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1. ABSTRACT 
 

Human diseases, such as Alzheimer’s and 
Creutzfeldt-Jakob’s are associated with misfolding and 
aggregation of specific proteins into amyloid fibrils sharing 
a generic cross-beta structure (1). The self-assembly 
process is complex, but once a nucleus is formed, rapid 
fibril formation occurs. Insight into the structures of the 
oligomers during the lag phase, varying between hours and 
days, is very difficult experimentally because these species 
are transient, and numerically using all-atom molecular 
dynamics because the time scale explored is on the order of 
10-100 ns (2, 3). It is therefore important to develop 
simplified protein models and alternative methods to 
sample more efficiently the conformational space. In the 
past few years, we have developed the activation-relaxation 
technique (ART nouveau) coupled to the OPEP coarse-
grained force field. This review reports the application of 
ART-OPEP on protein folding and aggregation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 INTRODUCTION 
 

A remarkable property related to amyloid plaque 
formation is that this process is shared by related-disease 
proteins (e.g. the Aβ protein for Alzheimer’s disease and 
the prion protein for Creutzfeldt-Jakob’s disease) and non-
homologous peptides of variable length as short as four 
amino acids. We can therefore attack the complexity of the 
aggregation process on two fronts by simulating either low-
order species (e.g. monomers and dimers) of full-length 
proteins or higher-order species (e.g. 10-mers) of short 
peptides (4). In this review, we report the application of the 
activation-relaxation technique (ART nouveau) coupled to 
the OPEP force field on both types of systems and focus 
specifically on the knowledge that can be obtained 
regarding the energy landscape of protein aggregation. 
Because ART-OPEP has advantages and limitations as any 
method, it is important to show that this protocol provides 
pertinent information on the structures and folding
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Figure 1. Two-dimensional example of an energy 
landscape. Each point on this surface corresponds to a 
unique configuration. 
 
pathways of monomeric peptides studied by more standard 
methods. 
 

In what follows, we first describe the concept of 
energy landscape and the details behind the ART-OPEP 
methodology. Then we focus on the folding simulations of 
the most studied model, namely a β-hairpin of 16 amino 
acids in solution. The final part of this review is essentially 
centered on ART-OPEP simulations of amyloid-forming 
peptides in settings varying from monomers to dodecamers 
and the monomer of the full-length Aβ protein. In the 
following article of this issue (5), we report on the 
applications of molecular dynamics and replica exchange 
molecular dynamics coupled to the OPEP force field in 
order to extract thermodynamics information.  
 
3. THE ENERGY LANDSCAPE PICTURE 
 
3.1. The configurational energy landscape 

The concept of energy landscape takes its root in 
the transition state theory (TST) developed by Eyring (6) 
and Wigner (7) in the 1930's that associates the kinetic of 
chemical reactions with the relative free energy of various 
conformations. It was only 20 years later, however, in the 
1960's, that this concept was defined as such. Goldstein, for 
example, used the energy landscape picture as a tool for 
understanding glasses, a disordered system characterized 
by a high level of frustration (8). While the idea of energy 
landscape can appear as somewhat abstract, it was 
considerably refined in the 1980's by Stillinger and Weber 
(9) and really took off, in the 1990, when it was adopted by 
a large fraction of the glass and the protein communities 
(for a more complete historical description, see Ref. (10)).  
 

The energy landscape picture represents the 
projection of the total phase space onto the spatial 
coordinates as a function, generally, of the configurational 
energy (Figure 1). The advantage of this representation is 
that it encompasses not only the structure of a given 
configuration but how it is connected to other 
configurations nearby. This gain is in large part abstract, 
though, since it implies a high-dimensional representation 
that is not really available to our limited brains. 

The difficulty of representing the energy 
landscape limits considerably the usefulness of this picture 
for understanding the dynamical properties of complex 
systems such as proteins and glasses, and most efforts in 
the last two decades have focused on developing clever 
projections that offer a usable description of the dominant 
properties of the energy landscape. Of course, no unique 
projection of a high-dimensional problem onto a one or 
two-dimensional space can provide the full picture; some 
can even lead to conflicting understanding if inappropriate 
coordinates are selected. 
 

In spite of the challenge associated with finding a 
meaningful representation, the concept of energy landscape  
provides a very convenient basis for discussing the kinetic 
and dynamical properties of complex systems, such as 
proteins, that cannot easily be analyzed using more 
standard representations. This was the case, for example, 
for the solution of Levinthal's paradox, stated in the 1960's 
(11): how can a protein always fold into its native state if 
the number of conformations available reaches 
astronomical proportion? A first convincing answer was 
provided by Wolynes and collaborators (12), based in large 
part on theoretical studies of proteins on lattices: natural 
selection has chosen  amino acid sequences that have a 
strong bias toward folding into their native state or, more 
concisely, proteins have a funnel-shape energy landscape 
that brings any initial state rapidly into the same minimum 
free-energy structure. 
 

The standard funnel picture, presented in the top 
panel of Figure 2, shows a very deep and steep landscape. 
While the protein can be trapped briefly in some metastable 
states, that can be disordered or partially ordered (or even 
fully ordered but non-native (13)), the overall trend is 
strongly towards the native state. Of course, this 
representation is a strong simplification as in reality the 
funnel is 3N dimensional, where N is the number of atoms. 
For example, the two-dimensional funnel drawn in Figure 2 
does not explain the two-state model observed in 
thermodynamical measurements of folding and unfolding 
of simple proteins. Moreover, pathways in a high-
dimensional space are much more complex than in 2D and 
one would imagine an overall funnel where the peptide 
fails to reach a native state. 

 
To circumvent this representation problem, 

Becker and Karplus (14) introduced the disconnectivity 
graph, a new projection from the energy landscape based 
on a distance both in configuration space (separated by a 
number of adjacent minima) and in energy. The typical 
funnel landscape can be represented here as in the bottom 
panel of Figure 2. The bottom of each leaf indicates the 
minimum-energy of a given configuration and the position 
of the branch, at the top of the leaf, the relative activation-
barrier to go from one minimum to another connected to 
the same branch. Although clear spatial information is now 
lost, information regarding the dynamics is highlighted 
through the clear appearance of relative barriers, helping 
identify efficiently the nature of the dominant dynamics 
with a detailed knowledge of the various activated 
mechanisms. 
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Figure 2. The bottom of each leaf indicates the minimum-
energy of a given configuration and the position of the 
branch, at the top of the leaf, the relative activation-barrier 
to go from one minimum to another connected to the same 
branch. Although clear spatial information is now lost, 
information regarding the dynamics is highlighted through 
the clear appearance of relative barriers, helping identify 
efficiently the nature of the dominant dynamics with a 
detailed knowledge of the various activated mechanisms. 

 
Recently, Rao and Caflisch introduced yet 

another graph (15) that goes beyond the funnel picture with 
a representation in terms of a network representing the 
connectivity between various basins, defined using a 
standard Cartesian metric. Instead of focusing solely on the 
native state, this representation helps recreate the ensemble 
of folding trajectories and emphasizes the existence of a 
number of quasi-essential intermediate states for folding. 
While this approach has not been used much since its 
introduction (16), it provides direct kinetic information that 
can be missed in simpler representations.  
 
3.2. The free-energy landscape 

It is possible to use similar concepts for the free-
energy landscape. However, one must be careful because 
the free energy involves an integral to define the entropy.  
In the phase space, which defines the free energy, there is 

no landscape since every point has the same probability 
(17). As such, the concept of free-energy landscape is only 
valid when projected onto a relatively low-dimensional 
space, with the other degrees of freedom integrated, 
providing sufficient information for defining the entropy. 
As was pointed out by Krivov and Karplus (18), however, 
the relevant space of reaction coordinates can still be much 
larger than two dimensions so that the planar projection, 
necessary for the visualization, can introduce artifacts 
leading to an inaccurate description of the dominant free 
energy barriers.  
 
4. EXPLORING THE LANDSCAPE 
 

One of the major difficulties associated with the 
use of the concept of energy landscape is the need for 
constructing it, sampling at least the most important parts. 
For fast systems, such as liquids, molecular dynamics 
simulations are sufficient to sample the relevant 
configurational space. The problem is more challenging for 
proteins since the fastest ones fold on a µs timescale, and 
more sophisticated approaches are needed.  

 
These methods can be classified into three 

groups: (1) biased sampling, (2) reweighting methods and 
(3) activated approaches. The first set of methods 
introduces biases in the sampling to force the system to 
visit less frequent parts of the phase space. These methods 
include transition path sampling (19), metadynamics (20) 
and milestoning (21), for example. The challenge here is to 
find the appropriate reaction coordinate to drive the bias 
efficiently. In the absence of such a coordinate, these 
methods become increasingly expensive with more 
complex systems, when the relevant part of the phase space 
becomes too small or when the barriers are important 
compared with the melting temperature. The second set of 
methods, such as Wang-Landau algorithm (22), replica 
exchange molecular dynamics (REMD) (23) and, to a 
lesser degree, the weighted-histogram method (WHAM) 
(24), focuses on producing a more balance sampling of the 
energy landscape or, in the case of WHAM, on extracting 
as much information as possible from independent 
simulations. While these approaches can help the sampling, 
they are limited by the efficiency of moving from one state 
to another and have not delivered as much as we could 
have expected initially for large and complex systems.  
 

The final set of methods is appropriate for 
systems with a dynamics dominated by activated 
mechanisms (21, 25-31). This is the case, for example, of 
proteins, at least in implicit solvent.  Activated methods 
generate pathways connecting adjacent local minima via 
first-order saddle points, reconstructing physical pathways 
as defined by the transition state theory (6).  The phase 
space is therefore reduced to a discrete network composed 
of local minima connected via activated states, decreasing 
considerably the number of states to sample (see Figure 3). 
This network can be generated through continuous 
trajectories such as with the activation-relaxation technique 
(ART nouveau) (27) or assembled through a random and 
biased search (32).  Activated methods are not sensitive to 
the height of the barriers and can therefore move rapidly
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Figure 3. Activated methods, such as ART nouveau, 
sample a much reduced configurational space consisting 
only of local minima (large blue dots) connected by 
pathways defined by the position of the transition state 
(small purple dots) explaining, in part, the efficiency of 
these methods. 
 

 
 
Figure 4.  Cartoon representing the first steps of an ART 
nouveau event. Starting from a local minimum, the 
structure is pushed in a random direction until a direction of 
negative curvature appears. The structure is brought along 
this direction, minimizing its energy in the perpendicular 
hyperplane until it reaches an adjacent first-order saddle 
point. 
 
through the configurational space.  They lack a proper 
thermodynamical basis, however, which restricts their 
application. In spite of these limitations, activated 
approaches have provided many insights in protein folding.   
 
4.1. The activation-relaxation technique 

There exist many methods for identifying 
transition states. Most of them, such as the rubber band 

method of Elber and Karplus (28), the variational Verlet 
algorithm (29), the nudged elastic band method (NEBM)  
(30) or milestoning (21) require the knowledge of both the 
initial and final state in addition to a rough guess of the 
transition.  Moreover, the initial and final states must be 
nearby, separated by at most a few intermediate states. 
Longer pathways are unreliable since the resulting 
trajectory is strongly dependent on the initial guess.  

 
Of course, for proteins, we do not know the 

intermediate states and we must turn to methods that can 
identify transition states without a priori knowledge of the 
final state, such as ART nouveau (27) or similar methods 
such as the dimer (31) and the eigenvector-following 
methods (26, 33). While these methods are basically 
equivalent (34), we focus here on ART nouveau  that was 
developed by one of us.  

 
An ART nouveau (simply called ART, for 

shortness, in the rest of this review) event can be divided in 
four steps (Figure 4):  

 
(i) starting from a local minimum, the system 

is pushed slowly in a random direction; at 
each step, we evaluate the value of the 
direction of lowest curvature (the lowest 
eigenvalue of the Hessian matrix); when the 
lowest curvature becomes negative, we stop 
the push in this random direction; 

 
(ii) the configuration is then displaced along 

the direction of negative value while the 
energy is minimized in the orthogonal 
directions; 

 
(iii) when the total force reaches a value close to 

zero, the systems has converged onto a 
transition state (first-order saddle point); 

 
(iv) the system is then moved over the saddle 

point and relaxed into a new minimum, 
completing the event defined by the initial 
minimum-transition state-final minimum. 

 
Let us review these steps in some details. For a 

small peptide, up to about 15 amino acids, the initial 
displacement is taken as a random vector in the (3N-6) 
dimensional space where rotational and translationnal 
degrees of freedom are removed; all atoms are therefore 
displaced, each in a random direction.  For a larger protein 
or ensemble of peptides, the initial random displacement is 
generally made on a subset of all atoms, to allow for a 
faster sampling. In all cases, the initial displacement 
excludes moves along the strong forces associated with 
covalent bonds and bond angles since these directions are 
strictly harmonic by definition.  

 
Once the initial direction is set, the protein is then 

deformed very slowly, displacing all atoms by a total of 
about 0.4 Å at each step. After each displacement, the 
protein conformation is relaxed in the hyperplane 
perpendicular to the move away from the initial minimum. 
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This step prevents building too much stress in the system 
during the first phase of activation for a better control of 
the activation.  After each move, the value of the lowest 
curvature is calculated, from the force field, using the 
Lanczós algorithm. Starting with a random vector, we 
apply the algorithm to construct a small tridiagonal matrix 
that we can diagonalize, obtaining value of the lowest 
curvature and the corresponding eigenvector.  Reusing the 
result as a starting point for another application of the 
Lanczós method, we converge rapidly onto a stable 
eigenvector  that evolves slowly as iterations progress.  

 
The presence of a first-order saddle point is 

signaled by the appearance of a negative eigenvalue in the 
Hessian. To prevent the system from going back into the 
harmonic basin, with only positive curvature, we set a 
threshold below zero for starting the convergence to the 
transition state. This threshold depends on the potential and 
the system under study. The choice of this parameter is not 
very critical and it affects the success rate of the activation 
process but not the type of events found (27).  

 
Once the edge of the harmonic basin is reached, 

the system is pushed along the direction of negative 
curvature, away from the initial minimum. While the initial 
push might involve only a subset of all the atoms, here, the  
whole system is free to move. After each step along the 
eigenvector, the Hessian is diagonalized again, with 
Lanczós algorithm, and the system is relaxed in the 
hyperplane perpendicular to this direction using an 
adaptative steepest-descent algorithm.  Iterations stop when 
the absolute value of the force perpendicular to the ridge 
falls below typically 0.1 kcal/ (mol⋅Å) and the total force, 
below 1.0 kcal/ (mol⋅Å), meaning that a new transition state 
has been identified, or when the lowest curvature become 
positive, in which case we start again from the initial 
minimum.  

 
From the saddle point, the structure is pushed 

away from the initial minimum along the direction of 
negative curvature and then relaxed, using damped 
molecular dynamics, into a minimum. Most of the time, the 
final state differs from the initial configuration and an event 
has been generated. In some case, however, the saddle 
point identified corresponds to a shoulder in the potential 
energy landscape and the structure goes back to the initial 
minimum.  

 
Once an event is generated, it can be used in  

multiple ways.  If one is interested in characterizing the 
energy landscape around a single minimum, then this event 
is simply stored and a new event is started from the same 
point (27, 35).  It is also possible to perform an 
accept/reject, using the Metropolis criterion, for example,  

paccept = min 1,exp −∆E /kBT( )[ ]
 

with either the activation barrier (16) or the asymmetry 
energy (the energy of the final state minus that of the initial 
minimum) (27). In general, we have used the latter criterion 
as we would need to know the complete distribution of 
barriers around a local minimum in order to use the 

activation barrier meaningfully. By using only the 
asymmetry between adjacent minima, the method ensures 
that at least each configuration is weighted appropriately 
with respect to the others.  
 

Wales and collaborators have used events 
generated with a similar method to construct a sparse 
network similar to that of Figure 3, from which it is 
possible to extract the fastest folding pathway, for example 
(36, 37). This approach, called discrete path sampling, has 
been used to study folding of a β-hairpin, for example (37). 
While discrete path sampling provides very useful kinetic 
information, the numerical effort needed to extract 
pathways makes it difficult to assess the impact of a missed 
barrier or varying prefactors that could modify the 
dominant folding pathway. Moreover, the quantity of 
events needed to construct a sufficiently connected network 
increases rapidly with the number of degrees of freedom so 
that this method is difficult to apply to larger systems.  

 
In this Review, we focus on the more 

straightforward approach to sampling the landscape using a 
Metropolis criterion based on the energy difference 
between the initial and the final minima at each event. By 
doing so, we generate a fully connected walk through the 
energy landscape.  Because this constructed landscape is 
reduced to a discrete set of local minima, ART does not 
include entropic contributions. The temperature used in the 
Metropolis accept/reject procedure is therefore unphysical 
and is generally set in such a way that the trajectories do 
not remain trapped in metastable states. 

 
The main reserve about this approach is that the 

ART-constructed trajectories do not respect detailed 
balance nor belong to a well-defined thermodynamical 
ensemble. This is due to the fact that we do not know what 
the bias of ART is for finding one nearby saddle point 
instead of another. This criticism is valid. However, 
numerous tests and comparisons, many described below, 
find a strong similarity between the ART folding 
trajectories and those obtained from more standard 
techniques such as molecular dynamics.  

 
We have investigated this question in a 

comparative ART study of the β-hairpin, using two 
different Metropolis criteria: one based on the barrier 
height and the other on the standard asymmetric energy 
(16). As can be seen from Figure 5, which superposes some 
of the intermediates explored by two runs using different 
Metropolis criteria, we find results in agreement with what 
can be expected from the network picture of folding 
observed by Rao and Caflisch (15). Specifically, there exist 
a number of well-connected intermediate structures, or 
hubs, that seem to connect various parts of the 
configurational space. Irrespective of the method used, 
these intermediate structures will be found as long as the 
pathway generated is continuous. Even though the kinetic 
varies considerably from one specific folding trajectory to 
another, the overall picture remains unchanged.  

 
ART-generated trajectories are possible pathways 

that should capture the qualitative feature of folding or 
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Figure 5. Top: Two folding trajectories using a different 
Metropolis accept/reject criterion based on either the 
energy barrier or the energy difference between the final 
and the initial minima. Bottom: Superposition of 
conformations found in these two sets of simulations. For 
each pair of conformations, we indicate the energy and the 
RMSD. Even though the detail of folding depends on the 
criterion used, we find the same intermediate structures. 

 
aggregation since these are dominated by well-connected 
hubs. Because the relative weight of one hub over the other 
is subtle, the relative probability of the various folding 
mechanisms identified by ART cannot be used. While this 
might be construed as somewhat of a drawback, 
comparisons with various experiments and other 
simulations show rather that the trajectories identified with 
this method cover a wide range of specific conditions and 
can therefore be used to understand experimental setups 
that cannot easily be simulated, for example.  

 
4.2. The OPEP potential 

The OPEP (Optimized Potential for Efficient 
prediction of Protein Structure) is a generic force field that 
can be used for any amino acid sequence, with L- or D-
amino acids. It is based on a coarse-grained representation 
of the amino acids, where all backbone atoms are included 
and all side chains are represented by a specific bead (38).  
While such a reduction in the number of degrees of 

freedom was proposed in 1976 by Levitt and Warshel (39), 
the originality of OPEP lies in a good compromise between 
energy accuracy, structural precision and computational 
cost (40). A force field  with implicit solvent and coarse-
graining of the side-chains cannot capture all the details of 
the interactions between the side-chains and between the 
side chains and the solvent, as the all-atom molecular 
mechanics AMBER force field (41) or all-atom 
spectroscopic force fields (42).  However, we find it 
possible to design an energy function that discriminates 
native from non-native structures on an ensemble of 30 
proteins (43), and predict, using Monte Carlo simulations, 
lowest-energy structures consistent  with experimental data 
(44, 45). Full details of the energy function balancing side-
chain – side-chain interactions (with both hydrophobic and 
hydrophilic components), dihedral angles of the backbone 
and hydrogen-bonding interaction can be found in Ref. 
(43). As discussed in this review and the next article of this 
series, OPEP has been coupled to ART nouveau (46), 
molecular dynamics simulations (47) and REMD 
simulations (48). Of interest for this review is that the 
OPEP-generated free energy surface of small proteins is 
fully consistent with experimental data, independently of 
the starting conformation used, providing further support of 
the capability of the OPEP force field to reproduce 
thermodynamical data as well (48).  
 
5. THE β-HAIRPIN 
 
 The first step towards developing a full 
understanding of protein folding is to identify the 
mechanisms by which the secondary elements, such as α-
helices and β-sheets, form. With dominant local 
interactions, α-helices form rapidly, within a few hundred 
ns for a 21-residue model (49-51). Beta structures are more 
difficult to create as they involve non-local interactions. 
This difficulty is observed even in β-hairpins, where the 
folding time can be 10 or more times slower than the 
helices, reaching many µs. 
 
 One of the most studied model is the second β-
hairpin (GEWTYDDATKTFTVTE) of the domain B1 of 
protein G , which has be the subject of an extended range 
of theoretical (52, 53) and experimental studies (54, 55).  
With a melting point near room temperature, this peptide  is 
not stable enough in solution for high-resolution NMR   
determination but it adopts, with a significant probability, a 
β-hairpin conformation near that found within the full-
length protein G (54). Moreover, early fluorescence 
experiments show that this β-hairpin folds, in isolation, 
with a time constant of 6 µs with a kinetic consistent with 
that of the two-state folding model, i.e., with only two 
dominant states: folded and unfolded (55).   
 
 If experiments can often offer the details of the 
native structure, it is much more difficult to obtain 
information about the folding mechanisms and, from there, 
a clear explanation of the important folding time difference 
between the hairpin and a helix (56, 57). There has been 
significant progress, however, in the recent years. Ising-like 
models derived from NMR and temperature-jump  
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experiments (55, 56), that consider native interactions only, 
suggest that the zipper-mechanism explains much of the 
experimental data (56). In agreement with this picture, 
mutations and φ-value analysis also point to the importance 
of forming a loop as the rate-limiting step in the folding of 
a β-hairpin (58, 59).  Dyer et al., using FTIR and T-jump 
relaxation, conclude that the loop rearrangement could be 
the rate-limiting (60).  
 

Much of the experimental picture depends finely 
on the models used to explain the data. To validate those,  
we must turn to simulations in order to follow precisely the 
sequence of events leading to the folded state. But 6 µs is a 
long time for computer simulations, and many new 
approaches, attempting to overcome the time limitation, 
have been used to try to solve this problem, transforming 
this fundamental question into a test-bed of new 
computational methods applied to the protein folding 
problem. The hairpin was therefore studied under a wide 
range of representations that go from all-atomic empirical 
force-field with explicit (61-73) and implicit solvent (18, 
71, 74-76) to coarse-grained off-lattice potentials with 
implicit solvent (52, 53, 77-79), biased-potentials (80, 81) 
and minimal models (82).  
 
 The simulation methods are as varied as the 
molecular descriptions with straightforward unfolding (83-
85) and folding molecular dynamics (66, 74, 86), activated 
methods (52, 53, 73, 75), replica exchange molecular 
dynamics (64, 72, 87-91), transition path sampling (92), 
distributed computing (71), self-guided molecular 
dynamics (93), multicanonical Monte Carlo (79) and other 
free-energy calculation methods (65, 94, 95), and statistical 
models (82).  
 
 Initial simulation work had identified two 
dominant folding mechanisms: the zipper out and the 
zipper in models. In the zipper out mechanism, the turn 
forms first, with the H-bonds propagating from there. This 
mechanism was first proposed based on an Ising-like model 
(55, 82) and observed in lattice Monte Carlo simulations as 
the dominant model (80).  A similar mechanism, controlled 
by the hydrophobic core near the turn, which forms first 
and propagates from there, was identified by the same 
group (80) as well as by off-lattice model Langevin (81) 
and all-atom MD simulations (96).  
 
 The zipper in mechanism is dominated by the 
hydrophobic core: the two extremities come in proximity 
pulled in by the hydrophobic core, the H-bonds form 
nearby and propagate inward, towards the turn. This 
mechanism was identified in multicanonical MC (79), all-
atom unfolding MD  (83-85), Gō-based (86), REMD (64) 
and distributed MD simulations with implicit solvent (71). 
 
  ART-OPEP, while suffering from the limitations 
described in section 4.1, could provide a more 
comprehensive picture of folding (53, 97).  Eighty-two 
folding simulations were launched at 300 K, from a fully 
extended conformation, using different initial random 
seeds. Three sets of parameters were used: the standard 
OPEP force field (52 runs), a modified OPEP potential (20 

runs) and a Gō-like potential (10 runs). From all these 82 
trajectories, counting between 4000 and 9000 trial events, 
36 reached the native state, including 16 with the standard 
OPEP parameters. Here the definition of the native 
structure is very strict:  less than 2.0 Å RMSD from the 
hairpin structure within protein G (PDB code 2GB1), a well 
defined hydrophobic core and six H-bonds formed. 
Focusing on the trajectories leading to the native state, Wei 
and collaborators identified three folding pathways (53, 
97): the two pathways already observed, the zipper out (see 
Figure 6 (a) and zipper in (6b) mechanisms, and a third 
one, the reptation mechanism. This latter move occurs 
when a loop forms at the wrong place and the peptide chain 
is characterized by a network of non-native H-bonds. 
Slowly, however, following fluctuations, one strand “walks” 
over the other, in a reptation move, until the two strands are 
aligned and the peptide forms the native state (6c).  
 
 These results were important for two reasons. 
First, they demonstrated, for the first time, the predictive 
power of ART-OPEP, showing that even though the 
algorithm does not have detailed balance, the folding 
trajectories are physically possible and overlap with other 
better characterized algorithms such as molecular 
dynamics.  Second, the reptation mechanism underlines the 
importance of non-native interactions during folding, and 
puts into question the use of unfolding and Gō-models 
where non-native interactions play either a small role or 
none at all.  
 
 In the recent years, experimental and numerical 
analysis of the folding pathway of various β-hairpins has 
continued. All-atom MD and REMD simulations found that 
asymmetric hairpins, stabilized by non-native H-bonds, are 
common in hairpins varying in length between 9 and 16 
residues (73, 93, 95, 98, 99).  The identification of the 
reptation move is more difficult, especially with techniques 
such as REMD that provide only thermodynamical 
information. Many works have studied shorter β-hairpins, 
counting as little as 9 residues. Because of the tight turn 
and the shorter branches, these hairpins seem to show a 
narrower range of mechanisms. A detailed analysis of an 
extensive set of MD folding trajectories of the trpzip2 
peptide (12 residues) failed to reveal any reptation moves 
(70). Chen and Xiao, however, studied the 9-residue 
peptide designed by Blanco et al. (100) with an implicit 
solvent and found folding mechanisms that incorporated a 
mixture of the mechanisms discussed above, including 
reptation  (74). Imamura and Chen studied the impact of 
the position of the hydrophobic interactions on the various 
folding mechanisms using a coarse-potential with MC 
(101). They found that if the hydrophobic core is placed at 
the turn, then the dominant mechanisms should be 
symmetric, including the zipping out, zipping in and middle 
out.  According to these authors, the reptation move, which 
they found in their simulations, does not depend on the 
position of the hydrophobic core. 
 

It is not clear how to reconcile all these different 
results. Restricting the discussion to the β-hairpin of 
protein G, the exact nature of the folding pathways remains 
debated today in part because it is still difficult to obtain
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Figure 6.  (a) A representative folding trajectory of the zipper out mechanism (mechanism I) (only accepted events are counted): 
The turn forms first (event 53), which forces the two branches to come together (event 80) and allows the formation of the H-
bonds from the center to the end points (events 109 to 471). (b) A representative folding trajectory of the zipper in mechanism 
(mechanism II): the peptide collapses in a random coil (event 55), then forms partially a helix (events 169 and 280), as it stretches 
out, the end points meet and form native H-bonds (events 528), the H-bond network propagates towards the turn (events 567 and 
600). (c) A representative folding trajectory of the reptation mechanism (mechanism III): the peptide collapses into a random coil 
with two turns (event 55), a short non-native hairpin forms (event 84), one branch slides over the other, moving the turn in the 
direction of the center (events 99 and 301), the two branches align themselves (event 302) and the native hairpin forms (event 
334).
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Figure 7. The various pathways identified for a dimer of Aβ (16-22). The arrows indicate the direction of the pathway and the 
double lines indicate hydrogen bonds. The runs in which a given transition observed are indicated by either Rx or Sx, with x a 
number.  The initial states are indicated in (a) (a parallel β-sheet) and (b) (two anti-parallel α-helices).  Except for the α-helical 
conformations, which are never revisited, pathways can enter and leave all states. 
 
good statistics with all-atom potentials and explicit solvent. 
For example, a recent all-atom MD simulation, using 
GROMOS96, found only 3 folding events in a 278-ns 
simulation (72) while a recent REMD study with AMBER 
and implicit Poisson-Boltzmann solvent model identified a 
single pathway corresponding to the zipper in mechanism 
(76). While ART-OPEP could not provide the definitive 
answer, its efficiency allowed enough statistics to identify a 
new folding mechanism that was observed directly and 
indirectly afterwards by standard simulation techniques. 
These results on the β-hairpin demonstrate that the network 
nature of the protein energy landscape makes ART-OPEP 
valuable to generate relevant folding and certainly 
aggregation pathways. 
 
6. AGGREGATION OF SHORT PEPTIDES 
 
  The discovery of short peptides with 4-8 amino 
acids forming amyloid fibrils in vitro (102-104) was a 
major advance for the computational community as it 
allows the study of the first steps of amyloid-forming 
protein aggregation. Simulations remain challenging but we 
are beginning to see various approaches converging 
towards a unified picture.  
  
 The favorite peptide for computational studies is 
Aβ (16-22), of sequence KLVFFAE, corresponding to the 
central hydrophobic core of the amyloid-β protein 

associated with Alzheimer’s disease. Following the 
pioneering solid-state NMR study carried out by Balbach et 
al. (105), this peptide was studied using MD with explicit 
(106-109) and implicit (110) solvent, REMD with explicit 
solvent (111),  Monte Carlo with reduced representations 
(87, 112, 113) and ART-OPEP (114, 115).  Stability MD 
simulations support the experimentally-derived anti-parallel 
organization (108).  This orientation is also confirmed in 
the biased MD aggregation study of three monomers (109).  
Interestingly, the latter study suggests the obligatory 
presence of α-helical intermediates on the aggregation 
pathways (109). 
 
 We have generated ART-OPEP simulations on 
the monomer, dimer (115) and trimer of Aβ (16-22) (114), 
without introducing any bias towards a specific structure.  
While the structure of the monomer has not been 
characterized experimentally, ART-OPEP simulations 
suggest a random coil structure, in agreement with other 
simulations (109, 113).  For the dimer, simulations are 
started from either a parallel β-sheet or two α-helices with 
a Metropolis temperature selected such that the ordered 
structures are visited while ensuring an overall satisfactory 
sampling of the conformational space. The lowest-energy 
minimum is anti-parallel in character with a H-bond 
network matching the solid-state NMR pattern of the fibril 
(pattern I in Figure 7) Analysis of the low energy structures 
shows that the system can populate many local minima  
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Figure 8. Basic rearrangement mechanisms observed by ART-OPEP for motion without full detachment. (a) The transition 
between patterns I and III (previous figure) takes place by a rotation of one chain with respect to the other following by a 
reptation step. (b) The transition between patterns I and IV was seen to occur by a two-step reptation move. (c) We also observe 
pathway connecting pattern I to pattern II going through a rotation of both chains. Figure 9. All-atom β-sheets of higher energies 
formed by the trimer of Aβ (16-22), as determined by ART simulations. Registries A to E are antiparallel in character, whereas 
registry F mixes parallel and antiparallel strands. The superposed structures in A, B, and F result from independent runs 
indicating that theses structures can be found through many trajectories. 
 
with anti-parallel orientations of the chains and distinct H-
bonding patterns as is shown in Figure 7, and notably the 
second NMR pattern of Balbach et al. (82). The existence 
of these metastable dimeric states with various H-bond 
registries was confirmed by all-atom MD simulations  
(110). 
  

As seen in Figure 7, ART-OPEP trajectories 
provide information on the various pathways. The dimer 
moves through intermediate anti-parallel states with various 
registries as well as from anti-parallel to parallel 
organization without the need for  α-helical intermediates. 
Even though the parallel β-sheet, corresponding to the 
conformation adopted by the full-length Aβ in the fibril, 
has an energy 3 kcal/mol higher than the anti-parallel sheet, 
it is sampled in many runs, independently of the initial 
conformation. This result has also been observed on the 
same dimer using REMD simulations with the AMBER94 
force field (111) and on the trimer of GNNQQNY, using 
CHARMM 19 where various orientations appear as 
metastable states (116). The reference in the orientation is 
therefore simply a matter of balancing the various 
contributions to the configurational energy.  

 
Analyzing the rearrangement mechanisms within 

the two-stranded β-sheet, we find that the two chains can 
detach and reattach. But they can also move by a reptation 
mechanism similar to that of the β-hairpin, a rotation of one 
chain with respect to the other or by a combination of both 
rotation and reptation moves (see Figure 8).  Interestingly, 
the reptation mechanism was also observed on aggregates 
of Aβ (16-22), by FTIR experiments (117), confirming our 
numerical results. 

ART-OPEP simulations of the Aβ (16-22) trimer 
support the results observed on the dimer: the NMR- 
derived anti-parallel β-sheet with the 16+k↔22-k registry 
is one of the three lowest-energy structures, (see Figure 9 
(a)). The two other lowest-energy structures have one 
strand shifted with respect to the native state (Figure 9 (b) 
and (c)). (105). It is important to note that these three 
predicted conformations are also found to be stable in 
explicit solvent MD simulations at 330 K for at least 7 ns, 
using the GROMOS96 force field.   

 
Other groups have also obtained results similar to 

those of ART-OPEP. Favrin et al. manage to observe the 
aggregation of dimers, trimers and hexamers using Monte 
Carlo with moves restricted to φ and ϕ angles, reducing 
considerable the phase space available, but by a method 
completely different from ART-OPEP, and yet obtaining 
very similar results (112). The structures observed for the 
dimer and trimer are not confined to Aβ (16-22), however. 
Lei et al., in all-atom MD simulations of the dimer of 
NVHTLSQ, a seven-residue peptide from human β2-
microglobulin, also find many metastable β-sheets with 
various orientations and bonding networks (118).   

 
But ART-OPEP simulations also sample higher 

energy structures, characterized by very diverse H-bonding 
patterns and monomer orientations (see Figure 9 d-f). Since 
the fibril-compatible state is already populated to some 
extent within a trimer, it is possible that some of the other 
higher energy trimeric states might share structural 
similarities with the off-pathway intermediates observed 
experimentally This point remains to be determined, 
however.  
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Figure 9. All-atom β-sheets of higher energies formed by the trimer of Aβ (16-22), as determined by ART simulations. 
Registries A to E are antiparallel in character, whereas registry F mixes parallel and antiparallel strands. The superposed 
structures in A, B, and F result from independent runs indicating that theses structures can be found through many trajectories. 
 

As more chains are added it becomes much more 
difficult to generate structured aggregates for this sequence. 
For example, recent replica exchange Monte Carlo 
(REMC) simulations  using an all-atom implicit solvent 
potential on six Aβ (16-22) peptides only find amorphous 
aggregates with little β-sheet contents (113) even though 
ordered structures remain stable over many hundred ns 
(106, 107).  

 
Even with a coarse-grained force field such as 

OPEP, it is difficult to form well-ordered structures for six 
Aβ (16-22) peptides because the number of attractive 
intermolecular interactions (due essentially to the presence 
of five hydrophobic amino acids) can stabilize many 
disordered structures. To reduce this number, we have 
turned to KFFE, the shortest peptide known to form 
amyloid fibrils in vitro (102), and studied tetramers (119), 
hexamers  (120), heptamers (121), and octamers (122). As 
we discuss below, the characterization of these four 
oligomeric sizes provide a fairly complete picture of the 
first steps of aggregation for short chains, up to maybe 10 
residues. 

 
For simplicity, we focus here on the hexamer of 

KFFE. As for Aβ (16-22), unbiased ART-OPEP 
simulations are launched from a random orientation of 
isolated, unfolded monomers, ensuring that the initial state 

does not play any role in the formation of specific ordered 
structures.  Since the peptide is very short, it cannot 
collapse upon itself, leaving the side-groups and H-bonds 
available for intermolecular interactions. This accelerates 
the formation of ordered structures. For example, the 
hexamer assembles into ordered structures within typically 
less than 20 000 attempted events, fewer than 10 000 
accepted events.  

 
All 10 runs locate ordered structures which can 

be categorized into three generic families, following 
relatively well-defined aggregation pathways: 1) Two runs 
lead to a double-layer three-stranded β-sheet (see Figure 
10, panel a). 2) Four runs lead to a tetramer-plus-dimer 
structure with the dimer often positioned in a direction 
orthogonal to the axis of the tetramer (panel b). 3) Four 
runs go to a six-stranded β-sheet folding onto itself into an 
open β-barrel (panel c and d).  Although the detailed 
structure of the KFFE amyloid fibril has not been 
characterized experimentally, it is interesting to note that 
structure 1, a double-layer three-stranded β-sheet, displays 
intra-sheet and inter-sheet distances, respectively 4.5. Å 
and 10-12 Å (Figure 11), in agreement with the x-ray 
diffraction measured distances of 4.7. Å between strands 
and 10-11 Å between sheets in amyloid fibrils (105).  
While the intra-sheet orientation is mixed, suggesting that 
more ordered states are possible, these results indicate that  
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Figure 10. The three lowest-energy structures found from unbiased ART-OPEP simulation of a hexamer of KFFE. (a) The 
double-layer three-stranded β-sheet; (b) the double-layer tetramer-dimer structure; and (c-d) the β-barrel hexamer. In (c), only the 
main chains are indicated while in (d), a ball-and-stick representation with the Phe residues, labelled F, indicated as spheres. The 
arrows indicate pathways observed in the simulations. 
 
even the hexamer of KFFE is compatible with the amyloid 
structure.  This is not so surprising given the presence of 
the two phenylalanine amino acids (104). 

 
While ART does not provide any information 

regarding the dynamics and does not have detailed balance, 
our experience with the hairpin and the Aβ (16-22) dimer 
and trimer shows that the aggregation trajectories generated 
with ART-OPEP are qualitatively representative of what is 
observed by other methods, when these results are 
available.  For the hexamer of KFFE, these trajectories are 
most interesting. Figures 12 and 13 show the aggregation 
trajectory leading to the formation of the double-layer 
three-stranded β-sheet. Figure 12a follows the energy as a 
function of the number of accepted events. The energy 
drops rapidly, within 1000 events, before reaching a plateau 
(between event numbers 1000 and 2000) where a number 
of important rearrangements take place, as can be observed 
in the the relative orientation of a few dimers (panel b). 
Once all chains are well-stretched, they only have to align 
themselves to fall into place and the energy drops rapidly 
between events 2000 and 3000.  Because ART continues to 
search for new local conformations, however, the system is 

not confined to this low-energy structure and we see that it 
continues to evolve after reaching the run’s energy 
minimum. Figure 13 shows the same trajectory through a 
sequence of cartoons that help picture the aggregation 
process. In particular, we see that once the two three-
stranded β-sheets are formed, there is still some 
considerable motion of one sheet with respect to the other, 
including a orthogonal positioning (panel e) before the two 
fall into place.  

 
Similar intermediates were observed by our 

group in the simulations of tetramers (119), heptamers 
(121) and octamers (122) of KFFE, and can be reduced to 
three dominant ordered structures in addition to the 
amorphous state: (1) the bi-layer β-sheet; (2) the β-barrel, 
which protects its hydrophobic residues from contact with 
the solvent; and (3) the single-layer β-sheet stabilized by a 
monomer, dimer or more, laying perpendicular to the sheet, 
such as is observed in Figure 13 (e).  These three structures 
have been observed, all or partially, in other simulations. 
Stability studies, by Nussinov et al. and other groups, 
showed that the multi-layer β-sheet is very stable for a 
large number of sequences (108, 123-126).  Many other  
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Figure 11. Two different views of one double-layer three-stranded β-sheet hexamer of KFFE generated from a random 
conformation using ART-OPEP. The two layers are perfectly parallel and show a parallel inter-plane organisation with a mixed 
in-plane orientation. (a) View perpendicular ot the fibril axis; (b) view perpendicular to the fibril axis. The dotted lines indicate 
the position of H-bonds. The N-terminal of each chain is indicated by a larger sphere.  The distances indicated are in full 
agreement with the x-ray diffracted characteristic lengths associated with an amyloid fibril.  
 

 
 
Figure 12. Characterization of the self-assembly pathway as a function of accepted event leading to the formation of the double-
layer hexamer shown in Figure 16.  (a) Evolution of the energy as a function of accepted event.  (b) The intersheet orientation , 
calculated using the scalar product between vectors defined between the two end points of each monomer, for three pairs of 
chains found in the final structure. 
 
groups observed structure, often a single sheet for 3 or 4 
chains, starting from random conformations. For example, 
Favrin et al. observed structure 3, in two forms, in their 
simulation of Aβ (16-22) using a simplified model (112). 
Röhrig et al. also find, in simulations of Aβ (16-22) 
ranging from a dimer to 32-mer, that the tetramer adopts 
structures similar to structures 1 and 3 identified by ART-

OPEP (the single-layer tetramer cannot bend into a barrel, 
of course) (107).   

 
Comparing various simulations, it is clear that 

although similar ordered structures are found, the 
probability of these varies strongly with the sequence, but 
also the force field and the simulation conditions. For  
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Figure 13.  A generic assembly pathway constructed from 
the aggregation trajectories observed in the ART-OPEP 
simulation of an hexamer of KFFE.  (a) Starting from six 
monomers with random orientations, (b) a first dimer 
forms, with the four other chains in a random 
conformation, (b) a third chain joins the original dimer, (c) 
while the three remaining random chains also assemble into 
a trimer, (d) the two trimers rotate and move around each 
other, adopting a perpendicular orientation, (e) finally, the 
two trimers organize themselves into a parallel interstrand 
arrangement with a mixed β-sheets. Dotted lines represents 
H-bonds between chains.  
 

 
 
Figure 14.  Low-energy structure of tetramer of Aβ (11-
25). This structure is obtained through an ART-OPEP 
simulations starting from a well-formed antiparallel dimer 
and two monomers placed at 30 Å from the dimer. This 
structure, a three-stranded β-sheet stabilized by a fourth 
strand laying across the sheet is typical of what is observed 
in these simulations even though its lies more than 25 
kcal/mol above the native state.  
 
example, while the tetramer of Aβ (16-22) has a non-
negligible probability to visit a four stranded β-sheet (47), 
Wu et al.  and Colombo  et al. could not manage to obtain 
ordered β-sheet of NFGAIL using MD with AMBER (127) 
or GROMOS force fields (128).  

 
In spite of the variability in the ART-OPEP 

trajectories (see also Wei et al. in this issue) seen between 
different sequences, we start to have a good understanding 
of the structure of small oligomers formed by short 
peptides and the paths leading to ordered β-sheet structures. 
We find that various ordered topologies with β-sheet 
content are in equilibrium with amorphous aggregates, the 
early steps of aggregation are dominated essentially by 

side-chain - side-chain interactions, while the late steps are 
dominated essentially by H-bonds, through, notably, 
reptation moves. These findings are consistent with IR 
spectroscopy (117) and were confirmed numerically by a 
recent MD study on the dimer of human transthyretin (105-
115) peptide (129).  

 
We must now turn to studying larger oligomers 

of the same short peptides and understanding the 
oligomeric structure of longer chains, more relevant from a 
biological point of view. ART-OPEP trials on dodecamers 
of NFGAIL have led mostly to amorphous structures, even 
using fast activated methods (130) and new approaches are 
clearly needed. As for longer chains, they are the topic of 
the next section.   
  
7. MONOMERS AND DIMERS OF LONGER 
PEPTIDES 
 
Longer chains of 10 residues or more show a much richer 
aggregation behavior than the short peptides discussed in 
the previous section.  They are also much more difficult to 
simulate as the space of conformation becomes very costly 
to explore in detail for most methods. Activated techniques, 
such as ART-OPEP, can therefore play an important role in 
identifying possible intermediates and aggregation 
pathways, where sampling with standard methods becomes 
problematic. However, even with an activated approach, 
the aggregation of long chains remains challenging.  
  
 This is clearly observed in the aggregation 
simulations of a tetramer of the 15-residue fragment Aβ 
(11-25) which provides an ideal length midway between 
the short fragments presented in the previous section and 
the full-length Aβ peptide. Various experiments indicate 
that this peptide assembles in vitro into amyloid fibril with 
anti-parallel orientation of the chains (131, 132). ART-
OPEP simulations of the monomer (133) suggest, in 
agreement with experiments on  closely related sequence  
(134), that random coil, α-helices and β-sheets are present 
in similar proportion excepts in very polar solvent. Stability 
ART-OPEP study of the four-stranded β-sheet (131, 132) 
also fits experimental results. However, ART-OPEP 
simulations are unable to lead to ordered structures when 
starting from initial random structures. The monomers 
come to together and form amorphous aggregates with 30% 
β-sheet content, at best. Even simulations starting from a 
preformed dimer fail to reach the ordered anti-parallel 
tetramer, converging instead onto a well-formed anti-
parallel three-stranded beta-sheet stabilized by a fourth 
chain laying across the β-sheet (see Figure 14). These 
results indicate that the enhanced flexibility of monomers 
of about 10 residues or more, compared to that of shorter 
chains, changes qualitatively the aggregation process. If a 
tetramer of Aβ (16-22) explores well-formed β-sheets, a 
longer peptide will favor less-ordered structures, mostly for 
entropic reasons, as it can adopt many more disordered 
conformations while protecting its hydrophobic core.  
 
 It appears therefore that the current numerical 
tools are not powerful and rapid enough to simulate, from a 
random solution, the aggregation process of peptides of 10  
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Table 1. Interproton distances for Aβ (21-30). 

ROEs 21α-23N 22α-24N 24α-26N 28α-30N 22α-30N 

SC1-ART 3.12 4.04 4.46 4.42 4.77 
SC2-ART 3.31 3.59 4.64 4.94 7.42 
SC3-ART 4.12 5.03 4.69 4.69 4.22 
NMR-1 4.79 3.64 4.63 4.55 5.38 
NMR-2 4.92 3.54 4.33 5.07 4.84 

C1-REMD 4.97 6.36 5.38 4.36 6.53 
Weighted-averaged interproton distances for the three families of structures of the fragment Aβ (21-30) identified in ART-OPEP 
simulations (140) compared to NMR-derived distances (136) and the best structure of all-atom REMD simulations with implicit 
solvent (138).  Distances larger than 5Å, which are considered to violate the constraints, are indicated in bold. 
 
 

 
 
Figure 15. Top: The lowest-energy structure identified in 
ART-OPEP simulations of the monomer of Aβ (1-28). 
Bottom: Lowest-energy structure for the dimer of Aβ (1-
28). Residues A2-R5 are colored in blue and Q16-A22, in 
read. Chain 1 is colored in green and chain 2 in yellow. 
 
residues or more with reasonable atomic details. Before 
facing this question, we must therefore characterize better 
the configurational space of a monomer and dimer of long 
peptides and see how it is possible to restrict the space of 
possible structures as chains are added. 
 
 A first test of the approach was performed on the 
monomer of Aβ (21-30) (AEDVGNKGA), a segment of 
the amyloid-β peptide which is known to be part of a loop 
in the fibril and was thought to play a nucleation role in the 
Aβ aggregation process (135). The interest for this 
fragment came from a partial proteolysis experiment by 
Lazo et al., who identified he 21-30 as protease resistant for 
both Aβ (1-40) and Aβ (1-42) sequences (136). The high-
resolution NMR analysis of the peptide Aβ (21-30) that 
followed identified two dominant structural families for the 

10-residue fragment both characterized by a turn at residues 
Val24- Lys28 (136). Such a structuration is very rare for 
10-amino acid sequences and is a useful test for various 
simulations methods and potentials. These included 
standard all-atom explicit solvent MD (137), all-atom 
REMD simulations with an implicit solvent (138), coarse-
grained implicit-solvent discontinuous MD (139) and ART-
OPEP simulations (140).  
 
 As usual, the ART-OPEP simulations (using the 
OPEP version 3.0 parameters (43)) where started from a 
fully stretched conformation and run with a Metropolis 
accept/reject criterion based on the energy difference 
between the final and initial minimum for each event. In 
agreement with the other simulations, clustering analysis 
revealed that the peptide displays a strong bias towards 
forming a loop at Val24-Lys28. There are many ways to 
form such a loop and ART-OPEP identified three dominant 
clusters, but only one overlapped closely with a structure 
found in the REMD simulations (138). While ART-OPEP 
results differ in the details from other simulations, they 
provide the best agreement of all simulations with NMR 
distances (140): two of the three structural families 
identified in the simulation respect the 5 NMR-derived 
constraints while the third family violates only one (See 
Table 1).  In addition to providing new atomistic models 
respecting the NMR data, this study also demonstrates that 
ART-OPEP can also provide quantitative and not only 
qualitative information on the structural properties of 
monomers in solution. 
 
 The theoretical work on longer peptides is much 
more diverse and so it is not easy to compare the various 
methods. There has been a number of  MD and REMD 
studies on the 11-residue peptide Aβ (25-35) (141), and the 
longer peptides Aβ (10-35) (142-144) and  Aβ (12-36) 
(145, 146).  Due to sampling limitations, these works tend 
to focus on the monomer, providing mostly hints as to the 
dominant contacts observed on these essentially disordered, 
but not fully random structures.  
 

In this context, we have launched ART-OPEP 
simulations on both the monomer and dimer of Aβ (1-28), 
a peptide that has been extensively studied experimentally 
(147-152). This peptide has received very little attention 
numerically (153-155). ART-OPEP simulations starting 
from a fully stretched state show, in agreement with 
experiments, that the monomer is more than 50 % in
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Figure 16. Contact maps for the monomer (top) and dimer 
(bottom) of Aβ (1-28). In both cases, only the lower-energy 
structures are considered, i.e. below a standard deviation 
from the averaged energy sampled.  
 
random coil structure (156, 157). However, its overall 
shape is relatively well-defined, very often forming a 
double-hairpin, stabilized by an anti-parallel β-sheet 
between Ala2-Phe4 and Tyr10-Val12 (Figure 15a). As is 
generally the case with ART which provides structures at 
their minimum, the structures tend to be more ordered than 
those explored experimentally, or by MD. However, ART 
simulations have the advantage of providing a much clearer 
picture of the dominant structural features.  

 
While results on the monomer are in qualitative 

agreement with experiment, it is the conformational change 
from the monomer to the dimer that is most interesting. The 
bottom panel of Figure 15 presents one of the lowest-
energy structures obtained for the dimer.  As we can see, 
dimerization, that leads to 50 kcal/mol gain in energy over 
two well-relaxed isolated monomers, produces a much 

more ordered structure.  While the dominant contacts 
remain in the same regions as for the isolated monomer, the 
two chains are now fully intertwined with a locally anti-
parallel organization but a globally parallel alignment. 
This is more evident by looking at the contact map (Figure 
16) calculated only on the lower-energy configurations. 
Since ART does not sample within any well-specified 
thermodynamical ensemble, an exact weighing of the 
various conformations is not possible. However, we can 
focus on the lower-energy structures, defined here as those 
with an energy below one standard deviation under the 
average energy of the whole set of visited structure (<E> – 
σ). This low-energy subset provides considerable 
information on the dominant structures that should be 
visited by the peptides. In the top panel, for example, we 
see that residue Phe4 has a strong probability to form a 
contact with residue Leu17 in the monomer. The same is 
true for the dimer (bottom panel), where residue Phe4 of 
the first chain shows a large propensity to form both an 
intramolecular contact with residue Leu17 and an 
intermolecular contact with residue Leu17 of the second 
chain (residue 45).  A careful study of the various contacts 
reveals a similar pattern of contacts.  

 
The ART-OPEP study of the monomer and dimer 

of Aβ (1-28) indicates a strong propensity of the N-
terminal, in particular the amino acids E3-F4-R5, to form 
β-sheets, stabilizing the locally anti-parallel structure. 
Clearly, the structural properties of the dimer are not 
consistent with that of the fully formed fibril, indicating 
that a structural change must take place as the fibril grows, 
a result that has not yet been observed by other simulation 
techniques at the moment.  

 
The real goal of simulations is, of course, to 

reach biologically-relevant systems, such as full-length Aβ.  
Numerical work on the full sequence has proceeded on 
three fronts. First, it focused on the stability, at least within 
the MD-reachable time scale of the various proposed fibril 
models (158, 159). While providing a useful verification of 
the NMR-derived structure, they cannot really offer any 
indication of the aggregation pathway. Second, all-atom 
MD and REMD simulations have focused on the monomer 
of Aβ40 or Aβ42 (2, 3, 160, 161) since these two 
sequences, that differ by only two amino acids, show 
qualitatively different aggregation pathways.  Results from 
Baumketner et al. show a Aβ42 monomer that is mostly 
random coil (160), while Sgourakis et al. find much more 
structuring for both Aβ40 and Aβ42 (161). The third 
approach, finally, is focused on the description of the 
aggregation process using simplified potentials and discrete 
MD (99, 162-164). These simulations can certainly indicate 
possible intermediates but they tend to have strong bias 
towards aggregation and lack the sequence specificity. 
They represent currently, nevertheless, the only possible 
approach for the study of large-scale aggregation.  

 
ART-OPEP has also been applied to the full Aβ 

sequence, generating 10 runs of 30 000 events for both 
Aβ40 and Aβ42. Preliminary results are available at the 
moment. As with all-atom MD simulations, we find that 

both monomers are mostly random coil and sample a wide
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Figure 17. Low energy structures for the monomer of (a) 
Aβ40 and (b) Aβ42 from runs performed with ART-OPEP 
starting from fully extended state. The residues L17- E22, 
corresponding to the hydrophobic central core, are marked 
in red.  
 
range of structures. In some cases, we recover the C-
terminal hairpin observed by Skourakis et al. (161) for 
Aβ42 (see Figure 17), but we also observe a tendency for 
the N-terminal to assemble into a hairpin, a behavior 
similar to that observed in the monomer of Aβ (1-28), 
albeit with a lower probability. If we only consider the 
lowest-energy state for each of the runs, we see that the 
monomer of Aβ40 is almost as likely to form β-strands as 
Aβ42, with a percentage of β-strand, calculated over the 
lowest-energy state of each of 10 runs, of about 25 % for 
the former, compared to about 28 % for the latter. 
Representative structures for both Aβ40 and Aβ42 are 
shown in Figure 17.  We see that both sequences visit some 
very similar structures. We also note also that the central 
hydrophobic core, residues 17-21, marked in red, is very 
disordered in agreement with NMR study (135). Clearly, 
the conformations sampled by the monomer do not seem 
sufficient to explain the kinetic differences observed in the 
aggregation of Aβ40 and Aβ42 (165). 
  
8. SUMMARY AND PERSPECTIVES 
 
 The simulation of protein aggregation is a major 
challenge that cannot be tackled heads on with current 
computing facilities. It is necessary to approach this 
problem from multiple angles making various 
approximations, in order to develop a complete and 
coherent picture of the aggregation process.  
 
 In this review, we have focused on an activated 
approach, ART nouveau, coupled with the generic OPEP 
coarse-grained force field. This approach can go beyond 
qualitative prediction for the monomer of Aβ (21-30) 
(141). This demonstrates that in spite of its limitations, 
ART-OPEP can also provide quantitative match to 
experiments, with structures in full agreement with NMR 

measurements. Both components were developed for 
protein folding of non-amyloidogenic sequences and are 
therefore not biased for following the aggregation of 
amyloid-forming proteins. ART-OPEP has proven 
especially useful in identifying the richness in the structure 
of the small aggregates of short chains, a richness that was 
confirmed by many other works. Of course, any simulation 
method is only as good as its two components: the model 
— determined by the force field — and the sampling method 
— MD (47), REMD, MC (38) or ART. Since ART and OPEP 
are independent, both can be used with other methods. OPEP, 
for example, was also used with MC, MD and REMD.  On 
proteins, ART has also been used with internal coordinates 
using FLEX and AMBER (166). While ART can work with 
any derivable potential, it must be used with implicit solvents 
since it only samples local-energy minima.  
 

Activated simulations on amyloid-forming 
peptides of various length indicate that there is an 
important difference in the early steps of aggregation 
between short (less than 10 amino acids) and long peptides. 
Results on the monomer and dimer of Aβ (1-28), for 
example, indicate that their populated structures are very 
far from the amyloid fibril structure, while the dimer of 
KFFE, Aβ (16-22) and other related sequences already visit 
fibril-competent structures, albeit with a probability of 10-
20%. Similar conclusions can be drawn for the monomer (this 
work) and the dimer of Aβ40 and Aβ42 (in preparation). At 
this point, as was shown in this review, activated methods with 
unbiased coarse-grained potentials, i.e., not biased towards the 
formation of amyloid fibrils, are certainly a very promising 
approach to explore these questions.  
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