
[Frontiers in Bioscience  4882-4888, May 1, 2008] 

4882 

Methods and protocols for the assessment of protein allergenicity and cross-reactivity 
 
Joo Chuan Tong1, Martti Tapani Tammi2,3,4 
 
1Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, 2Department of Biological Sciences, National 
University of Singapore, 14 Science Drive 4, Singapore 117543, 3Department of Biochemistry, National University of Singapore, 
8 Medical Drive, Singapore 117597, 4Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, 
Sweden 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. Allergen data sources 

3.1. General-purpose databases 
3.2. Specialized databases 

4. Data analysis tools 
4.1. B-cell epitope prediction 
4.2. T-cell epitope prediction 
4.3.  Allergenicity and cross-reactivity prediction 

5. Summary and outlook 
6. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

Allergy is a prevalent health problem in 
developed countries. With advances in genomic and 
proteomic technologies, there is a rapid increase in allergy-
related data, including allergen sequences, allergic cross-
reactivity, molecular structures, clinical measurements, and 
atmospheric concentrations. The more and more complex 
allergy data is fueling the need for advanced ways in 
information management and analysis. Computational 
methods and resources are increasingly the driving force in 
allergy research. For example, allergen-specific databases 
are important data sources for allergen characterization. T-
cell and B-cell epitope prediction tools focus on identifying 
immunogenic regions on allergenic proteins. Allergenicity 
and cross-reactivity prediction tools are increasingly being 
applied to assess the potential allergenicity of proteins. This 
review provides an introduction to the growing literature in 
this area, with particular emphasis on recent developments 
in bioinformatics relevant to the study of allergens.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

Allergies are constantly increasing in 
industrialized countries, affecting more than a quarter of 
the general population (1, 2). Food-related allergies were 
reported to affect 4% of the US population (3) and 2.4% 
within the EU (3-5). Among the children, the incidence of 
asthma and eczema (atopic dermatitis) were 10% and 15% 
respectively (6). Allergic diseases are caused by adverse 
immunological reactions to otherwise innocuous proteins 
known as allergens. Allergens may be "major" or "minor" 
depending on whether greater or less than 50% of patients 
tested react with the corresponding allergen-specific 
immunoglobulin E (IgE) antibodies in the given test-system 
(7). Type I hypersensitive reaction is induced when an 
allergen cross-links IgE antibodies on the mast cells or 
basophils, resulting in the release of inflammatory 
mediators (8). This may be followed by a late-phase 
reaction characterized by the influx of T-cells, eosinophils 
and monocytes (9). Atopic individuals may develop one or 
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more manifestations of the disease including asthma, 
conjunctivitis, dermatitis, rhinitis, and the severe 
anaphylaxis (3, 8).  

 The problems associated with allergy 
and other hypersensitivity reactions catalyzed significant 
investments and research into new technologies for high-
throughput screening of allergy related genes and their 
products (10-12). As a consequent, there has been an 
explosion in allergy-related information, taking the form of 
allergen sequences, allergic cross-reactivity, molecular 
structures, clinical measurements, and even atmospheric 
concentrations. Clinical and functional information of 
common allergens are presently available in various public 
databases, scientific literature and hospital databases. With 
such a proliferation of knowledge sources, there is a 
pressing need for good data management and analysis tools 
(13). 

 In time, information technology found 
its way into making sense of these disparate forms of 
information. Allergy informatics provides a platform for 
the integration of basic research and clinical medicine. 
Major areas of focus include data management and 
computational analysis. A number of specialized databases 
were developed for storing allergy-related information with 
aims of speeding up allergy research (13). T-cell and B-cell 
epitope prediction tools facilitate the identification of 
immunogenic regions on allergenic proteins (14-16). 
Allergenicity and cross-reactivity prediction tools have 
applications in allergy immunotherapies and vaccine design 
(17, 18). Each of these topics will be outlined, with an 
emphasis on the state of the art potentialities of 
bioinformatics in allergy research as well as on still-open 
questions. 

3. ALLERGEN DATA SOURCES 
 

Data accessibility is critical for detailed 
characterization and analysis of allergens. Huge amounts of 
allergen sequences and related information have been 
accumulated in the literature and case reports. These data 
are collected and stored in a structured way in a number of 
databases. Every year, more than a hundred biological 
databases are described in the Molecular Biology Database 
Collection (19). The most important allergen resources are 
reviewed in this section.  

 
3.1. General-purpose databases 

General-purpose databases assign biological 
entities with unique names and characterize their primary 
sequences or structural features. The international 
collaborative GenBank (20), DNA Data Bank of Japan 
(DDBJ) (21) and EMBL (22) serve as worldwide 
repositories for nucleotide sequences of different origins. 
The three databases synchronize their records on a daily 
basis. Swiss-Prot (23) and Protein Information Resource 
(PIR) (24) provide comprehensive and expertly annotated 
protein sequence and functional information. A total of 338 
protein allergen sequences are currently (June 2007) 
indexed by Swiss-Prot. TrEMBL (Translated EMBL) has 

been established as a computer-annotated protein sequence 
database complementing Swiss-Prot (23). This supplement 
consists of all translation of EMBL nucleotide sequences 
that are not available in Swiss-Prot. Protein Data Bank 
(PDB) (25) is the single worldwide archive of structural 
data of biological macromolecules. As of June 2007, more 
than 380 structures related to known allergens have been 
deposited in PDB.  
 
3.2. Specialized databases 

The issue of quality and accessibility of data 
derived from general-purpose databases is not a recent 
concern in allergy informatics. Brusic and coworkers (26) 
raised eight concerns on the consistency and accuracy of 
data derived from public databases. 1) Allergen sequences 
in scientific literature may not be submitted to sequence 
databases. 2) Sequences submitted to public databases may 
not be released. 3) Variant sequences may be listed only in 
comments but not as separate entries. 4) Cross-referencing 
issues with obsolete accession numbers. 5) Duplicate data 
due to obsolete accessions. 6) Sequence corrections may 
not be reported to public databases. 7) Lack of 
synchronization between databases. 8) Incorrect or 
ambiguous annotations and keywords. 

 
To address these issues, a variety of allergen-

specific knowledge sources have been compiled to ensure 
the relevance and quality of data (26, 27). Historically, the 
Biotechnology Information for Food Safety (BIFS) 
database is the first data collection in the field (28). The 
core of BIFS contains three files: food allergens, non-food 
allergens, and wheat gluten proteins. The current (June 
2007) update contains information on 453 food allergens 
(64 animals, 389 plants), 645 non-food allergens, and 75 
wheat gluten proteins. The Allergen Nomenclature 
database of the International Union of Immunological 
Societies (IUIS) (http://www.allergen.org) serves as a 
central resource for ensuring uniformity and consistency of 
allergen designations (29). In order to maintain data 
integrity, the database is curated by committee members 
and only allergens that can induce IgE-mediated allergy 
(reactivity > 5%) in humans are included. This property 
makes IUIS one of the most widely used and authoritative 
allergen data source. As of June 2007, IUIS contains more 
than 779 allergens and isoallergens from over 150 species. 
The Structural Database of Allergen Proteins (SDAP) (30) 
(http://fermi.utmb.edu/SDAP/) contains information of 887 
allergenic proteins. Where available, each SDAP entry is 
annotated with information such as allergen name, source, 
sequence, structure, IgE epitopes, literature references, and 
links to the major public databases. The Food Allergy 
Research and Resource Program (FARRP) Protein 
AllergenOnline Database (31) (http://allergenonline.com) 
contains 1251 sequences of known and putative allergens 
derived from scientific literature and public databases. The 
InformAll database (http://www.informall.eu.com/) stores 
general, biochemical and clinical information on 248 
allergenic food materials of both plant and animal origin. 
The AllAllergy database (http://allallergy.net/) details 
information of more than 4500 allergenic chemicals and 
proteins. A comprehensive description on the background 
information, synonyms, functions and adverse reactions of 
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each allergen is provided. Allergome (32) 
(http://www.allergome.org/) emphasizes the annotation of 
allergens that causing an IgE-mediated disease. The 
database currently (last update in November 2004) contains 
information derived from 5800 selected scientific literature. 
Other data sources exist and have been reviewed elsewhere 
(26). 

 
4. DATA ANALYSIS TOOLS 
 
4.1. B-cell epitope prediction  

The interactions of allergens with IgE antibodies 
involve binding to antigenic determinants or epitopes on 
the surface of allergen molecules (33). The antibody 
binding site is predominantly hydrophobic (34), formed by 
three hypervariable loops of diverse length and amino acid 
composition (35). In general, approximately 10% of B-cell 
epitopes are linear, consisting of a single continuous stretch 
of amino acids along the polypeptide chain (36). Most 
epitopes, though, are thought to be conformational, where 
distantly separated residues of the polypeptide chain are 
brought into spatial proximity by protein folding (37). 
Mutational analysis of IgE epitopes have shown that IgE 
binding could be reduced or eliminated by single-site 
amino acid substitution (38). Solution structures of 
antibody-antigen complexes revealed that antibodies with 
dissimilar binding site structures may exhibit similar 
specificities for common epitopes (39) and not all residues 
within an epitope are functionally important for binding 
(40). As such, the amino acid sequences of B-cell epitopes 
appear to be weakly conserved and difficult to characterize.  

 
Despite these difficulties, a number of B-cell 

epitope prediction algorithms have been reported. Most 
efforts have been focused on screening linear epitopes, 
partly, due to lower complexity in software development, 
and also because the experimental design of conformational 
epitopes is difficult (41). Early approaches relied on the use 
of propensity scales to create sequence profiles (42-44). It 
is arguable that such techniques are useful in practice. 
Blythe and Flower (45) have recently published a careful 
validation of 484 amino acid propensity scales, and this 
work gives an astonishing revelation that even the best set 
of scales and parameters performed only slightly better than 
random. To the present time, strategies drawn from 
artificial intelligence have also produced limited success 
when applied to linear B-cell epitopes (36, 46). However, 
Kanduc (47) recently introduced the principle of proteomic 
similarity in defining allergen epitopes, so indicating new 
avenues for studying allergy phenomena at molecular level. 
An alternative approach is the use of structural knowledge 
to guide the design of computational algorithms. The use of 
structural information parallels the noticeable shift in B-cell 
epitope prediction methodologies over the past few years, 
away from sequence-derived properties to much more 
structure-guided techniques (48-51). This is, in part, the 
consequence of disappointing predictive performance using 
sequence data, and also because of the rapidly increasing 
number of three-dimensional structures of antibody-antigen 
complexes available in the PDB. The move towards 
structure-based approaches is also supported by studies 
demonstrating that both linear and conformational epitopes 

can be predicted (49-51). Detailed understanding of the 
structural determinants for antibody-antigen interactions is 
also useful for the design of hypoallergens for 
immunotherapeutic vaccines (52).  

 
4.2. T-cell epitope prediction  

CD4+ T helper (Th)-cells recognize 

endogenously processed allergens as short peptide 
fragments in association with major histocompatibility 
complex (MHC) class II molecules on antigen-presenting 
cells (53). Th1 cells produce interferon γ (IFN-γ) and tumor 
necrosis factor β (TNF-β) and are involved in delayed-type 
hypersensitivity (DTH) reactions (54, 55). By contrast, Th2 
cells produces interleukin 4 (IL-4), IL-5, IL-10 and IL-13, 
which are responsible for the activation and recruitment of 
IgE antibody-producing B-cells, mast cells and eosinophils 
(54, 55). T-cell responses have been studied in patients 
sensitized to food (56), and allergen-specific T-cell 
epitopes have been reported (57). The MHC haplotype 
influences individual immune responses against specific 
allergens (58). As of June 2007, 548 protein-coding HLA 
class II alleles had been identified 
(http://www.anthonynolan.org.uk/HIG/). Binding studies 
show that each HLA allele recognizes a limited set of 
peptides. Truncational analysis revealed that class II 
binding peptides are highly variable in length and the core 
recognition regions or binding registers are predominantly 
9 amino acids long (59). Consequently, the number of 
potential peptide candidates easily exceeds 1011 (60). It is 
not feasible to experimentally determine the HLA 
specificities for each and every candidate peptide 
sequences. 

 
Many methods and programs have been 

developed and tested in an array of MHC class I and class 
II alleles. A detailed description of computational strategies 
for the study of MHC-peptide interactions was given in a 
recent review (61). These include procedures based on 
binding motifs (62, 63), binding matrices (64-67), decision 
trees (68, 69), hidden Markov models (HMMs) (70), 
support vector machines (SVMs) (71-73), artificial neural 
networks (ANNs) (74, 75), quantitative structure-activity 
relationship (QSAR) analysis (76, 77), homology modeling 
(78, 79), docking (80, 81) and protein threading techniques 
(82, 83). Dermatophagoides pteronyssinus (Der p) 2 is a 
major source of perennial indoor aeroallergens (84). 
Analysis of antigenic determinants expressed on the p2 
allergen of Der p has revealed that T-cell determinants 
collectively span the entire length of the molecule (59). 
Successful application of HLA class II predictive model for 
identifying the binding registers of Der p2 derived T-cell 
epitopes has been described (85). There has been increasing 
focus on the design of computational technologies that 
allow the prediction of promiscuous peptides that are 
capable of binding to a wide array of MHC molecules (86, 
87). The method enables the design of peptide vaccines 
with improved global coverage by ensuring that HLA 
alleles that are present in most individuals from all major 
ethnic groups bind to at least one of the peptides in the 
vaccine. Dynamic activities over the past year have also 
seen at least six reports of algorithms that integrated the 
different sub-components of the antigen processing 
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pathway such as the transporter associated with antigen 
processing (TAP) and proteasomal cleavage specificities 
(88-91).   

 
4.3. Allergenicity and cross-reactivity prediction  

The use of computational models to accelerate 
assessment of protein allergenicity is a very promising and 
attractive field. Early ideas in circulation relied on the use 
of sequence similarity with known allergens to guide the 
identification of potentially allergenic sequences (92). In 
1996, the International Food Biotechnology Council 
(IFBC) and the Allergy and Immunology Institute of the 
International Life Sciences Institute (ILIS) developed a 
decision-tree approach for assessing the allergenic potential 
of genetically engineered crop plants (92). This approach 
for assessing protein allergenicity was widely adopted by 
the agricultural biotechnology industry. Eventually, this 
was modified by the World Health Organization (WHO) 
and Food and Agriculture Organization (FAO) in a joint 
expert consultation on foods derived from biotechnology 
(92). In the consultation report, guidelines were established 
for the evaluation of allergenicity of genetically modified 
foods. In addition to biological tests on the protein of 
interest, two decision criteria have been proposed for the 
assessment of allergenic potential. Briefly, a protein is 
considered allergenic if it possesses an identity of six or 
more contiguous amino acids or a minimum of 35% 
sequence similarity over a window of 80 amino acids with 
a known allergen. Although these approaches have led to 
the discovery of many new allergens, their inherent 
limitations are starting to become apparent. Such 
approaches are reported to be neither specific nor sensitive 
(93-95), and clinical scientists did not embrace these tools 
with any real enthusiasm.  

 
 Eventually, more sophisticated 

bioinformatic tools for assessing the allergenic potential of 
protein sequences have emerged. Computational models 
based on machine-learning algorithms began to be 
exploited in allergy research in the early 2000s. Zorzet and 
coworkers (96) described the use of the FASTA3 algorithm 
with k-Nearest-Neighbour (kNN) classifier for assessing 
potential food allergenicity of newly introduced proteins. 
Soeria-Atmadja et al. (97) extended the analysis on a larger 
set of allergens using a combination of kNN classifier, 
Bayesian linear Gaussian classifier and Bayesian quadratic 
Gaussian classifier. Cui et al. (98) as well as Saha and 
Raghava (99) reported the use of support vector machine 
(SVM) for the prediction of novel allergen proteins. An 
example of the use of allergen-representative peptides to 
detect potentially allergenic proteins has been reported by 
Björklund et al. (100). The use of Fourier transform to 
detect compact patterns in allergens was also reported (93). 
Given the rising concerns of allergy-related problems, it 
should also be expected that many more advanced methods 
will appear in the literature.  

 
5. SUMMARY AND  OUTLOOK 
 

With the first worked examples appearing more 
than a decade ago, and a significant number of databases 
and programs having now reported, allergy informatics is 

now at a transitional stage of its development. Major 
concepts including quality data management and analysis 
appear to have gained wide acceptance. Attention is now 
focused on deciding how best to use the rich publicly 
available data sources so that it adds significant value to 
allergy research. Already, more and more integrated 
bioinformatic analysis tools are now available in increasing 
numbers of allergen-specific databases (30, 31). This, 
together with advances with computational infrastructures, 
will bring increased focus on the development of 
computational techniques for large-scale analysis of 
allergen and allergy-related data, thus facilitating the 
discovery of new knowledge not possible by traditional 
experimental techniques alone. The recent finding that to 
date known allergens have no or few bacterial homologues 
in contrast to randomly selected control protein sequences 
is an example of how bioinformatics has led to new ideas in 
allergy research (101). Together with experimental and 
clinical research, this approach can significantly accelerate 
our understanding of the complex allergy pathway. 
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