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1. ABSTRACT 
 

Chronic heart failure (CHF) is a condition 
characterized by exercise intolerance. The level of activity 
tolerated by an individual cannot be predicted by classical 
parameters of left ventricular performance. Therefore, 
considerable attention has been focused on the role of 
peripheral factors such as skeletal muscle, which are 
determinants of work capacity. In recent years, many 
alterations in the skeletal muscle have been described in 
patients with chronic heart failure. This knowledge has 
dramatically changed the treatment of patients with CHF. 
Previously, patients were asked to avoid excessive strain 
and physical exercise. Recently, however, patients are 
asked to participate in a supervised physical training 
program to increase their exercise capacity and to 
counteract the molecular changes occurring in the skeletal 
muscle. This review will focus on molecular and 
biochemical alterations especially in the skeletal muscle 
and how these alterations are influenced by exercise 
training finally contributing to better skeletal muscle 
performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

An estimated 5 million Americans have been 
diagnosed with heart failure (HF), a chronic condition 
associated with frequent hospitalization, widespread 
functional limitations, and a high mortality rate. Each year, 
approximately 550,000 new cases are detected and nearly 
300,000 patients die of heart failure as a primary or 
contributory cause. Since HF is not a homogenous disease 
the management of these patients is extremely challenging. 
Primary goals of HF management include reduction in the 
frequency of HF as well as extending and improving 
quality of life. Additional goals are maximizing 
independence, and improving exercise capacity. To treat 
HF numerous pharmacological agents have been developed 
to improve central hemodynamics and myocardial 
contractility. Nevertheless, after initiation of such therapies 
patients still continue to experience activity-related 
symptoms like, shortness of breath, muscle fatigue and 
weakness. It is well known that measures of cardiac 
function like left ventricular ejection fraction correlate 
poorly with the clinical severity of heart failure (1,2). 
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Therefore, exercise has become an integral component of 
the management of patients with chronic heart failure. The 
main goal of exercise training is to improve physical 
activity and to counteract exercise intolerance, which is one 
of the hallmarks of the disease. Over the last ten years 
many different investigators could document the beneficial 
effect of exercise training in HF patients. In addition, 
molecular biology helped us to understand the molecular 
and biochemical basis for the observed effects.  
 
3. IMPACT OF EXERCISE TRAINING ON MUSCLE 
FIBER TYPE DISTRIBUTION AND MUSCLE FIBER 
SIZE 
 

Skeletal muscle abnormalities represent an 
inherent feature of patients with CHF. These include a shift 
in fiber type distribution with a transformation of slow-
twitch type I to fast-type II fibers (for review see 3). Fast-
twitch fibers (type II) have a low aerobic capacity and are 
easily fatigued. Beside the alterations in muscle fiber type 
distribution, the development of CHF is also associated 
with a decreased size (muscle cross-sectional area) in both 
type I and type II fibers.  
 

Has any form of exercise training an influence on 
the fiber type distribution and muscle cross sectional area 
in patients with CHF? The analysis of data recently 
published revealed that the results are conflicting. 
Investigating the impact of 6 month ergometer training 
at 70% of maximal oxygen uptake (VO2max) in patients 
with CHF (n=18), Hambrecht and colleagues reported 
for the first time a significant 8% increase in type I 
fibers, whereas type II fibers decreased significantly (4). 
During this time period a 6% decrease in the amount of 
type I fibers was observed in the control group. Fiber 
size was not investigated in this study. In a study 
published 3 years later, Kiilavuori and coworkers were 
not able to confirm the change in fiber type distribution 
after 6 month of moderate exercise training (5). In 
addition, no change in fiber size was documented. 
Looking specifically at female related skeletal muscle 
change, Tyni-Lenne showed that 8 weeks of intensive 
knee extensor endurance training increased the cross-
sectional area of muscle fibers which after the exercise 
training was no longer distinguishable from healthy 
controls (6). What is the difference between the studies 
and why do we obtain so inhomogeneous results? So far 
the answer can only be speculative. All the studies differ 
in training intensity and time. At least, it seems that high 
intensity training is necessary to benefit from the 
training program with respect to fiber type distribution 
and muscle cross-sectional area.  
 

What are possible molecular mechanisms 
responsible for the fiber type shift during the development 
of CHF and after exercise training? One molecular 
candidate influencing the fiber type composition of a 
skeletal muscle may be the peroxisome proliferator-
activated receptor gamma coactivator-1alpha (PGC-
1alpha). It is well known, that PGC-1alpha is down 
regulated in CHF (7,8), that it is involved in muscle fiber 
type switching during development (9) and that it is 

induced in skeletal muscle after exercise training (10). The 
importance of PGC-1alpha as modulator for fiber type 
composition is furthermore supported by correlation 
analysis between the skeletal muscle fiber type and the 
PGC-1alpha expression (11) as well as by studies using 
transgenic animals (9).  
 
4. IMPACT OF EXERCISE TRAINING ON 
INFLAMMATORY CYTOKINE EXPRESSION 
 

Both systemic and local inflammation has been 
suggested to play an important role in the pathogenesis 
and progression of CHF (12). Cytokines may affect 
muscle metabolism and strength by direct effects, for 
example, by altering the expression of the sarcoplasmic 
reticulum Ca2+-ATPase and phospholamban (13), or by 
induction of other pathological factors, most notably 
inducible nitric oxide synthase (iNOS) (14,15). A 
detailed analysis of the serum from asymptomatic 
patients enrolled into the SOLVD study (16), or patients 
with severe HF (17), revealed a stringent correlation 
between the serum concentration of tumor necrosis 
factor alpha (TNF-alpha) and the severity of the disease. 
Moreover, circulating levels of cytokines and cytokine 
receptors have acquired prognostic significance (18-20). 
Several studies have been performed in the recent years 
to investigate the impact of physical exercise training on 
the concentrations of circulating inflammatory 
cytokines. Depending on the disease severity of the 
enrolled patients and the training intensity the results 
differ significantly. For example, Adamopoulos and 
colleagues described that 12 weeks of exercise training 
(five days per week at 60-80% of maximum heart rate) 
of patients in New York Heart Association class II/III 
(NYHA II/III) reduced plasma levels of 
proinflammatory cytokines like TNF-alpha, its soluble 
receptors and interleukin-6 (21). In addition, a good 
correlation was found between a training-induced 
increase in VO2max and the training-induced reduction 
in levels of TNF-alpha (21). On the other hand, several 
other studies applying comparable training modalities 
were not able to confirm these anti-inflammatory effects 
of exercise training (22-24).  
 

Based on these observations, the question was 
raised, if the concentration of inflammatory cytokines 
measured in the plasma is not only a sign of a high local 
concentrations of the inflammatory factors. This notion 
is supported by the observation of Sagizadeh, who first 
described the expression of TNF-alpha in skeletal 
muscle myocytes (25). This could be confirmed several 
years later by our group (23). Instead of investigating 
changes in the plasma concentration of inflammatory 
cytokines, Gielen and coworkers analyzed for the first 
time the impact of physical exercise training on the local 
cytokine expression (23). Despite no changes observed 
in plasma concentration, a significant down-regulation 
of inflammatory cytokine expression in the myocytes 
was noted. This clearly demonstrates, that the local 
alteration in cytokine expression is influenced much 
earlier before changes are evident in the circulating 
system.  
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5. IMPACT OF EXERCISE TRAINING ON THE 
ANABOLIC CATABOLIC BALANCE: UBIQUITIN-
PROTEASOME SYSTEM, APOPTOSIS VERSUS 
IGF-1 
 

A general loss of skeletal muscle mass (muscle 
atrophy) is a characteristic, debilitating response to fasting, 
as well as many severe diseases, including advanced 
cancer, renal failure, sepsis, and chronic heart failure (26-
29). In most types of muscle atrophy overall rates of protein 
synthesis are suppressed and rates of protein degradation 

are consistently elevated. This response accounts for the 
majority of the rapid loss of muscle protein. These 
processes are paralleled by the activation of apoptosis, the 
cell suicide program, which leads to a progressive loss of 
muscle myocyte nuclei, further contributing to the 
development of muscle atrophy.  
 
5.1. Ubiquitin Proteasome system 

In a variety of animal models for different human 
diseases [e.g., fasting (30,31), diabetes (32), cancer 
cachexia (33-35), acidosis (36), sepsis (37), disuse atrophy 
(38), denervation (30), and glucocorticoid treatment (39)], 
most of the accelerated proteolysis in muscle appears to be 
due to an activation of the Ubiquitin–proteasome system 
(UPS) (40). The UPS is an ATP requiring multi-enzymatic 
process. Proteins degraded by the UPS are first conjugated 
to ubiquitin. This reaction requires the activation of 
ubiquitin by the ubiquitin-activating enzyme (E1), transfer 
to an ubiquitin conjugating enzyme (E2), and subsequent 
linkage to the lysine residue of proteins destined for 
degradation (E3) (41). Expression of the E3-ligases Murf-1 
(for Muscle Ring Finger 1) and atrogin1/MAFbx (for 
Muscle Atrophy F-box) (42) is restricted to heart and 
skeletal muscle tissue. Murf-1 shows ubiquitin ligases 
activity (43), binds the sarcomeric protein titin (44), and 
degrades cardiac troponin I (43). MAFbx interacts with 
calcineurin A, alpha-actinin-2 (45), and degrades MyoD 
(46), respectively. At least in skeletal muscle cells TNF-
alpha is able to stimulate the expression of MAFbx via the 
activation of p38MAPK (47). Do we have some evidence 
from the current literature, that exercise training influences 
the ubiquitin-proteasome-pathway? At least from animal 
experiments using healthy rats we know, that endurance 
exercise training over a period of 5 days significantly 
reduced the UPS activity (48). Concerning the impact of 
exercise training on the UPS in patients with heart failure 
the evidence is low. Preliminary data from our group 
demonstrated that 4 weeks aerobic training of patients with 
chronic heart failure was efficient in reducing the elevated 
Murf-1 expression (49). 
 
5.2. Apoptosis 

Apoptosis is a highly regulated form of cell death 
that is characterized by specific morphological, 
biochemical, and molecular events (50). It is essential for 
the normal development of a multi-cellular organism (51) 
and apoptosis is involved in cell turnover in healthy adult 
tissues (52). Studies in humans as well as in several animal 
models over the last years showed, that the development of 
heart failure is associated with an increase in apoptotic 
myonuclei. Furthermore, the degree of apoptosis correlated 

with the severity of the disease. This has been shown to be 
true in experimental models of CHF (53-55) and in humans 
with CHF (56,57). In rats treated with monocrotaline the 
degree of skeletal muscle apoptosis correlated directly with 
the degree of right-ventricle dilatation, while in humans 
apoptosis correlated inversely with peak oxygen 
consumption. Concerning the impact of an exercise training 
intervention on apoptosis no data are available so far from 
patients with chronic heart failure, as well as from CHF 
animal models. 
 
5.3. Insulin-like growth factor-1 

Insulin-like growth factor 1 (IGF-1) is another 
important factor regulating skeletal muscle mass. A 
significant portion of IGF-1 is produced locally by skeletal 
muscle myocytes and acts as a paracrine regulator of 
skeletal muscle hypertrophy/atrophy. Several human and 
animal studies in the current literature demonstrated that 
chronic heart failure is associated with a reduced 
expression of IGF-1 in the skeletal muscle when compared 
to healthy controls (58,59). The plasma concentration was 
not altered under these conditions. The local IGF-1 
expression correlated significantly with muscle cross 
sectional area, indicating that the local IGF-1 deficiency 
might contribute to loss of muscle bulk in CHF (58). 
Previous studies have shown that the local expression of 
IGF-1 in skeletal muscle is mainly regulated by two 
different mechanisms. (1) Growth hormone (GH) induces 
the local expression of IGF-1 through the activation of the 
GH-receptor (60) and (2) inflammatory cytokines like 
TNF-alpha decreases the IGF-1 expression (61,62) by 
interfering with the transcription factor CREB (cAMP 
responsive element binding protein), which regulates the 
transcription of IGF-1 (63). Based on the fact, that exercise 
training influences the expression of inflammatory 
cytokines (see above), it is reasonable to assume that 
exercise training has also an effect on the expression of 
IGF-1. In a study by Schulze and coworkers a more than 
two-fold increase in local IGF-1 expression after 6 months 
of exercise training in patients with stable CHF was 
observed (64). Two other studies also investigated in non-
CHF populations the intramuscular changes of IGF-1 
expression in response to exercise. One study documented 
a higher number of IGF-1 immunoreactive cells in skeletal 
muscle biopsies obtained after 1 week of terrain marching 
(65). A second study assessed the effect of a combined 
intervention - nutritional supplementation and resistance 
training – on muscular IGF-1 expression (66). The authors 
reported a six-fold increase in local IGF-1 expression after 
10 weeks (66). Therefore, it seems that the local IGF-I-
deficiency responded to long-term aerobic exercise 
indicating that the catabolic state in the skeletal muscle is at 
least partially reversible by adequate exercise training. 

 
6. IMPACT OF EXERCISE TRAINING ON 
OXIDATIVE STRESS 
 

In patients with CHF and animal models of HF 
excessive oxidative stress in skeletal muscle has been 
linked to peripheral hypo-perfusion as a consequence of 
low cardiac output and peripheral endothelial dysfunction 
(67-70). Various neurohormonal factors, including 
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catecholamines, angiotensin II, and cytokines, all known to 
be increased in heart failure, can activate the generation of 
reactive oxygen species (ROS) by activating ROS 
producing enzyme like xanthine oxidase or altering 
mitochondrial function (for review see 71). A cross-talk 
between oxidative stress and local inflammation has to be 
postulated. ROS are known to induce the expression of 
inflammatory cytokines (72), and it is also described that 
cytokines themselves promote the production of ROS 
(15,72). The concentration of ROS in the tissue has to be 
tightly controlled since it contributes to loss of muscle bulk. 
For this purpose the skeletal muscle, as all other tissues, is 
equipped with a variety of anti-oxidative enzymes like 
copper-zinc superoxide dismutase (CuZnSOD), manganese 
superoxide dismutase (MnSOD), glutathione peroxidase 
(GPX), and catalase (Cat) to protect the cells from ROS 
attacks (73).  

 
Has exercise training any influence on the 

oxidant-antioxidant homeostasis in the skeletal muscle? To 
address this question we have to discriminate between 
single exercise bouts and an exercise program over a longer 
period of time. It is very well documented in the current 
literature that heavy exercise is associated with a dramatic 
increase in oxygen uptake particularly by the skeletal 
muscle. Using electron spin resonance spectroscopy (ESR), 
Davies et al (74) demonstrated that free radical signals 
were intensified in rat hind limb muscle after an acute bout 
of treadmill running to exhaustion. No data are available so 
far analyzing the impact of endurance training on ROS 
production by using ESR. Looking at the antioxidant 
system more data are available with regard to exercise 
training. At least four different studies, two animal studies 
(75,76) and two human studies (77,78), indicate that 
exercise training induces the expression of anti-oxidative 
enzymes in the skeletal muscle by 40 to 100%. This 
observation is not limited to CHF. Also in healthy animals, 
exercise training increases protective stress proteins in 
skeletal muscle including anti-oxidative enzymes and heat 
shock proteins (79,80). 

 
The concept that exercise training in CHF 

patients exerts long-term anti-oxidative effects is further 
supported by the convincing normalization of lipid 
peroxidation and a reduction in nitrotyrosine formation, as 
measures of local oxidative stress, seen in the skeletal 
muscle of CHF patients after 6 months of exercise training 
(78). This attenuation in local oxidative stress was closely 
associated with a decrease in the rate of skeletal muscle 
apoptosis in CHF (78). 
 
7. IMPACT OF EXERCISE TRAINING ON 
METABOLISM AND MITOCHONDRIAL 
OXIDATIVE PHOSPHORYLATION 
 

As a matter of fact, large metabolic defects are 
central features of the skeletal muscle from CHF patients 
and animal models of the syndrome. In several studies a 
rapid phosphocreatine (PCr) depletion, an increase in 
lactate production during exercise and a delayed PCr-
recovery at the end of exercise could be documented 
(81,82). Skeletal muscles of CHF patients usually show an 

increased activity of glycolytic enzymes, whereas 
mitochondrial volume and enzymes of oxidative 
phosphorylation are significantly decreased (3,83). A 
fundamental enzyme system for energy production and 
transfer in the skeletal muscle is the PCr system. In a few 
studies it could be documented that the MM-isoform of 
creatine kinase (CK), as well as the mitochondrial isoform 
of the enzyme (mi-CK), is affected in the skeletal muscle of 
patients with CHF. These CK isoenzyme alterations could 
change the function of mitochondria including energy 
production as well as the sarcoplasmic reticulum. This will 
lead to a mismatch between energy production and 
utilization. Therefore, the decreased oxidative capacity of 
the skeletal muscle and the altered mitochondrial regulation 
and energy transfer may be a mechanistic link for the 
decreased oxygen utilization and exercise capacity, which 
are hallmarks in CHF.  
 

Already in 1985, Howald and colleagues 
investigated the impact of endurance exercise on the 
ultrastructural morphology of skeletal muscle mitochondria 
(84). They could show, that endurance training promotes an 
increase in volume density of the mitochondria and an 
increase in mitochondrial protein expression. With the 
possibility to measure the function of the total 
mitochondrial population in situ using freshly saponin 
skinned muscle fibers it became evident that in an animal 
model exercise training over a period of 8 weeks (cages 
equipped with a running wheel) nearly fully restored 
metabolic parameters as well as oxidative capacity, 
mitochondrial enzymes and components of the 
phosphocreatine system (85). An explanation for the 
beneficial effect of exercise training on the CK system 
might be the anti-inflammatory effect of exercise training 
leading to a decreased expression of the inducible nitric 
oxide synthase (iNOS) (23), which demonstrates an inverse 
relationship with the mi-CK isoform (86). Beside nitric 
oxide, PGC-1alpha is another factor that may influence 
muscle oxidative capacity . PGC-1alpha plays a key role in 
regulating mitochondrial biogenesis in the skeletal muscle 
(for review see 87,88). The expression of PGC-1alpha is 
downregulated in experimental HF (7) and patients with 
CHF (8). Concerning the impact of exercise training of 
humans on the expression of PGC-1alpha only few data are 
available. Analyzing the impact of exercise training in 
healthy subjects Kuhl and colleagues detected after 12 
weeks of a combined aerobic and strength training a 
significant increase in PGC-1alpha protein expression (89). 
Performing a low-intensity concentric and eccentric 
endurance-type training program in patients with coronary 
artery disease over a period of 8 weeks no alterations in 
PGC-1alpha were evident (90). The reason for this 
discrepancy in outcome is speculative at the moment, but 
one explanation may be exercise intensity. So far no results 
are available for patients with CHF enrolled into a training 
program.  
 
8. IMPACT OF EXERCISE TRAINING ON 
CAPILLARY DENSITY IN SKELETAL MUSCLE 
 

The vascular bed in skeletal muscle functions to 
supply oxygen and to remove waste products from skeletal
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Figure 1. Schematic drawing of alterations in the skeletal muscle elicited by exercise training finally leading to an improvement 
of exercise capacity. 
 
muscle fibers. Therefore, the relative capillary density of a 
muscle strongly correlates with the oxidative or endurance 
capacity of the muscle (91,92). In humans it is well 
established that exercise conditions result in an increase of 
capillaries per muscle fiber and an increase in capillaries 
per millimeter squared of muscle tissue (92). On the other 
hand immobilization results in a decrease in vascular 
density (93). Is this also the case in the situation of heart 
failure? Several studies, using either animal models (94) or 
investigating skeletal muscle biopsies obtained from 
patients with CHF (83,95,96), demonstrated that the 
capillary density per muscle fiber is significantly reduced. 
A possible explanation for the vascular rarefaction may be 
an increase in endothelial apoptosis (94) or the reduction in 
angiogenic growth factors like vascular endothelial growth 
factor (VEGF) (for review see 97). Upon an exercise 
training program an upregulation of VEGF (98) and 
subsequently an increase of vascular capillaries was noted 
(97,99).  
 
9. PERSPECTIVE 
 

During the last years the knowledge of molecular 
alterations occurring in the skeletal muscle of patients with 
CHF after an enrollment into an exercise program has 
dramatically increased. It is recognized that exercise 

training has an influence on fiber type composition of the 
skeletal muscle and exerts an anti-inflammatory effect. 
Furthermore, it is anti-catabolic, via an increase in IGF-1 
expression and a downregulation of the ubiquitin-
proteasome system and an inhibition of apoptosis. On the 
energetic site exercise training favors the expression of 
oxidative enzymes and the energy transfer via 
mitochondrial creatine kinase. A schematic drawing of the 
effects of exercise training on the skeletal muscle is 
depicted in Figure 1. All these beneficial effects on the 
skeletal muscle in conjunction with alterations in endothelial 
function and central hemodynamics lead to a reduction in 
mortality (100) and an improvement in quality of life.  
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