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1. ABSTRACT 
 

Understanding the role of biomolecular dynamics 
in cellular processes leading to human diseases and the 
ability to rationally manipulate these processes is of 
fundamental importance in scientific research. The last 
decade has witnessed significant progress in probing 
biophysical behavior of proteins. However, we are still 
limited in understanding how changes in protein dynamics 
and inter-protein interactions occurring in short length- and 
time- scales lead to aberrations in their biological function. 
Bridging this gap in biology probed using computer 
simulations marks a challenging frontier in computational 
biology. Here we examine hypothesis-driven simplified 
protein models in conjunction with discrete molecular 
dynamics in the study protein aggregations, implicated in 
series of neurodegenerative diseases, such as Alzheimer’s 
and Huntington’s diseases.  Discrete molecular dynamics 
simulations of simplified protein models have emerged as a 
powerful methodology with its ability to bridge the gap in 
time and length scales from protein dynamics to 
aggregation, and provide an indispensable tool for probing 
protein aggregation. 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Protein aggregation is known to implicate in the 
etiology of a range of human diseases such as the 
Alzheimer’s disease, Creutzfeldt–Jakob disease, 
Parkinson's disease, Huntington's disease and Amyotropic 
Lateral Schelerosis (also known as Lou Gehrig's Disease, 
ALS) (1). Many of these diseases are prevalent in adult 
humans, inherited genetically, and are often fatal. The 
presence of fibrillar proteinaceous deposits termed “senile 
amyloid plaques” is characteristic of the Alzheimer’s 
disease onset (2). Similarly mutations in the cytoplasmic 
Cu, Zn Superoxide Dismutase enzyme (SOD1) are the 
precursor in the onset of a significant fraction of familial 
ALS (FALS) disease. Understanding the fundamental 
biophysical principles and molecular-level mechanisms of 
protein aggregation is of immense interest in the biological 
and medical research community. Significant changes in 
protein conformational dynamics and stability are often 
associated with protein misfolding/aggregation. An 
accurate understanding of structural dynamics, kinetics and 
energetics of proteins and how it relates to their cellular 
function and aggregation-associated cytotoxicity is 



Review on protein aggregation modeling and simulation  

4796 

indispensable in order to comprehensively describe 
molecular-level protein conformational changes lead to 
aggregation and diseases.  
 

Alterations in protein sequence leads to changes 
in conformational dynamics, kinetics and energetics of 
proteins. These changes may result in significant 
changes in the native state stability of proteins, often 
leading to aggregation-prone conformations. For 
instance, multiple missense mutations in the cytosolic 
SOD1 genes are found, each of these mutations leading 
to the FALS disease phenotype (3). In poly-glutamine 
neurodegenerative disorders, such as Huntington’s 
disease and related cerebrospinal atrophies, insertion of 
poly-glutamine repeats in proteins beyond 35-45 
glutamines (caused by erroneous expansion of -CAG- 
nucleotide sequence in corresponding genes) leads to 
aggregation (4). Such alterations in the primary 
sequence manifest as changes in protein folding kinetics 
and thermodynamics, thereby facilitating non-native 
misfolded conformations. Oligomerization of non-native 
conformations ultimately leads to fibrillar aggregate 
formation. 
 

Molecular dynamics (MD) simulations have 
emerged as a potent and predictive tool to study 
aggregation mechanisms at molecular levels. Over the 
last decade, many computational tools for modeling 
protein dynamics have been developed to study protein 
aggregation using MD simulations. Discrete molecular 
dynamics (5, 6) (DMD) simulations explore long time 
scales and length scales of simulations (7) and have 
therefore emerged as an especially useful tool to 
simulate protein aggregation. Notably, physiologically-
relevant protein dynamics spans multiple orders of 
length and time scales, often with significant 
conformational changes in constituent proteins, thereby 
necessitating the use of simplified/coarse-grained 
protein models with unconventional MD simulation 
approaches such as DMD to investigate protein 
aggregation. The extent of simplification used in the 
model is often correlated with the complexity of the 
protein being investigated.  
 
Applications of simplified protein models focusing on 
protein folding and design have been reviewed earlier (8-
10). In this article, we present some of the recent research 
frontiers wherein simplified protein modeling and DMD 
simulations of protein aggregation have lead us to a better 
comprehension of the changes involved in protein 
dynamics potentially lead to aggregation and cause 
cytotoxicity. Broad applications of DMD simulations in 
probing protein dynamics and aggregation are discussed 
earlier; see articles by Urbanc et al. and Hall et al. (5, 6, 
11).  During the last decade, several protein models of 
different complexities have been developed for use in 
DMD simulations to probe protein aggregation. Here we 
focus on case-studies showing the applications of 
simplified protein models having different complexity and 
how DMD simulations of simplified protein model forms 
an indispensable tool to investigate protein aggregation. 
 

3. DISCRETE MOLECULAR DYNAMICS (DMD) 
ALGORITHM 
 

The discrete molecular dynamics (also known as 
discontinuous molecular dynamics, DMD) algorithm is 
event-driven, i.e. increments in the simulation trajectory 
occurs as inter-particle collision events occur. This is 
opposed to conventional MD simulations, wherein periodic 
Verlet integration is used to update the corresponding 
trajectory. A fundamental difference between DMD and 
conventional MD simulations is the use of step-wise 
(square-well) potentials for two-body interactions, as 
opposed to continuous potentials (e.g. Lennard-Jones 
potential). Due to square-well nature of the interaction 
potentials in DMD, particles translate with constant 
velocities before colliding with neighboring particles. Upon 
collision, the particle velocities are updated instantaneously 
following conservation of energy and momentum of 
colliding particles.  

  
Simulation advancements in the form of inter-

particle collisions results in significant acceleration in 
computational time required for DMD simulations (7). As 
opposed to periodic updates in MD simulations, the 
principal computation in DMD is of sorting a list of 
collision events and finding the soonest collision. The 
chapter Step Potentials in the book The Art of Molecular 
Dynamics Simulations (12) describes the prototypical 
algorithm as well as the software code for performing 
DMD simulations. Computational sorting of numeric data 
is a software engineering challenge. Recent advancements 
in sorting algorithms and computer architectures assist in 
rapid sorting of collision events resulting in improvements 
in computational costs of DMD simulations. As a result of 
the simplifications in modeling protein structures, DMD 
simulations of simplified protein models are found to 
exhibit many orders of magnitude improvements in 
computational performance and conformational sampling 
efficiency as compared to conventional all-atom MD 
simulations (9).  
 
 Because of the ability of DMD to explore 
significantly longer time and length scales, DMD 
simulations of simplified protein models has emerged as an 
especially useful tool for computational analyses of protein 
aggregation. While the fundamental algorithm of DMD was 
known as early as 1959 by the work of Alder and 
Wainwright (13) and later applied to studying dynamics of 
polymer chains by  Rapaport (14, 15), pioneering work in 
application of DMD and simplified one-bead protein 
models was done in the last decade by Zhou and Karplus 
(16), where the authors used the one-bead protein model to 
study the folding of a model three-helix bundle protein. 
Soon after, DMD with simplified protein models was 
widely used to study folding dynamics of model proteins 
(16-19).  
 
 Events in DMD simulations consist of two-body 
inter-particle collisions. The simulated system is often 
constrained in a cubical box and the constituent particles 
are also referred to as beads. The simulation box is further 
subdivided into many cubical cells having dimensions 
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larger than the interaction range between particles, to 
reduce the search space for computation of subsequent 
collisions to adjoining cells. DMD simulations 
incorporate the periodic boundary condition to 
overcome finite dimensions of the box used to perform 
the simulation. A heat bath based on the Berendsen 
thermostat (20) or the Anderson thermostat (21) is used 
to control the simulation temperature. During the course 
of the simulation with Berendsen thermostat, periodic 
rescaling of particle velocities is performed at a constant 
rate in order to scale the existing temperature to the 
desired simulation temperature. In simulations with the 
Anderson thermostat, each particle randomizes its 
velocity according to the Maxwell’s distribution due to 
random collisions with the time intervals following 
Poisson distribution. 

 
The first step in the simulation process is of 

initializing the coordinates and velocities of particles 
and a collision event list to enlist the pairs of colliding 
particles. The second step constitutes identifying the 
soonest colliding particles; say pi and pj, and scheduling 
the collision. Upon collision, the coordinates and 
velocities of colliding particles pi and pj are 
instantaneously updated following the laws of 
conservation of linear momentum, angular momentum 
and energy before and after collision. The collision 
between the two particles is recorded into the collision 
event list and potential immediate collisions of particles 
pi and pj with other particles are identified and 
scheduled in the collision event list. Repeating these 
steps multiple times lead to evolution of the simulation 
trajectory. Thermodynamic and biophysical properties 
along the simulation trajectory such as particle 
coordinates, particle velocities, potential energy, 
temperature, radius of gyration are periodically stored to 
record the simulation progress.  

 
Besides DMD, many computational protocols 

have been developed to study protein aggregation. These 
approaches include molecular dynamics simulations in 
explicit (22, 23) or implicit solvent (24, 25), Monte Carlo 
simulations (26), activation-relaxation technique (27, 28) 
and parallel tempering simulations (29). Applications of 
these computational techniques towards protein 
aggregation are presented in a recent review by Ma and 
Nussinov (30). It is important to highlight the similarities 
and differences between DMD simulations and these 
computational protocols for probing protein aggregation. 
Notably, replica exchange and simulated annealing 
algorithms are readily implemented using DMD for 
conformational exploration instead of using Monte Carlo or 
MD based conformational sampling. Prototypical DMD 
simulations involve an implicit solvation approach, wherein 
the inter-particle interaction potentials are scaled in 
accordance with solvent effects. Modeling of electrostatic 
salt bridge interactions (31) and hydrophobic, hydrophilic 
and hydrogen bond interactions (32) in DMD simulations 
are also discussed in Section 4. The simplification of the 
protein model results in improved predictive power at the 
expense of (8-10) higher numerical precision of force-field 
based explicit/implicit solvent MD simulations.       

4. INVESTIGATING PROTEIN AGGREGATION 
WITH SIMPLIFIED PROTEIN MODELS  
 

Over the last two decades, several simplified 
protein models (one-bead, two-bead, four-bead and united-
atom models) having differing structural resolution and 
complexity have been developed to study protein 
aggregation. Native structure-based Go model (33-36) have 
been extensively used to simulate protein folding and 
aggregation (11, 17, 19, 37, 38). Inter-particle interactions 
in the Go model are assigned based on the native state of 
the protein and are consequently biased towards the native 
state, thus Go models don’t use an ab initio force field. 
Recently, explicit modeling of inter-particle interaction 
potentials such as the hydrophobic and electrostatic salt-
bridge interactions in proteins have resulted in accurate 
protein models having remarkable predictive power (31, 
39, 40). While high-resolution protein models provide 
accurate structural details, they result in a larger number of 
beads representing the same protein. Increased 
computational costs associated with high-resolution models 
may prohibit simulations of large protein aggregates over 
experimentally relevant timescales. Thus, there is a 
necessity to design accurate computational models of 
proteins having different complexity and detail. In the 
remainder of this section, we highlight various cases 
wherein these simplified protein models are used along-
with DMD simulations to probe protein aggregation.  
 
4.1. One-bead protein models with Go-like potentials 

One of the simplest protein models used to study 
protein dynamics is the one-bead per residue model, which 
is based on a representation of each individual amino acid 
by a single sphere and the protein as a polymer with bead-
on-a-string representation (16, 17) (Figure 1a). Zhou et al. 
(41) used DMD simulations of a one-bead model to study 
first order phase transitions in a homopolymers chain of 64 
beads. The authors note that the first order disordered-to-
ordered phase transition exhibited by this model 
homopolymer was analogous to simulating conformational 
changes in the protein folding process, despite significant 
differences in the final native state conformations of two 
species.  
 

Later, Zhou and Karplus (16, 42) used the one-
bead model to study folding of a model three-helix bundle 
protein (16). Despite the inherent structural simplicity of 
the one-bead model, the simulations show experimentally 
observed transitions from a collapsed state to a native-like 
topology, whose folding thermodynamics was comparable 
to all-atom MD simulations by Bockzo and Brooks (43). 
These DMD simulations formed one of the early evidences 
of applicability of simplified models and DMD in probing 
protein folding and misfolding transitions. 

 
Dokholyan et al. (17, 19) demonstrated the 

ability of one-bead protein models to capture the 
thermodynamics and kinetics of folding and misfolding 
transitions in model proteins. The authors also used DMD 
simulations having Go potential for inter-residue 
interactions to characterize the folding nucleus of a model 
46-residue protein (19). Dokholyan et al. observed that few  
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Figure 1. Schematic diagrams of (a) the one-bead protein 
model, (b) the two-bead peptide model, (c) the four bead 
protein model Solid thick lines represent covalent and 
peptide bonds. Dashed thin lines denote effective bonds 
assigned to mimic the tetrahedral constraint of each amino 
acid and the planar constraint of the peptide bond. High 
resolution protein structures available in the Protein 
DataBank (89) are used to generate coordinates of effective 
beads in the simplified model. As described in the main 
text, DMD simulations of these simplified protein models 
have been extensively used to study protein aggregation. 
Furthermore, hydrogen bonding and hydropathic 
interactions can be added in the residue-interactions to 
probe the role of electrostatic and hydrophobic interactions 
in protein aggregation. 
 
contacts in proteins are essential for mediating the folding 
kinetics and energetics of the folding transition barrier (19). 
The authors also suggested that proteins having similar 
structures but differing sequence may share common 
locations of folding nuclei. Biophysical observations 
derived from these DMD simulations regarding phase 
transitions upon folding are general and expected to be 
consistent for folding transitions in other proteins.  
 

Clark (44) used the one-bead model to perform 
Langevin dynamics simulation of protein aggregation 
kinetics of protein G, L and their mutations, each 56 
residue long. The author used a simplified off-lattice 

cooperative folding model (non-Go interactions), 
representing each protein residue as a single bead. The 
mutations investigated disrupt hydrophobic interactions in 
the protein core without significantly changing the overall 
structure and folding propensities of the two proteins. 
Moreover, the simulation conditions are chosen to have 
similar populations of the folded states. The authors note 
that for simulations with these simplified models, folding 
cooperativity is the most significant determinant of folding 
time, estimating the effective population of folding 
intermediate. Clark observes that aggregates observed in 
simulations of the one-bead model are less structured as 
compared to the corresponding native states (44). 
 

Chahine and Cheung (37) used a simplified one-
bead per residue protein model to study reversible domain 
swapping of the p13suc1 protein. MD simulations with a 
Go-like potential were used to study the p13suc1 dimer 
formation. Two transition states, the monomer transition 
state and the dimer transition states are observed in the 
domain-swapped dimerization process, suggesting a “lock-
and-dock” mechanism for p13suc1 dimerization, wherein 
domain swapping of one strand of a monomer onto an 
adjoining monomer results in locking of the dimer 
conformation followed by docking to stabilize the domain-
swapped conformation (37).  The authors characterize two 
populated species coexisting at temperatures significantly 
lower than the folding transition temperature. The 
simulations also suggests that folding kinetics of native-like 
monomer formation will be significantly slower in the 
course of domain-swapping (37).  
 
4.2. Two-bead model applications in protein 
aggregation 

While the one-bead model is able to capture the 
salient features of protein folding kinetics (19, 45), the need 
to obtain structural details of the transition state ensemble 
(TSE) resulted in the development of the two-bead model 
of the protein (46), in which Calpha and Cbeta atoms were 
modeled as the constituent protein beads (Figure 1b).  
Khare et al. (38) used the two bead model with Go-type 
interactions to study folding of SOD1 protein monomer 
(discussed in section 5.2). Peng et al. (47) applied a two-
bead protein model with Go-like interactions to study 
aggregation of Abeta40 proteins into a fibrillar structure. 
DMD simulations of the Abeta40 protein at temperatures 
exceeding alpha-helix unfolding transition temperature 
show a conformational transition of the Abeta40 peptides 
into  multi-layered parallel beta sheets having an interstrand 
separation of 4.8 Angstroms, in agreement with the 
structure of the Abeta40 amyloid fibers derived using 
electron microscopy (48). Furthermore, the authors observe 
the presence of unbound beta sheet edges in the Abeta40 
amyloid aggregates predicted by DMD simulations which 
may facilitate further aggregation into longer oligomeric 
species.  

 
Simulations of amphipathic alpha-helix monomer 

folding demonstrated that the folding process is mediated 
via a competition between hydrophobicity and hydrogen-
bonding interactions in the alpha-helix residues. The 
temperature dependence of folding kinetics was also 
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dependent on the strength of hydrophobic interactions used 
in the simulation. Contributions of side-chain entropy and 
non-backbone hydrogen-bonding to folding kinetics was 
absent in this model, however, the authors suggested 
scaling the strength of square-well interactions based on 
side-chain hydrophobicities to model side chain 
contributions. Notably, a number of conformations are 
sampled in the simulations, including non-native 
topologies, which subsequently lead to misfolded 
aggregates.  

 
Smith et al. (49) studied the conformational 

transitions of a polyalanine chain to an alpha-helix using 
DMD simulations of a simplified two-bead protein model 
with excluded-volume and hydrogen-bonding interactions. 
The authors note that the (phi, psi) values adopted by the 
polyalanine chain during the course of conformational 
transitions in DMD simulation are limited to the valid 
protein regions in the Ramachandran map and that the 
formation of is alpha-helices is mediated by backbone 
hydrogen bonding and is largely cooperative. As opposed 
to polgyglycine chains, which adopt non-helical topologies, 
alanine polymers are mostly helical in nature. 
 
4.3. Four-bead model applications in protein 
aggregation 

The four-bead protein model captures significant 
details of the protein structure and is extensively used for 
studying protein aggregation using DMD simulations. In 
this model, three backbone beads N, Calpha, C and one 
side-chain bead Cbeta are used to represent each residue 
(Figure 1c). Ding et al. (50) developed a four-bead protein 
model with hydrogen bonding interactions for DMD 
simulations. The authors used this protein model to study 
the temperature dependent conformational transformations 
of a 16-residue long model polyalanine chain having alpha-
helical native conformation. In the DMD simulations, the 
authors observe that the alpha-helix native conformation 
changes into a partially-stable beta-hairpin conformation. 
The authors also note an important role of physicochemical 
nature of the protein environment and hydrophobicity of 
adjoining residues in governing the aggregation propensity 
of the polyalanine chain and suggest the presence of 
sequence-independent backbone hydrogen bonding 
mediates such conformational transitions. Larger entropy of 
the beta-hairpin conformation relative to the native alpha-
helix stabilizes the beta-hairpin. 
 

Hall and coworkers developed four-bead protein 
models to study ab initio DMD simulations of the assembly 
of 16 residue long amphipathic alpha-helices into a four-
helix bundle (51). The authors performed multiple DMD 
simulations to accurately sample the conformational space 
of the monomeric alpha-helix and the tetrameric alpha-
helical bundle and describe the tetramer folding landscape 
(51). Notably, the conformations explored by the helix 
monomers and the helical bundle in the DMD simulations 
were found to be consistent with experiments of DeGrado 
and coworkers (52-55). The authors also report rapid 
conformational sampling ability of DMD, leading to 
significant conformational sampling with less 
computational cost (49, 51) and the efficacy of the 

simplified protein model in understanding the dynamics of 
multi-protein complexes.  
 

Lam et al. (56) used DMD simulations of a four-
bead protein model with hydrogen bonds and amino-acid 
specific interactions to study temperature-driven 
conformational changes in the Amyloid-beta42 protein. 
The conformational changes observed in DMD simulations 
were found to be in good agreement with temperature 
dependent solution structures of Amyloid-beta protein 
determined by Gursky and Aleshkov (57). Under low 
temperature conditions, the Abeta42 protein was found to 
be mostly globular, however, beta-rich conformations 
lacking helical content are observed in simulations at 
elevated temperatures. While the folded Abeta42 showed 
dynamic conformational transitions, turns centered on the 
Abeta G25-S26, G37-G38 residues were found to be 
persistent and important for formation of amyloid fibrils.  
 

Urbanc et al. (58) applied a four-bead protein 
model for the Amyloid-beta protein to investigate dimer 
formation in Amyloid-beta aggregation and probe the 
oligomerization process of two predominant amyloid-beta 
alloforms, Abeta40 and Abeta42 using DMD. The authors 
report aggregation of both proteins into oligomers of 
variable sizes. Dimer conformations were generated using 
DMD simulations at different constant temperature 
simulations with the simplified four-bead protein model. 
These simplified protein conformations were converted into 
corresponding all-atom representations by superposition 
against amino-acid structural templates, and subsequent 
optimization using a Monte Carlo algorithm, resulting in a 
multiscale model of Abeta protein dynamics.  

 
Urbanc et al. (32) modified the four-bead protein 

model introducing effective hydrophobic, hydrophilic 
interactions in addition to the hydrogen bond interactions 
present in the original model lacking hydropathic 
interactions (58). Using this model, the authors investigated 
folding and oligomerization of the Amyloid-beta protein 
using DMD simulations. Both hydrophilic repulsion and 
hydrophobic attraction were found to be critical for 
modeling Amyloid-beta oligomer distributions consistent 
with experiments by Teplow and coworkers (59-61). 
Notably, oligomers resulting from folding and aggregation 
simulations of Abeta monomers displayed variable size 
distributions, with Abeta40 oligomers being predominantly 
dimeric while Abeta42 forming pentameric oligomers 
having globular, hydrophobic core (32). The authors 
suggest that the presence of Gly-37-Gly-38 turn in 
Abeta42, not observed in Abeta40 plays a crucial role in 
Abeta42 pentamer formation. These structural differences 
between high molecular-weight oligomers of Abeta40 and 
Abeta42 proteins were suggested to cause differences in 
oligomerization propensities of the two alloforms. 

 
Yun et al. (31) used DMD simulation with 

simplified four-beads per residue protein models to study 
the electrostatic interactions in Amyloid beta (Abeta) 
protein oligomerization and the role of electrostatic 
interactions between charged residues in the Abeta protein. 
Mechanistic differences between aggregation kinetics of 
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Abeta40 and Abeta42 were observed to be based on 
differences in electrostatic interactions between pairs of 
charged amino-acids in Abeta40 and Abeta42. Differences 
in protein aggregation propensities resulting from change of 
polypeptide length is of considerable interest in amyloid 
research community. The rates of aggregation for Abeta40 and 
Abeta42 proteins, the major components of amyloid plaques 
formed in Alzheimer’s disease, are significantly different. 
However, the precise mechanisms of these differences in 
aggregation propensities are not completely understood. The 
work of Yun et al. (31) suggests that electrostatic interactions 
in Amyloid beta-protein favor formation of larger oligomeric 
species in both Abeta40 and Abeta42, thereby shifting the 
oligomer size distribution to larger oligomers. However, the 
Abeta40 size distribution remains largely unimodal, while size 
distribution of Abeta42 is trimodal, in agreement with 
experimental findings. Importantly, differences in folded 
structures of Abeta40 and Abeta42 monomers are unaffected 
by electrostatic interactions. A C-terminus turn, found in 
Abeta42 folded structure is absent in Abeta40, suggesting a 
key role of the C-terminal tail in Abeta42 oligomerization. 
These simulations with simplified protein models also suggest 
inhibitors targeting the Abeta42 C-terminal domain may 
prevent oligomer formation thereby reducing its cytotoxicity. 

 
Smith et al. (51) probed the assembly of a 

prototypical tetrameric alpha-helical bundle using DMD 
simulations of a simplified four-bead per residue protein 
model having detailed backbone geometry (three beads 
modeling the backbone and one bead modeling the side 
chain). Starting from random coil conformations, DMD 
simulations of the model monomer amphipathic 
polypeptides undergo folding transitions resulting in alpha-
helical native topologies. Equilibrium between side-chain 
hydrophobic interactions and backbone hydrogen-bonding 
mediates the stability of model peptide’s alpha-helical 
native state. The authors observe formation of non-native 
hydrogen bonds in the course of simulations, resulting in 
exploration of non-native misfolded conformations, rich in 
beta-structures (beta-turn, beta-hairpin, or beta-sheet 
motifs). Simulations of tetramers of 16-residue chains 
result in parallel and anti-parallel tetrameric alpha-helical 
bundles with hydrophobic side-chains shielded in the 
bundle interior as the most stable conformation. Low 
temperature simulations were found to be often trapped in 
misfolded states because of stronger hydrogen bonding and 
hydrophobic interactions relative to thermal fluctuations. 
Notably, structures with non-native and beta-hydrogen 
bonds are often observed in tetramer simulations, resulting 
in non-ideal folding trajectories leading to misfolded states. 
 

Nguyen et al. (62) studied the kinetics of 
polyalanine fibril formation using an intermediate-
resolution four-bead per residue protein model, termed 
PRIME (49, 51, 63). The model has three beads 
representing the peptide backbone and one bead 
representing the side chain atoms. As opposed to the native 
conformation based Go-model, the PRIME four-bead 
protein model is devoid of any conformational bias towards 
native or non-native conformations. In addition to distance, 
angular and dihedral constraints modeling the protein 
structure, intra- and inter-molecular hydrogen bonding and 

hydrophobic interactions are modeled for inter-residue 
interactions. While DMD simulations of the 48-96 residue 
long polyalanine chains show that the mechanism of 
amyloid fibril formation is in agreement with three known 
models, namely: templated assembly; nucleated 
polymerization; and nucleated conformational conversion. 
However, none of these models could alone explain the 
kinetics of fibril formulation with significant accuracy. The 
authors suggested that the kinetics of polyalanine 
conformational conversion is manifested as progression 
from small amorphous aggregate state to beta-sheets, which 
form an ordered nucleus ultimately leading to fibrillar 
protofilament species. The kinetics of amyloid fibril 
formation increased with increasing polyalanine 
concentration as well as decreasing simulation temperature. 
Furthermore, the simulations indicate that the polyalanine 
oligomers growth involved beta-sheet elongation adding 
polyalanine peptides in the end as well as lateral appending 
of existing beta-sheets (62). 
 
4.4. United-atom model applications in protein 
aggregation 

The united-atom model represents groups of 
atoms as novel atom types having physical properties such 
as particle diameter and inter-particle interactions scaled 
corresponding to the constituent atoms. Borrguero et al. 
(39) used a detailed unified-atom model representing all 
atoms except hydrogens and DMD simulations to study the 
folding dynamics of a 10 residue segment (Ala 21-Ala 30) 
of the amyloid beta protein. This segment is suggested to 
nucleate the folding of monomeric Abeta protein. The 
authors report that hydrophobic interactions between 
constituent Val-24, Lys-28 residues and an equilibrium 
between electrostatic interactions of Glu-22 and Asp-23 
with Lys-28 result in folding of this domain into a stable 
loop structure. Salt bridge interactions of Asp-23 with Lys-
28 was also consistent with Abeta conformational stability 
analyses by Ma et al. (22) and the NMR-derived model of 
Abeta by Petkova et al. (64). Different conformations 
adopted by this 10 residue segment Abeta(21-30), as 
observed in the NMR solution structure of Abeta(10-35) 
(65), Protein DataBank accession number: 1HZ3, are 
shown in Figure 2. Side chains of residues Glu-22, Asp-23 
and Lys-28 are highlighted for clarity. Familial mutations 
of Alzheimer’s disease at the Glu-22 are suggested to 
change the interactions of Glu-22 with Lys-28, thereby altering 
the stability of Abeta folding nucleus (39). Subsequent long 
timescale all-atom MD simulations by Cruz et al. (66) also 
confirm the role of hydrophobic and salt bridge interactions in 
folding dynamics of Abeta(21-30) peptide. 

 
5. DMD SIMULATIONS AS A COMPUTATIONAL 
TOOL TO STUDY PROTEIN MISFOLDING 
 

In this section we will present a few of the recent 
applications of DMD simulations and simplified protein 
models discussed in section 4, towards probing different 
biophysical phenomena associated with protein misfolding. 
We will also discuss some of the recently developed 
computational tools and web-services harnessing DMD 
simulations to characterize folding/misfolding dynamics of 
any protein. 
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Figure 2. Conformational dynamics of the model Amyloid-beta folding nucleus (residues 21-30, derived from Protein DataBank 
accession number: 1HZ3). Salt bridge interactions between residues Glu22, Asp23 and Lys28 are highlighted. These residues are 
suggested to mediate conformational transitions in the model folding nucleus of Amyloid-beta protein, thereby mediating the 
Amyloid-beta oligomerization process (39). Figure generated using the PyMOL molecular visualization software (90). 
 
5.1. Probing conformational changes in beta2 
microglobulin leading to aggregation 

Deposition of human beta2-microglobulin 
(beta2m) protein into serum amyloid fibrils is observed in 
hemodialysis-related amyloidosis (67) and is a serious 
complication in patients receiving long-term renal dialysis 
treatment (68). Chen et al. (69) used DMD simulations 
with a simplified four-bead model of beta2m protein to 
explore the mechanistic differences between aggregation of 
oxidized and reduced forms of the beta2m protein. The 
authors note that the beta2m aggregate morphologies were 
dependent on the oxidation state of beta2m protein: 
oxidized beta2m forming needle-like fibrils under acidic 
conditions (pH 2.5); whereas reduced beta2m loses the 
intramolecular disulfide bond under acidic conditions and 
rather than forming amyloid fibrils, reduced beta2m forms 
flexible filaments. DMD simulations of a beta2m dimer 
highlighted an important mechanistic role of a highly 
conserved disulfide bond between residues Cys25 and 
Cys80 of beta2m (Protein DataBank accession number: 
1LDS; Figure 3) in beta2m aggregation. The authors show 
that oxidized beta2m protein forms domain-swapped 
dimers whereas reduced beta2m protein forms dimers and 
trimers consisting of parallel beta-sheets stabilized by a 
network of backbone hydrogen bonds. The oligomers 
are capable for further aggregation yielding high 
molecular-weight aggregates. Notably, these DMD 
simulations suggest that formation of Cys25-Cys80 
disulfide bonds mediate the aggregation pathway of 
oxidized and reduced beta2m, and suggest that the 
mechanism of aggregate expansion in oxidized beta2m 
is via domain swapping while aggregate expansion in 
reduced beta2m occurs via parallel stacking of partially 
folded beta2m (67). 

5.2. Superoxide Dismutase misfolding mechanism 
Khare et al. (38) performed DMD simulations to 

study the folding and misfolding of SOD1 protein (Protein 
DataBank accession number: 1SPD). The authors 
characterized residues in SOD1 protein important for the 
two-state folding kinetics using DMD simulations. The 
authors also used DALI (70) structural alignment software 
to compare kinetically important SOD1 residues with a 
structurally similar protein Tnf3 (Protein DataBank 
accession number: 1TEN) belonging to the same 
immunoglobin super-family, whose folding kinetics was 
well understood (71) (Figure 4). Notably, SOD1 residue 
positions identified by DMD simulations to play a 
functional role in SOD1 folding kinetics correlate with 
residues identified by structural comparison with Tnf3 (38). 
Furthermore, Khare et al. postulate that disruption of key 
interactions at these residues caused by mutations may 
expose the edges of SOD1 beta-strands, and this change in 
native state conformational stability leads to non-native 
interactions, ultimately causing SOD1 misfolding. 
Interactions at the edges of beta-sheets mediate SOD1 
folding, loop-crossing and salt bridge interactions at the 
kinetically important residues regulate SOD1 folding. The 
authors also report that residues mediating SOD1 folding 
kinetics are interspersed on SOD1 surface and are absent in 
the hydrophobic core (38) (Figure 4). 
 
5.3. Length-dependent aggregation of poly-glutamine 
repeats 

Poly-glutamine (PolyQ) or CAG repeat disorders 
are implicated in several neurodegenerative diseases, 
including Huntington’s disease (72), six forms of 
spinocerebellar ataxia (73) and Kennedy disease (74). 
Insertion of PolyQ peptides longer than 35-45 residues into
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Figure 3. Seven beta strands present in the beta2 
microglobulin protein monomer (Protein DataBank 
accession number: 1LDS). Disruption of the single beta2 
microglobulin disulfide bond interaction between residues 
Cys80 and Cys25 results in domain swapping 
conformational transition and is a suggested to be the 
precursor in beta2 microglobulin amyloidogenesis (69). 
Figure generated using the PyMOL molecular visualization 
software (90). 

 
proteins is associated with protein aggregation 

and cytotoxicity (75). Barton et al. (76) used DMD 
simulations with the four-bead protein model to study the 
length dependence of PolyQ-mediated aggregation of the 
Chymotrypsin Inhibitor-2 (CI2) protein. The authors 
generate chimeric CI2 and CI2-PolyQ insert proteins 
having insert lengths spanning the critical pathogenicity 
threshold (77). The authors report that CI2 monomer 
folding kinetics in DMD simulations was highly 
cooperative, in agreement with previous experimental 
findings. However, CI2-PolyQ chimeras having PolyQ 
insert length greater than the pathogenicity threshold 
exhibit significantly less cooperative monomer folding 
kinetics, with inter-glutamine hydrogen bonding as a 
predominant mode of dimerization (76). The authors also 
proposed a general mechanism for PolyQ-mediated 
aggregation where PolyQ inserts mediate formation of 
unfolded intermediate states by destabilizing the 
interactions in the corresponding protein. Subsequent 
formation of inter-glutamine hydrogen bonds stabilizes the 
unfolded PolyQ-protein intermediates, leading to formation 
of aggregate fibrils (76). 
 
5.4. Prion-like conformational conversion exposing 
hydrophobic surfaces 

Conformational conversion of alpha-helices to 
beta-sheet topologies is often manifested in prion diseases 
and other aggregation disorders such as Alzheimer’s 
disease and Lou Gehrig’s disease (78-80). Ding et al.(81) 
used DMD simulations to probe this prion-like 
conformational conversion in a de novo engineered peptide 
ccbeta found to undergo temperature dependent 
conformational conversion into amyloid fibrils (82). The 
authors report presence of a critical temperature below 
which the peptide folds into a native-like alpha-helical 
coiled-coil topology, whereas, above the critical folding 
temperature, the protein misfolds into aggregation-prone 

amyloid like fibrils rich in anti-parallel beta-sheet. Notably, 
this conformational conversion is mediated by exposure of 
hydrophobic surfaces in ccbeta and unsaturated hydrogen 
bonds, which may function as templates for further 
aggregation. These observations are also consistent with a 
template-based mechanism of prion infectivity originally 
proposed by Prusiner (78). 
 
5.5. Hinge region predictor probing protein domain 
swapping 

An important biophysical phenomena associated 
with some proteins is the presence of hinge regions. Hinge 
regions are those loci which function as a pivot/hinge axis 
around which the protein undergoes significant 
conformational changes often leading to domain swapped. 
Domain swapping was first noticed in proteins by the 
pioneering work of Eisenberg and coworkers (83). Ding et 
al. (84) used two-bead protein model to study the domain-
swapped dimmer formation for a set of proteins and 
proposed that hinge regions of domain swapping is 
governed by monomeric protein topologies, and developed 
a hinge region prediction server, H-predictor 
(http://dokhlab.unc.edu/tools/h-predictor), to identify 
potential hinge regions in arbitrary proteins. The H-
predictor estimates the enthalpy change upon hinge 
formation, del(EH), by measuring the changes in the 
number of native-contacts, native disulfide bonds and 
hydrogen bonds (84). The authors also devise a metric 
measuring the change in conformational entropy upon 
hinge formation, del(SH) based on changes in average 
minimal path between two protein residues (84), and use 
del(EH)/del(SH) as a measure of hinge conformational 
transition temperature. Residues corresponding to 
minimum values of the hinge transition temperature, and 
therefore del(EH)/del(SH), are predicted as the hinge loci. 
Notably, using the H-predictor, the authors predicted 
multiple hinge regions and two domain swapped dimers in 
RNase A and FAT domain proteins. 
 
5.6. iFold webserver as a tool to study protein 
aggregation 

The iFold server (85) (http://iFold.dokhlab.org) is 
a general purpose tool for studying protein dynamics using 
simplified protein models. The iFold server was created to 
enable a general purpose web-interface for simulation and 
exploration of protein dynamics. The back-end of iFold 
server integrates a distributed high performance computing 
resources with efficient DMD simulations of simplistic 
two-bead protein models and the front-end presents a 
convenient interface to the research community for using 
the DMD algorithm and exploring the conformational 
transitions in the aggregation pathways of arbitrary 
proteins. The operational diagram of the iFold server is 
shown in Figure 5. A Beowulf Linux cluster resource 
provided by the UNC Information Technology services 
furnishes the high performance computation requirements 
for many DMD simulations submitted to the iFold portal. 
Recently, the Open Science Grid computational 
infrastructure (86) is added to the iFold portal’s accessible 
computational resource, thereby facilitating longer time-
scale DMD simulations of protein aggregation utilizing the 
world-wide computational infrastructure. 
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Figure 4. Kinetically important residues in the core of Cu-Zn superoxide-dismutase (SOD1) dimer protein (38) (Protein 
DataBank accession number: 1SPD). The residues Val31, His48, Asp83, Asn86, Asp101 His110, Ile112 and Gly114 of both 
dimers are labeled and shown in black. These SOD1 residues were identified by structural comparison against nuclear residues of 
the immunoglobin-like protein super-family sibling Tnf3 (Protein DataBank accession number: 1TEN) whose folding kinetics is 
characterized using phi-value analysis (71). These residues are suggested to function as the SOD1 folding nucleus and mutations 
in the putative folding nucleus are suggested to mediate the protein’s folding kinetics, potentially leading to SOD1 aggregation 
(38). Note that the kinetically important residues are dispersed throughout the surface of SOD1. Figure generated using the 
PyMOL molecular visualization software (90). 
 
6 LIMITATIONS OF SIMPLIFIED PROTEIN 
MODELS AND DMD SIMULATIONS 
 

We have presented numerous case studies and 
applications of simplified protein models and DMD 
simulations for investigating protein aggregation. 
Nevertheless, it is important to highlight the limitations of 
simplified protein modeling and their impact on the 
predictive power of simplified modeling. Urbanc et al. (5) 
highlight several important limitations of DMD simulations 
of simplified models, which must be appreciated in order to 
effectively use simplified models in studying protein 
aggregation and other biophysical phenomena. Despite 
significant improvements in accurate yet simplified models 
of proteins in recent years (7), a large extent of 
conformational freedom of proteins is often lost owing to 
the structural coarse-graining. Subtle changes in protein 
dynamics may be undetected in simplified protein models, 
while clearly evident in high-resolution atomic models. The 
interaction model used in simulations is often 
phenomenologically-derived (5), and may be biased and/or 
inaccurate because of limitations in availability or 
resolution of experimentally-derived structural parameters. 
With increasing structural genomics efforts, novel protein 
structures are derived leading to better statistical analyses 

of native-like protein structures.  

Approximations in the interaction potential due to 
unbiased treatment of simplified beads of different residues 
also lead to inaccuracies in the protein model, thereby 
limiting the predictive accuracy of DMD simulations of 
simplified models. However, such limitations may be 
eliminated by introducing novel types of peptide side-
chain-dependent backbone beads having different 
interaction behaviors. Also, the strength of hydrogen bond 
and hydropathic interactions used in ab initio simplified 
models are often independent of the amino acid sequence 
context (5). While directional dependence of acceptor and 
donor atoms in hydrogen bonding is implemented in DMD 
simulations, it is not specific of the underlying sequence 
context. The cumulative effect of sequence-specific 
hydrogen bonds may be of mechanistic relevance in protein 
aggregation. 

The solvent is implicitly modeled in DMD 
simulations, thus reducing the complexity of computing 
interactions of protein beads with the solvent. 
Physicochemical properties of the solvent, counterion 
density and biophysical properties of the simulation 
environment including temperature, pressure, molecular  
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Figure 5. Control flow diagram of the iFold server 
(http://iFold.dokhlab.org). The iFold portal provides a 
globally accessible computational resource for exploring 
aggregation mechanisms and oligomerization/folding 
dynamics of arbitrary proteins using DMD simulations of 
simplified protein models. (a) Communication between 
different segments of the server is shown, with emphasis on 
scheduling of simulation jobs. (b) Flow of data from the 
web-application, via the simulation scheduler to submitted 
simulation database. iFold compute nodes run DMD 
simulations (indicated by oval boxes) of simplified two-
bead protein models and are highly computational scalable. 

concentration, etc. may cause substantial changes in 
effective local interactions. Due to implicit solvation, such 
local variations in electrostatic interactions are ignored in 
the simulations. Improvements in the protein interaction 
model such as environment-dependent dynamic scaling of 
local interactions may overcome such limitations of 
simplified models.  

The work of Zhou and Karplus (16, 42) was 
among the foremost evidence demonstrating the efficacy of 
constant-temperature DMD simulations for exploring the 
folding kinetics and thermodynamics of a model three-helix 
bundle protein. Later, the work of Ding et al. (46) suggests 
that DMD simulations using simplified protein models also 
faithfully recapitulates the thermodynamics as well as 
kinetics of folding-unfolding transition in C-Src SH3 
protein as observed in experiments (46). This protein model 
was also useful in predicting the amyloidogenesis 
mechanism of the C-Src SH3 domain (87). Furthermore, 
applications and limitations of DMD-based methods in 
probing kinetics and thermodynamics of protein 

aggregation are also discussed in the recent review articles 
by Hall et al. (6) and Urbanc et al. (5).  

7. SUMMARY AND PERSPECTIVES 

Simplified protein models have provided an 
important tool for computational studies of protein 
aggregation. In this article we present several case studies 
demonstrating that DMD simulations of simplified protein 
models are particularly useful in probing the slow time-
scales and large length-scales of protein aggregation. 
Despite the simplicity of one-bead to four-bead protein 
models, numerous important biophysical insights and 
testable hypotheses regarding three-dimensional protein 
domain swapping, length-dependent mechanistic 
differences in formation of Amyloid beta aggregates are 
attained using simplified protein models. With increasing 
computational speeds, we expect further applications of 
simplified models in studying amyloid oligomerization and 
for probing the structure and dynamics of higher-order 
oligomeric species.  

The iFold server (http://iFold.dokhlab.org) 
facilitates probing aggregation of arbitrary proteins at long 
time and length scales using DMD simulations of two-bead 
protein models. The hinge region predictor server 
(http://dokhlab.unc.edu/tools/h-predictor) enables the 
exploration of domain swapping based on DMD 
simulations of two-bead protein models. Recent 
applications of multiscale modeling and DMD simulations 
to study dynamics of large complexes such as the 
nucleosome core particle (88) (>200 kDa) also suggests 
DMD simulations of simplified models may also be 
suitable for probing dynamics and conformational 
transitions in oligomeric aggregates at unprecedented 
length and time scales. Significant improvements in 
structural details and predictability of simplified protein 
models are attainable via accurately modeling hydrogen 
bonding and hydrophobic/hydrophilic interactions. DMD 
simulations of multiscale protein models can be performed 
by iteratively performing simulations using high and low-
resolution protein models. Multiscale modeling has 
emerged as a useful tool to study high resolution 
mechanistic details of inter-particle interaction without 
losing the predictive power by adequate conformational 
sampling. Utilizing simplified protein models to sample the 
conformations of large-scale processes and systems, and 
using higher-resolution models are used for improving the 
accuracy of simulation predictions is the hallmark of 
multiscale modeling. With increasing computational power, 
we foresee significant applications of simplified protein 
modeling and DMD simulations towards understanding the 
fundamental principles of protein aggregation. 
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