inhibiting TGF-β-induced 
Smad2 phosphorylation in mouse mammary epithelial cells 
(82). Bioengineered protein composed of extracellular 
domain of TβRII and Fc domain of murine IgG1 heavy 
chain (Fc:TβRII) demonstrated capability of  enhancing the 
apoptosis of primary tumors and inhibiting tumor cell 
motility, intravasation, and lung metastases (87). In 
Fc:TβRII transgenic mice, tumor metastasis to distant 
organs was significantly less than in wild type animals (87). 
In addition, a monoclonal anti-TGF-β antibody (1D11) 
significantly suppressed metastasis of highly metastatic 
4T1 murine breast cancer cells to the lungs in animal 
studies (88).  

 
DNA vaccine is another immunological approach 

in cancer therapy. TGF-β is known as an important factor 
regulating tumor cell migration toward blood vessels, the 
first step of metastasis (89). Tumor-associated 
macrophages (TAMs) are key players in this process 
through the production of a variety of factors, including 
TGF-β (89). Legumain is a protein specifically expressed in 
TAMs (90). An ongoing approach immunologically targets 
legumain to induce the destruction of TAMs, remodeling 
tumor microenvironments and inhibiting tumor growth and 
metastasis (91). In the 4T1 breast carcinoma metastatic 
model, a legumain-based DNA vaccine administered after 
surgical resection of primary tumors significantly increased 
the lifespan in 75% (6/8) of the experimental mice up to 3 
months, and 62% of mice were completely free from 
metastases, demonstrating the effectiveness of TAM-
targeted tumor growth and metastasis inhibition (92).  

 
TGF-β antisense RNA is a novel strategy 

targeting TGF-β signaling pathway by triggering mRNA 

degradation (93). AP12009 is a complementary antisense 
RNA of TGF-β2 mRNA and showed promising therapeutic 
efficacy in animal tumor models with TGF-β2 
overexpression, such as malignant glioma and pancreatic 
cancer (94). A recent study further demonstrated that 
combining the TGF-β antibody and antisense RNA 
completely regressed 4T1 tumors in 40% of the mice tested 
(95). 

 
Compared to small-molecule inhibitors, these 

large-molecules are characterized with specificity and 
prolonged duration. However, their limited tissue 
penetration is a major concern for clinical applications. 
Small-molecule inhibitors penetrate tissue better, but their 
tumor-selectivity is usually low. Circumventing the 
shortcomings of large- and small-molecules and choosing 
appropriate treatment modalities for patients with different 
TGF-β signaling responses is a major challenge that needs 
to be more extensively investigated in the future.  
 
7. CONCLUSION 
 

In this article, we update the current 
understanding of TGF-β signaling, with focus on mammary 
gland development and tumorigenesis, and discuss the 
therapeutic perspectives of this pathway. TGF-β signaling 
pathway is complicated and functions in mammary gland in 
ligand content- and tissue context-dependent manners. 
TGF-β signaling also functions biphasically in tumor 
suppression and progression. TGF-β normally prevents 
uncontrolled cell proliferation; however, once aberrant 
genetic or epigenetic events abolish the cytostatic function 
of TGF-β, tumor cells evade TGF-β control and acquire the 
ability to proliferate, invade, and metastasize. Therefore, 
understanding the bifunctional features of TGF-β signaling 
in tumorigenesis is important to the development and the 
clinical practice of antitumor agents targeting this pathway. 
In addition, development of more specific agents with 
better tissue penetration would be the effort of the 
investigators in cancer therapeutic studies. 
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