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1. ABSTRACT 
 

Reactive nitrogen species play important roles in 
cell signalling, but when present at high concentrations 
they can subject cells to nitrosative stress, which may lead 
to cell death. Nitric oxide (NO⋅) is now recognized as 
playing important roles in cancer aetiology and progression 
and it can influence the outcome of cancer treatment.  It is 
synthesised by the action of nitric oxide synthases (NOSs) 
on the amino acid arginine. Although  NO⋅ is not highly 
reactive with biological molecules, it reacts readily with 
other oxygen radicals to generate highly damaging reactive 
nitrogen species such as peroxynitrite, nitrogen dioxide and 
dinitrogen trioxide.  These are potent inducers of 
apoptosis and necrosis. They may also inhibit DNA 
repair mechanisms, leading to mutation and 
carcinogenesis.  Both inhibition and over-production of 
NO⋅ have been investigated as strategies for cancer therapy.  
There is clear evidence that administration of competitive 
inhibitors of NOS can significantly slow the growth of 
solid tumors in rodent models, probably by reducing blood 
flow, and this creates a hypoxic environment that is 
conducive to the activation of bioreductive anticancer 
agents.  Alternatively, generation of NO⋅ concentrations in 
the high micromolar range by NO⋅ donor drugs or gene 
therapy with inducible NOS is directly cytotoxic to cells 
and has been shown to inhibit tumor growth.  At these 
high concentrations NO⋅ is also an excellent sensitizer to 
radiation and to some chemotherapeutic agents, 
particularly cisplatin. Thus, manipulation of NO⋅ levels 
in tumors offers exciting opportunities to improve the 
effectiveness of cancer treatment.  

 
 
 
 
 
 
 
2. INTRODUCTION 
 
2.1. Free radicals in cancer biology 

The role of free radicals as key players in the 
biology and therapy of cancer is well-established (1).  By 
far the most biologically important of these are reactive 
oxygen species (ROS) and reactive nitrogen species (RNS), 
which can be generated both by endogenous metal-
catalysed reactions and by exposure of cells to certain 
anticancer agents such as bleomycin (2) and tirapazamine 
(3) or to ionizing or UV radiation (4).  ROS are known to 
activate numerous signalling cascades. The most significant 
of these involve nuclear transcription factors and protein 
kinases, which in turn control cell cycle checkpoints, stress 
responses and differentiation and are upstream regulators of 
numerous cytokines (1).  Reactions involving ROS are also 
seen as potential targets for cancer therapy (5) and have 
been widely studied.   
 

The most important source of nitrogen for the 
generation of reactive nitrogen species (RNS) in vivo is 
nitric oxide (NO⋅). It is well known to be a product of the 
catalytic action of the nitric oxide synthase enzyme family 
on L-arginine (6).  However, recent evidence suggests that 
it can also be formed by reduction of nitrite, which can 
arise in the body by ingestion or from bacterial metabolism 
(7).  Low concentrations of NO⋅ exert subtle effects in cells, 
some of which are the key homeostatic regulators in several 
tissues. Nitrosative stress on the other hand arises when the 
rate of generation of RNS exceeds the capacity of a cell to 
neutralise them and damaging interactions with 
macromolecules (lipids, proteins and nucleic acids) 
compromise cellular function (1). It can originate from the 
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endogenous generation or exogenous addition of nitric 
oxide (NO⋅), which in turn interacts with ROS to generate 
numerous nitrogen oxides of widely differing reactivity (8).  
 
The past five years have seen an explosion of interest in the 
impact of NO⋅ on the aetiology, progression, treatment and 
prognosis of cancer. In 2003 Wink and Mitchell, two major 
contributors to the field, summarised the available data on 
the subject in a concise review (9), concluding that “In 
tumor biology, NO⋅ continues to confuse and confound us”.  
Since then over 3000 articles have been published 
containing evidence of relevance to this field; some of 
these have helped clarify the role of NO⋅, while others have 
added additional complexity to the picture.  This review 
will attempt to summarise our current understanding of the 
importance of RNS in cancer biology and their potential 
roles in cancer therapy. 
 
2.2. Synthesis of (NO⋅) in biological systems 
  The cellular generation of NO⋅ occurs by an 
oxidation reaction involving L-arginine as the substrate and 
tetrahydrobiopterin (10) nicotine adenine dinucleotide, 
flavin adenine dinucleotide, flavin mononucleotide, and 
protoporphyrin IX (a source of haem) as cofactors (11,12).  
This reaction, is catalysed by three main isoforms of the 
nitric oxide synthase (NOS) enzyme family (13), although 
NOS activity has also been demonstrated in mitochondria 
and this can probably be attributed to a fourth distinct 
isoform (14). Endothelial NOS (eNOS) and neuronal NOS 
(nNOS) are expressed constitutively and regulated post 
translationally by association with other proteins including 
caveolins (15). Their expression is largely, but not 
exclusively, restricted to the vasculature (16) and nervous 
system respectively (17), where they are known to generate 
NO⋅ as a signalling molecule at picomolar to nanomolar 
concentrations, mainly as a homeostatic regulator of blood 
pressure and central nervous activity. They also play a role 
in gut secretion and motility (18). eNOS and nNOS are 
dependent on Ca2+/calmodulin for their activation, probably 
because of the presence of specific sequences in the 
reductase domains of the enzymes (19).  
 
 The inducible isoform of NOS (iNOS) is not 
constitutively expressed in normal tissues and its 
concentration is regulated mainly at the transcriptional and 
translational levels (20), though some post translational 
regulation is now recognised (21).  Once generated in the 
cell, iNOS is capable of generating very high 
concentrations (high micromolar) of NO⋅ over a prolonged 
period (20). An increasing number of cytokines and other 
signalling molecules are now known to mediate iNOS 
expression (22); in addition, iNOS expression is sensitive 
to environmental stress factors such as hypoxia (23).  While 
all three isoforms of NOS have been detected in tumors 
(24), given the conditions prevailing in the tumor 
microenviroment, such as hypoxia and increased 
superoxide production, it is not surprising that iNOS is the 
isoform most usually associated preferentially with 
malignant tissue and that it is rarely detected in normal 
tissues in the absence of pathology (22).  Thus, the 
conditions existing in the microenvironment of tumors are 
conducive to the generation of high concentrations of NO⋅ 

and there is compelling evidence that this influences their 
biology, progression and response to therapy.  There is also 
strong evidence that NO⋅ generation plays a key role in the 
aetiology of many cancers (25) and may be a major 
mediator of carcinogenesis associated with inflammation 
(22, 26, 27) particularly in the colon (28) and gastro-
oesophageal junction (29). 
 
2.3. Biological reactions involving NO⋅ and generation of 
RNS 
 A broad spectrum of biologically reactive 
molecules is now known to be generated by the interaction 
of NO⋅ with O2 and reactive oxygen species under 
physiological conditions (8).  These in turn react with 
thiols, proteins and lipids with profound consequences for 
the integrity of the cell. However, the most significant 
reaction of NO⋅ in the absence of pathology is its binding to 
the prosthetic haem group of soluble guanylate cyclase, 
which massively increases the activity of the enzyme (30).  
This leads to rapid synthesis of cyclic GMP, which in turn 
mediates relaxation of vascular smooth muscle (31).  This 
is the most important mechanism maintaining steady state 
control of vascular tone. 
 
 Two key reactions of NO⋅ with either O2 or the O2

⋅- 
radical initiate the generation of a wide spectrum of RNS 
(8).  Some of these species are highly reactive with cellular 
macromolecules, causing, for example, lipid peroxidation 
and nitrating tyrosine-containing proteins (32), impairing or 
modifying their function. Perhaps the best characterised 
reaction of NO⋅ with reactive oxygen species is its very 
rapid interaction with superoxide (O2

-).  This leads to 
generation of peroxynitrite (OONO-), a potent oxidising 
agent (33, 34) and mediator of cellular damage that triggers 
apoptosis in many cell types via a variety of mechanisms 
(35-38). Common features are lipid peroxidation (39, 40) 
and the activation of caspase-3 (41).  There is also 
compelling evidence that NOSs can generate O2

- in 
addition to NO⋅ (42-45) creating the ideal circumstances for 
OONO- formation.  Clearly, however, this does not happen 
with high efficiency in healthy tissue, largely because O2

- 
generation from NOS occurs only under conditions where 
its L-arginine substrate is depleted (46) and/or 
tetrahydrobiopterin is absent (43, 44) leading to uncoupling 
of the enzyme.  In addition, superoxide dismutases, an 
enzyme family present as three isoforms in mammalian 
cells, act as highly efficient antioxidants, rapidly catalysing 
the conversion of O2

- to much less reactive species such as 
H2O2 and molecular oxygen (47, 1). There is also 
compelling evidence that one isoform in particular, Mn-
SOD, affects tumor growth and progression (48, 1). While 
detailed consideration of these mechanisms lies beyond the 
scope if this review, the presence of O2

- appears to be a 
crucial determinant of whether or not exposure to NO⋅ will 
lead to apoptosis in a given cell type; furthermore, this may 
form the basis of high levels of apoptosis induction by NO⋅ 
in transformed cells (49-50) particularly compared to 
normal cells (51).  Generally, then, peroxynitrite formation 
from NO⋅ and O2

- is a key reaction in determining if 
apoptosis will be triggered.  In the absence of O2

-, lipid 
peroxidation will not occur and indeed NO⋅ has been shown 
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to be protective against peroxidation and other damaging 
radical reactions (52). 
 
 The final fate of peroxynitrite is dependent on the 
conditions. In most tissues, where CO2 is present at 
significant concentrations, CO3

⋅- and NO2
⋅ are generated 

and these species are capable of undergoing damaging 
reactions with other cellular constituents (53). In the 
absence of CO2, peroxynitrite undergoes slow 
decomposition to NO2

⋅ (see below) and OH⋅.  While these 
are also potentially very damaging radical species their rate 
of generation by this reaction is very slow and in any event 
is unlikely to occur in metabolising tissues with mM 
concentrations of CO2. An additional basis for tumor 
specificity may be the dependence of one mechanism of 
NO⋅-induced apoptosis on hypoxia, though this appears to 
be independent of peroxynitrite (54).   

 If the cellular concentration of NO⋅ is high enough 
(55) it can be oxidised by physiological concentrations of 
O2 to generate, via several intermediates including NO2

⋅, 
the potent nitrosating agent dinitrogen trioxide (N2O3) (8). 
This is the principal nitrosating agent derived from NO⋅ and 
is capable of interacting with many biologically significant 
molecules (53).  Of particular interest is the interaction with 
thiols to generate S-nitrosothiols, which in turn can react 
with other intracellular thiols or thiol-containing proteins 
(56).  In some systems this may convey regulatory signals 
(57-58) and in the case of cancer cells there is evidence that 
apoptosis is regulated by S-nitrosoglutathione (via bax 
signalling) (59) and S-nitrosylation of procaspase-9 (53).  
Additionally, the nitrosation of glutathione by N2O3, and 
possibly also NO2

⋅, occurs most efficiently at an oxygen 
tension of 3% (60) typical of the level likely to exist in 
many viable tumor cells in vivo (61).  

 The nitrogen dioxide radical (NO2
⋅) can be formed 

in several different reactions though some are too slow to 
be of any consequence in vivo (8).  The most biologically 
significant are the reaction of NO⋅ at high concentrations 
with molecular oxygen (which also yields N2O3) and the 
decomposition of peroxynitrite in the presence of CO2 to 
yield NO2

⋅ as well as CO3
⋅- (62).  The latter reaction is of 

particular interest because the cogeneration of NO2
⋅ and 

CO3
⋅- shows selectivity for important biological molecules 

and, acting together, they are highly effective and selective 
in nitrating proteins (63,8), which can contribute to 
numerous disease processes (64) including cancer (65). 
 
3. NO⋅

 AND CANCER THERAPY 
 
 We have recently reviewed the importance of NO⋅ 
in cancer therapy (25) and there is now an extensive 
literature available (22, 66-69).  As a general rule, 
malignant tumors express significant levels of NOS 
enzymes and often at higher concentrations than their 
normal tissue counterpart.  This has been clearly 
demonstrated in a wide range of tumors including those of 
the bladder (70), brain (71, 72), breast (73-75), cervix (76), 
colon (77), endometrium (78), lung (79, 80), ovary (81), 
pancreas (82), prostate (83), and in melanoma (84).  This 

implies that tumors develop within an environment with 
high levels of nitrosative stress and are exposed to a range 
of RNS (see section 2.3).  Potential therapies could 
therefore be designed to reverse this condition, which as we 
shall see, is responsible for maintaining the malignant 
phenotype of many cancers; alternatively, the damaging 
effects of RNS could be specifically enhanced.  Strategies 
employing these two approaches will now be reviewed. 
 
3.1. Inhibition of RNS generation.  
 We will focus mainly on methods of intervention to 
modify the generation of RNS in a manner that could be 
used to treat established solid tumors. However, it is 
worthy of note that over-expression of iNOS has been 
associated with generation of excessive levels of RNS 
during chronic inflammation and may play an important 
role in carcinogenesis by causing DNA damage (26, 85-
89); there may, therefore, be a role for RNS inhibition in 
the chemoprevention of cancer. The generation of RNS in 
tissues including tumors occurs almost exclusively via the 
catalytic action of the NOS enzyme family; consequently, 
this offers a discrete target through which generation of 
NO⋅ can be inhibited.  Furthermore the availability of a 
wide variety of inhibitors with selectivity for the NOS 
family of enzymes, or its specific isoforms, has allowed 
this concept to be tested both in vitro and in vivo (90-92). 
 
 Regardless of the underlying mechanism, the 
evidence from preclinical studies using NOS inhibitors in 
rodent tumor models in vivo clearly demonstrates inhibition 
of tumor growth.  This was first shown over ten years ago 
when administration of NG-nitro-L-arginine methyl ester 
(L-NAME) at concentrations of 1 -6 mg/ml in the drinking 
water was shown to reduce tumor growth rates by a factor 
of ~2, in a fully and rapidly reversible manner, such that 
tumor growth rates returned to normal within 24 h of drug 
withdrawal (93).  Several other investigators have since 
demonstrated very similar results using L-NAME (94) or a 
similar arginine analogue NG-nitro-L-arginine (NNLA) 
(95).  A more recent study in a human pancreatic cancer 
model in nude mice showed that the addition of 1 mg/ml 
NNLA to the drinking water again reduced tumor growth 
rate by a factor of 2 (96); furthermore, these authors 
investigated several additional tumor parameters to 
elucidate the mechanisms behind the growth inhibition.  
Blood vessel diameters were reduced by 50% as was vessel 
perfusion (measured by Hoechst 33342) in the NNLA-
treated tumors; there was also a small increase in apoptosis.  
A reduction in tumor perfusion in response to NOS 
inhibitors has previously been reported by others in a 
variety of experimental systems.  Window chamber models 
have been used to demonstrate reductions in diameter and 
perfusion of rat tumor isografts (97) and human tumor 
xenografts (98).  Similar results have also been obtained in 
orthoptic glioma (99, 100) and tissue isolated rat tumor 
models (101,102).  Because the NOS inhibitors used in all 
of the above studies will inhibit all NOS isoforms, and all 
isoforms are known to be expressed in tumors (24) these 
data do not allow a more detailed analysis of the isoform/s 
responsible for enhancing tumor perfusion. This 
information would be important for planning a clinical 
strategy because the inhibition of nNOS and particularly 
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eNOS has been shown to induce significant cardiovascular 
pathology (103-106), specifically after chronic 
administration of L-NAME, as would be required to 
maintain tumor growth inhibition (93).  One study, 
however, clearly demonstrates the importance of iNOS in 
the tumor growth response to NOS inhibitors (107). 
Treatment of mouse tumor isografts and human tumor 
xenografts with the specific iNOS inhibitor 1400W by 
continuous infusion, reduced tumor growth rates to the 
same degree (50%) as that seen in most studies with the 
non-specific NOS inhibitors. Tumors that did not express 
iNOS showed no response to 1400W. This suggests that 
iNOS is the main contributor to NO⋅ generation in tumors, 
at least in the models tested and that its inhibition could be 
the basis for a clinical strategy to inhibit tumor growth. 
Few human studies with 1400W have been carried out, but 
there is evidence that it can be used safely in man (108).  In 
summary, it is reasonable to conclude that tumors are 
exposed to high levels of nitrosative stress, predominantly 
as a consequence of iNOS expression; this in turn leads to a 
highly dilated vasculature that shows marked constriction 
in response to inhibition of the source of NO⋅ production. 
 
 NOS inhibitors have also been shown to enhance 
the effectiveness of other therapies that depend on reduced 
blood flow or hypoxic conditions for their effectiveness. 
The toxicity of the bioreductive cytotoxin, RB6145, was 
significantly enhanced by administration of the non-
specific NOS inhibitor L-nitro arginine in mouse tumors 
(KHT and SCCVII), while the inhibitor had no effect on 
RB6145 toxicity in bone marrow (109). Inhibition of NO⋅ 
synthesis with L-NAME was found to increase heat-
induced growth delay of FSaII tumors in mice, probably as 
a result of a reduction in the cooling effect of blood flow 
(110).  
 
 Another well established action of NO⋅ at 
constitutive levels is to stimulate angiogenesis, both in 
tumors and normal tissues. Numerous investigators have 
studied the role of NO⋅ (mainly with the use of non-isoform 
specific NOS inhibitors) on different aspects of 
angiogenesis (111-115) and have observed that inhibition 
of NO⋅ synthesis results in potent inhibition in vitro and in 
vivo. A potent anti-angiogenic effect was also demonstrated 
for aminoguanidine, an inhibitor with specificity for iNOS 
(116). One in vivo study also showed that NO⋅ specifically 
activated angiogenesis by longitudinal splitting of 
capillaries and had no effect on sprout formation (117). 
Several studies have attempted to identify downstream 
mediators of the angiogenic action of NO⋅.  One likely 
candidate is vascular endothelial growth factor (VEGF); it 
has been known for some time that NO⋅ can upregulate 
VEGF in liver and brain tumor cells via a guanylate 
cyclase-dependent mechanism that is dependent on de novo 
protein synthesis and leads to stabilisation of VEGF RNA 
(118).  Increased expression of VEGF in response to 
administration of the NO⋅ donor S-nitroso-glutathione was 
demonstrated in normal cells (119, 120). The association 
between NO⋅ and VEGF has also been established in 
human primary astrocytomas and their expression 
correlated directly with grade of disease (71). 

 One particularly valuable study directly 
demonstrated the bipolar character of NO⋅ in angiogenesis 
(121). Exposure of endothelial cells to 50-200 µM 
concentrations of the NO donor S-nitro-N-acetyl 
penicillamine (SNAP) caused a dose-dependent increase in 
several angiogenic end points and in the phosphorylation of 
PKC, ERK and c-Jun, and AP-1 activation.  At higher 
concentrations (up to 4 mM) these endpoints were 
markedly inhibited by SNAP in a dose-dependent manner. 
 
IL-8 is another cytokine with a well-established role as a 
mediator of angiogenesis (122, 123) and there is now 
considerable evidence that NO⋅ upregulates IL-8 (together 
with VEGF) expression (probably at the transcriptional 
level) in colon cancer (124) and melanoma (125) cells.  
 
 In addition to upregulating pro-angiogenic 
cytokines, NO⋅ has been shown to down-regulate inhibitors 
of angiogenesis (such as angiostatin) in heart muscle (126).    
To what extent, then, does abrogation of this process by 
NOS inhibition contribute to the reduced growth rate of 
tumors in vivo?  Few data are available, but one recent 
study (96) showed that vessel density determined 
histologically in a pancreatic tumor model was reduced 
modestly (~20%) when the host animals were given the 
NOS inhibitor NNLA, but the most dramatic effect was a 
40% reduction in the cross sectional area of the tumor 
vasculature.  Given that the resistance of a blood vessel to 
flow is inversely proportional to the 4th power of the radius, 
blood flow reduction is likely to be the predominant 
mechanism contributing to the 50% reduction in tumor 
growth rate seen in that study. 
 
3.2. Enhancing nitrosative stress for therapeutic benefit 
 As we have seen (2.3), NO⋅ is not highly reactive 
with cellular macromolecules, but is capable of undergoing 
interactions with molecular oxygen to generate dinitrogen 
trioxide and with O2

.- to yield ONOO- which, on 
decomposition in the presence of CO2 yields NO2

⋅.  All of 
these RNS are capable of damaging reactions with lipids, 
proteins and nucleic acids.  A common consequence is the 
induction of apoptosis following recognition of the damage 
by the cell, though death by necrosis also occurs (127). 
However, there is also clear evidence that NO⋅ can inhibit 
apoptosis in some cells, while promoting it in others (128) 
and that this probably occurs via inhibition of 
mitochondrial respiration and inhibition of caspases by S-
nitrosylation (129). In attempting to generalise the cellular 
response to NO⋅, it is clear that, concentration is important. 
This is a notoriously difficult parameter to control in vitro 
let alone in vivo, which may account for enormous 
variation in responses between studies.  One study, 
however, used a membrane delivery system to maintain 
tight control of NO⋅ concentration in lymphoblastoid cells 
and was able to demonstrate that thresholds for steady state 
concentration (~0.5 µM) and total cumulative dose (~150 
µM.min) must both be exceeded if cell death was to occur 
(130). Interestingly, a lymphoblastoid line lacking wild 
type p53 required a higher cumulative dose (~300 µM) to 
kill the cells (131).  Variations in NO⋅ production are not 
the only confounding factors determining response in a 
given cell system: interaction with thiols, metal ions,
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Table 1.  Enhancement of the effects of chemotherapeutic drugs by NO⋅ 
Cisplatin Experimental model Sensitizer 

enhancement ratio 
Cell/animal survival ratio Source of NO⋅ Reference 

Cisplatin Fibroblasts in vitro NA ~60 NO⋅ gas in solution 155  
Cisplatin •• NA 800-3000 NO⋅ donor drugs 155 
Cisplatin Hamster lung fibroblasts in vitro 2.8 at 50% survival NA NO⋅ donor drug  156  
Cisplatin Mouse leukemia in vivo NA 2.6 (animal survival ratio at 

60 d) 
NO⋅ donor drug 159  

Cisplatin Rat liver epithelial cells in vitro 3.7-5.8 at 50% survival NA NO⋅ donor drugs 157  
Cisplatin Human ovarian cancer cells in vitro NA ~3 NO⋅ donor drug 158  
Oxaliplatin Colon cancer in vitro NA 3.7-4.0 NO⋅ donor drug 146  
Oxaliplatin Colon cancer in vivo NA 2.7 (apoptotic ratio; 60% 

reduction in growth rate) 
NO⋅ donor drug 146 

Doxorubicin Human breast cancer in vitro NA 8 NO⋅ gas in solution 163  
Doxorubicin Human breast cancer in vitro NA ~1.6 NO⋅ donor drug 160  
Taxol Prostate cancer in vitro 5-12 NA NO⋅ donor drug 164  
Taxol Neuroblastoma in vitro 1-3 NA NO⋅ donor drug 164 
Cyclophosphamide Mouse melanoma in vitro NA 1.6 (inhibition of 

metastasis) 
NO⋅ donor drug 159  

Cyclophosphamide Mouse leukemia NA 100% versus 0% animal 
survival 

NO⋅ donor drug 159 

NA= not available 
 
protein tyrosine and interaction with ROS will all differ 
(128). 
 
 Many investigators have studied the effect of 
delivering high concentrations of NO⋅ and its reactive 
products.  Delivery methods include nitric oxide donor 
drugs and iNOS gene transfer that can achieve 
concentrations of NO⋅ in the micromolar range. This lead to 
apoptosis in a wide variety of human cancer cells including 
bladder (132-134) breast (135), colon (136, 137), pancreas 
(138, 68) and prostate (139). There is also some evidence 
that NO⋅ mediated apoptosis may show some selectivity for 
transformed compared with normal cells (fibroblasts) and 
that this can be attributed to increased superoxide 
production in transformed cells leading, on interaction with 
NO⋅, to peroxynitrite production (51). Further evidence 
suggests that solid tumors containing hypoxic regions may 
be specifically vulnerable to peroxynitrite-induced 
apoptosis because of enhanced generation of ROS 
(including O2

.-) under hypoxic conditions (140).  Is there 
any in vivo evidence?  The first study used direct injection 
of a plasmid containing the iNOS gene into an 
experimental thyroid cancer model in rats and showed 
significant inhibition of tumor growth even though only 1% 
of the cells in the tumors had been transfected (141). 
Several studies have since investigated apoptosis induction 
by NO⋅ using iNOS DNA constructs and have seen 
extensive apoptosis within 24 hours of transfection in 
rodent tumor (142, 143) or human tumor xenograft 
(144,145) models.  Nitric oxide donor drugs have since 
been shown to induce similar effects in colon cancer 
xenografts (146).  Thus, expression of NO⋅ in tumors at 
high concentrations has therapeutic potential, but none of 
the above studies suggests that NO⋅ could be effective as a 
stand alone treatment; it is likely to be combined with other 
conventional or novel therapies. 
 
3.3. Enhancing conventional therapies 
 NO⋅ or its reaction products have been shown to 
interact with and damage proteins; in particular, it can 

nitrosate zinc finger containing enzymes leading to their 
denaturation (147, 148).  This includes many of the DNA 
repair proteins such as Fpg (149), DNA ligase (150), O6–
methylguanine-DNA-methyltransferase (151), poly (ABP-
ribose) polymerase (152), and enzymes involved in 
nucleotide excision repair (153).  Compromised repair 
capacity induced by high concentrations of NO⋅ should, 
therefore, increase the toxicity of most DNA damaging 
agents; there is now a considerable body of evidence to 
support this, particularly for cisplatin (154).  
 
 Chemosensitization by RNS has been studied most 
extensively in combination with cisplatin.  A variety of 
techniques have been used to deliver high NO⋅ 
concentrations (high µM) to cells in culture including NO⋅ 
gas saturation, NO⋅ donor drugs or iNOS gene transfer.  
The first study (155) used NO⋅-saturated medium or the 
NO⋅ donors DEA/NO or PAPA/NO to sensitize fibroblasts 
to cisplatin.  While no enhancement ratio can be calculated 
from their data, surviving fraction after cisplatin was 
reduced by over 1000 fold by the addition of NO⋅ donors.  
Since then, chemosensitization has also been demonstrated 
in head and neck carcinoma cells (156), in liver cells (157) 
and in ovarian cancer cells (158).  The latter study also 
included evidence for increased intracellular retention of 
cisplatin by a mechanism involving mitogen activated 
kinases, with obvious implications for multidrug resistance.  
Whatever the mechanism, enhancement of the antitumor 
effect of platinum-based drugs can also be achieved in vivo.  
Significantly prolonged survival was seen in leukaemia 
bearing mice treated with a combination of cisplatin and an 
NO⋅ donor compared with animals treated with cisplatin 
alone (159). A recent study using oxaliplatin in 
combination with the NO⋅ donor NCX 4040 achieved a 
60% reduction in tumor growth rate compared with 
oxaliplatin alone and a 3 fold increase in the number of 
apoptotic cells (146). 
 
 Recently, a study in breast cancer cells grown as 
spheroids demonstrated that the NO⋅ donor DETA/NO⋅ was 
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able to reverse acquired resistance to doxorubicin (160). 
There is also evidence that inhibition of drug efflux by high 
concentrations of NO⋅ (induced by cytokines) may be 
another mechanism of enhancement of the cytotoxicity of 
this drug (161).  These authors have also shown that the 
ability of statins to revert the resistance of colon cancer 
cells to this agent may be mediated by NO⋅ (162).  An 
important insight into the mechanisms of NO⋅ induced 
enhancement of doxorubicin is provided by a recent study 
(163), which demonstrated the importance of the 
sequencing of NO⋅ delivery in relation to cytotoxic drug 
exposure. NO⋅ delivered 30 min before doxorubicin 
enhanced its cytotoxicity by eight fold (in terms of cell 
survival), but when doxorubicin was given 30 min before 
or simultaneously there was little or no enhancement.  
These authors proposed that time might be required for NO⋅ 
to modify critical signalling pathways regulating apoptosis.  
We suggest that inhibition of DNA repair enzymes by NO⋅ 
(153) may also occur during that time.  Finally, using 
AdiNOS gene transfer this group were able to show 
enhanced doxorubicin toxicity to breast cancer cells, but 
not to normal cardiac myoblasts under the same conditions.  
This provides a basis for selectivity of NO⋅ therapy. 
 
 Limited data exist for other drug combinations.  
NO⋅ delivery using a donor drug increased the cytotoxicity 
of taxol in prostate cancer cell lines, but had no effect in 
neuroblastoma cell lines (164).   An NO⋅ donor has also 
been used in combination with 5-fluorouracil, but in this 
case toxicity was only additive (146).   Enhancement of the 
cytotoxicity of cyclophosphamide by an NO⋅ donor has 
been demonstrated in vivo, leading to an impressive delay 
in tumor regrowth (158). 
 
 NO⋅ is also a potent radiation sensitizer.  The 
radiosensitization of hypoxic cells by NO⋅ was first 
described at about the same time as the oxygen effect in 
radiation biology was characterised in mammalian systems 
(165-167).  While the evidence existed then that NO⋅ has a 
sensitizing efficiency similar to that of O2, it did not 
generate the same level of interest as in the “oxygen 
effect”. This may have been because NO⋅ was considered to 
be an environmental pollutant and not the fundamental 
regulator of cellular signalling pathways that we now 
recognise (168, 169). Within the last ten years, however, 
extensive studies have been carried out to quantify the 
radiosensitizing effect of NO⋅ using a variety of strategies.   
While it is possible to deliver authentic NO⋅ gas in 
radiosensitization experiments in vitro (170) most 
investigators have found it more practical to use a variety 
of drugs that donate NO⋅ in the cellular environment (171-
172).  Radiosensitization by NO⋅ generated via a redox 
reaction with Agneli’s salt was also demonstrated (173).  In 
these studies NO⋅ gave sensitizer enhancement ratios of 1.6 
-2.0 when the donors were added at 0.1 – 1.0 mM 
concentrations; this is similar to what would be expected 
for oxygen.  
 
 Rather than introducing NO⋅ donor drugs, an 
alternative approach is to exploit the action of iNOS as a 
potent and long lasting generator of NO⋅ from L-arginine. 

The first study to do this (174) achieved an enhancement 
ratio of 2.5 in hypoxic EMT-6 tumor cells in culture by 
stimulating them with interferon gamma, even though the 
peak NO⋅ levels generated by this method were lower than 
those achieved with an NO⋅ donor.  This suggests that the 
duration of NO⋅ exposure rather than just the concentration 
at the time of irradiation is important to the cellular 
response and in this respect differs from the effect of 
oxygen (175). 
 
 Developments in gene transfer have opened up the 
possibility of introducing iNOS into cells as a suicide gene 
therapy to be combined with other modalities, including 
radiation.   In our own studies we have focussed on gene 
transfer using liposomal delivery of vectors expressing high 
levels of iNOS in rodent and human tumor cells in vitro 
and as solid tumors in vivo. Constitutive (CMV) and 
radiation- inducible (WAF-1) promoters were used to drive 
expression of the iNOS gene in RIF-1 tumor cells in culture 
and achieved enhancement of radiosensitivity similar to 
that seen with oxygen (176).  This strategy can also be 
applied successfully in vivo: we used direct injection of 
WAFiNOS and CMViNOS constructs in a liposomal vector 
to transfect RIF1 (mouse) and HT29 (human) tumors and 
achieved enhancement ratios of 1.6 -2.0 in combination 
with radiation (142, 144).  Adenoviral delivery can also be 
used successfully with iNOS gene therapy of tumors (177). 
Very similar enhancement ratios were obtained in human 
colon cancer xenografts in combination with single dose 
and fractionated (2 Gy) irradiation.  It is perhaps surprising 
that enhancement ratios close to the full oxygen effect can 
be achieved in vivo with a technique that expresses iNOS in 
a very small proportion of the tumors cells (transfection 
efficiencies ~1%). Therefore, in considering the role of NO⋅ 
in the sensitivity of tumors in vivo it is important to 
differentiate the direct effects of NO⋅ from physiological 
changes that could alter oxygenation.  Two explanations 
are likely: a) NO⋅ generation could lead to enhanced tumor 
blood flow and oxygen delivery, so sensitizing previously 
hypoxic cells. b) NO⋅ is a highly diffusible molecule with very 
short half life in the presence of oxygen or haem proteins 
(178), but in regions of tumors with few blood vessels and very 
low oxygen tensions its lifetime could be much longer (several 
seconds) and diffusion distance greater.  There is evidence for 
the former mechanism: intra venous administration of the NO⋅ 
donor SIN-1 within a narrow dose range (0.5-2.0 mg/kg) 
resulted in increased oxygenation and radiosensitivity, which 
was attributed to improved blood flow (179), furthermore, 
iNOS gene therapy using adenoviral delivery (177) caused an 
increase in tumor vascularity, which could allow non-
transfected bystander cells to be sensitized. However, it is 
reasonable to suppose that diffusion of NO⋅ must play an 
important part in tumor radiosensitization in vivo after iNOS 
activation or transfection because the catalytic action of NOS 
on arginine to generate NO⋅ requires O2 as the source of an 
oxygen atom (13).  Further studies are required to distinguish 
the relative importance of these two mechanisms, which will 
probably differ between tumors. 
 
 While NO• may radiosensitize by fixation of DNA 
radicals in a manner similar to oxygen (although this
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Figure 1.  Diagramatic representation of the bell-shaped 
relationship between NO⋅ concentration and tumor 
response.  The abnormally high NO⋅ concentration found in 
tumors compared with normal tissues is mainly generated 
by iNOS and maintains the tumor vasculature in a highly 
dilated condition which supports rapid growth.  Inhibition 
of that constitutive expression leads to reduced blood flow 
and nutrient deprivation, which can sensitize tumors to 
bioreductive cytotoxins. Delivery of very high NO⋅ 

concentrations leads to high levels of nitrosative stress, 
triggering apoptosis.  It also sensitizes the tumor cells to 
other cytotoxic insults. 
 
remains a matter of debate) it also exerts more subtle 
influences by activating a host of signalling pathways 
within the cell that trigger apoptosis (180).  There is also 
evidence that these death signals can be exported to other 
cells: microbeam irradiation of individual cells, even if the 
nucleus was excluded, leads to extensive DNA damage as 
measured by micronucleus formation in neighbouring 
unirradiated cells and the effect could be eliminated by the 
use of NO⋅-specific scavengers (181, 182). 
 
3.4. Enhancing novel therapies 
 NO⋅ may also play an important role in the 
mechanisms of action of and interaction with novel cancer 
therapies. Tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) has been shown to be a selective 
cytotoxin in some, though not all cancer cells (183-185).  
There is now clear evidence that NO⋅ can sensitize 
cancer cells to TRAIL-induced apoptosis; sensitization 
of prostate cancer cells to TRAIL was also achieved 
when NO⋅ at high concentration was delivered by the 
donor DETANONOate. Inactivation of NF-κB and 
inhibition of Bcl-xL were implicated (186). In another 
study in human colorectal cancer cells the NO⋅ donor 
sodium nitroprusside enhanced TRAIL-induced 
apoptosis via a mitochondria-dependent pathway (187).  
However, NO⋅ at lower constitutive concentrations may 
even protect prostate cancer cells from TRAIL-induced 
apoptosis (188).  This is consistent with the conclusion 
that NO⋅ at low levels in tumors are protective of cell 
survival, whereas high levels induce death signalling. 

4. PERSPECTIVE 
 
 The generation of NO⋅ in tumors mainly, though 
not exclusively by iNOS- plays a key role in maintaining 
the malignant phenotype.  Inhibition of this process 
consistently reduced the rate of tumor growth, but was 
unable to prevent growth entirely.  In addition, NOS 
inhibition created a poorly perfused, hypoxic environment 
(Figure 1). This could be exploited to enhance the 
cytotoxicity of bioreductive drugs, but would be 
detrimental to the effectiveness of conventional 
chemotherapy and radiotherapy.  The opposing strategy 
of targeting very high NO⋅ levels to tumors looks more 
promising in that it can be used to enhance conventional 
therapies as well as directly causing cell death.  While it 
has clearly been shown in several studies to delay tumor 
growth by inducing extensive apoptosis, it has also 
consistently enhanced radiotherapy and chemotherapy 
given in clinically relevant schedules. Thus, 
introduction of NO⋅ augmentation as an adjuvant therapy 
should not be problematical.  Furthermore, any 
undesirable systemic effects of NO⋅ on blood pressure 
can be monitored easily and are readily reversible.  
These characteristics support the view that introduction 
of NO⋅ augmentation therapy into clinical trials would 
be a low risk strategy with the potential for considerable 
patient benefit. 
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