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1. ABSTRACT 
  
 The sight of an object triggers a complex set of 
processes in the brain. Although it is already well 
established that object perception is performed by a 
hierarchical network, the so-called ventral visual pathway, 
we are only starting to understand how neurons along this 
pathway encode visual information at each processing 
stage. In this review, we discuss basic principles of neural 
coding for object perception and describe evidence showing 
that it mainly relies on two principles: selectivity and 
invariance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Without effort we can recognize the face of, for 
example, Robert de Niro playing a key role in the film 
‘Heat’. This seemingly simple process, however, involves 
an extraordinary complex cascade of neural activations in 
the brain transforming pixel information in the retina to a 
conscious percept in higher-level visual areas. To have a 
gist of how complex the process of object recognition is, 
think of creating a robot, as the ones developed by 
researchers working on machine vision, that can reliably 
identify faces. The algorithm for this robot should at least  
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Figure 1.  Organization of the ventral visual pathway. 
Along the ventral stream, the receptive fields of cells 
increase (pictures not in scale) and the optimal stimulus 
becomes progressively complex.    
 
have: i) some degree of invariance, to recognize Robert 
de Niro as the same person all over the film, ii) 
selectivity, to avoid confusing Robert de Niro with Al 
Pacino, and iii) related to invariance, the robot should 
have the ability to generalize, since very likely it have 
never seen before the particular views of de Niro in the 
film. 
 

Converging evidence from monkey recordings 
shows that object recognition is performed by neurons in 
the ventral visual pathway, extending from the primary 
visual area (V1) to the inferotemporal cortex (IT). 
Although much (but far from all) is known about how 
different areas across the ventral visual pathway process 
different aspects of a given visual stimulus, we are only 
starting to understand how neurons in each area encode this 
information. As one of the central issues of Neuroscience, 
there exist a number of reviews in the literature covering 
several aspects of object perception: The type of 
representations of an object that are formed during the 
process of visual recognition is extensively discussed in (1). 
The neural correlates of perception along the ventral visual 
pathway is described in (2-4). In (5, 6), several models of 
object recognition are presented and discussed. The neural 
organization of visual object recognition in the 
inferotemporal cortex have been described in detail in (7). 
 

Here we discuss the basic principles of neural 
encoding for object perception and review major 
findings in animals and humans at this respect. In our 
discussion, we include evidence from the ventral visual 
pathway, the inferotemporal cortex, and the medial 
temporal lobe, since perception is intrinsically related to 
memory formation. We stress the idea that in higher-
level visual areas object perception is achieved using 
two features: selectivity and invariance.  

3. THE VENTRAL VISUAL PATHWAY 
  
 It is already well established that the processing 
of visual information in the cerebral cortex has a 
hierarchical organization along two different pathways (8, 
9). The dorsal or ‘action’ pathway, going from V1 through 
the parietal cortex to motor cortex, performs visuo-motor 
transformations, for example, to translate the sight of a cup 
of coffee into a reach towards it (10). It is also called the 
‘where’ pathway, since it determines where the object is, as 
required for performing an action. The ventral pathway 
performs the actual recognition of the object (11). This 
organization should not be conceived as a strictly serial 
scheme or a strictly feedforward model involving 
unidirectional information flow, but as a hierarchical 
organization in the broad sense, where extensive feedback 
as well as parallel processing is also present (12). 
Moreover, there should be communication between both 
pathways, since we have to recognize the object we are 
reaching to (e.g. the cup of coffee and not the sugar).  
 

In this section, we will focus on the ventral visual 
pathway, including a brief description of its hierarchical 
organization, landmark imaging studies on visual 
processing, the correlation between neural activity along 
this pathway and subjective perception, and a succinct 
overview on computational models of object recognition. 
We do not review the extensive work on other aspects of 
visual perception such as the neural mechanisms of 
perceptual learning (the modification of perception 
following sensory experience), perceptual grouping (the 
ability to group an object’s elements segregating them from 
the background), or attention. We refer the reader to (13-
15) for some recent experimental findings, (16-19), for 
works with remarkable theoretical contributions, and (20-
23) for extensive reviews on these topics.  
 
3.1. From retina to inferotemporal cortex 

As sketched in Figure 1, the processing of visual 
information starts in the retina, which receives a projected 
inverted view of the object whose image enters through the 
lens of the eye. The receptive field (RF) of photoreceptors, 
cells in the deepest layer of the retina, is very small. 
Therefore, these cells are selective to pixel intensity at a 
given location and almost entirely insensitive to the spatial 
structure of a stimulus. Most retinal cells project to the 
lateral geniculate nucleus (LGN), where there is a 
topographical map of visual space in which spatial relations 
between neighboring neurons are maintained. In turn, most 
LGN cells project to the primary visual cortex (V1) at the 
very back of the occipital lobe. In this region, a large 
proportion of cortical cells are selective for local 
orientation. As shown by Hubel and Wiesel, a typical V1 
cell, which they named ‘simple cell’, fires mainly when 
elongated stimuli (e.g. a bar) appears at a particular location 
with a particular orientation (6). This is in sharp contrast to 
cells in the retina and LGN, which are not selective for 
orientation. Hubel and Wiesel also reported the finding of 
‘complex cells’, for which the precise position of the 
stimulus within the RF is less critical, i.e. they show some 
degree of invariance to the exact stimulus location (24). 
The increase in complexity and selectivity further continues  
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Figure 2.  The Ponzo illusion. The two horizontal lines are 
of equal size, but the upper one appears to be longer. 
 
along the ventral visual pathway: From V1 the information 
is conveyed to V2 and then to V4, where neurons exhibit 
larger RFs than the ones in V1. Moreover, many neurons in 
V4 are selective for contour feature orientation, and 
respond to angles and curves pointing in a particular 
direction (25). At the top of the visual hierarchy, neurons in 
the inferotemporal cortex have RFs that are often very large 
and can respond to stimuli as complex as faces (26, 27). 
 
3.2. Imaging studies on visual processing 

Besides the vast amount of new information that 
neurophysiology has provided about the ventral visual 
pathway, its understanding has also profited in the last two 
decades from major technological developments, such as 
functional magnetic resonance imaging (fMRI) and 
positron emission tomography (PET). In the context of our 
discussion, we will mention a number of landmark studies 
and bring up some recent specific findings.  

 
A parallel between the human and non-human 

primate organization of the visual pathways using non-
invasive studies was first demonstrated by pioneering 
findings using PET (28, 29), and soon after extended with a 
variety of fMRI studies (30-32). In particular, a seminal 
work by Malach and colleagues (32), found that the lateral 
occipital complex (LO) showed preferential activation for 
objects, reminiscent of what was known from 
neurophysiology in monkey area IT (33). Since then, a 
number of studies have successfully identified many 
domain-specific areas: i) a region of the extrastriate cortex 
called the fusiform face area (FFA), which responds 
strongly to faces, as found by Kanwisher and colleagues 
(34, 35); ii) the parahippocampal place area (PPA), which 
is highly selective to pictures of places and scenes (36, 37); 
iii) the extrastriate body area (EBA), which responds 
selectively to images of the human body (38, 39).     

 
Two alternative models have challenged the view 

of domain specificity in perception. Gauthier and 
collaborators proposed that the selectivity described in the 
above-mentioned studies is strongly driven by experience 
(40-42). These authors suggested that the specialization of 
areas such as the FFA is determined by the level of 
categorization and expertise. In other words, the claim is 
that FFA is responsive to faces because of our every day’s 
experience at recognizing them. Another view on the 
subject (43, 44) proposes that the ventral visual pathway is 
topographically organized to represent information about 
object forms in a continuous way. Interestingly, Haxby and 

co-workers found that a given object category could be 
inferred from the information of the pattern of responses 
along other regions, excluding the region that is maximally 
activated (43) . These different hypothesis are still a ripe 
subject of debate (5, 45-48).  

 
Arguably, one of the most productive recent 

contributions to this debate was found by Tsao and 
colleagues (49, 50). To overcome the resolution limitations 
of fMRI, they combined neurophysiology with fMRI 
studies in macaque monkeys using a very appealing 
paradigm: they targeted single-unit recordings to already 
identified fMRI face-selective regions. Interestingly, they 
found that the selectivity of individual neurons was 
strongly biased towards faces, since across the population 
of 405 neurons recorded, 310 turned out to be visually 
selective cells, out of which 97% were face selective.  
 
3.3. Perception along the ventral stream 
 What we perceive is not necessarily what we 
actually see. This can be easily exemplified with visual 
illusions, as the one shown in Figure 2. For more complex 
and fascinating illusions, see (51). The two horizontal bars 
of Figure 2 are of equal size. However, due to the illusion 
of perspective by the oblique lines we perceive the upper 
one to be longer than the bottom one. Given that both bars 
create a similar input in the retina (they only differ in their 
location), where along the visual pathway this information 
is integrated with its context (i.e. the oblique lines) and the 
perception of the upper one to be longer is created?   
 

Even though it is experimentally difficult to 
address this issue, paradigms have been designed to 
produce multistable phenomena, in which perception 
changes between alternative views (2, 3, 52). Two of the 
most popular of such paradigms are binocular rivalry and 
flash suppression. Binocular rivalry is produced by 
presenting two distinct images to the two eyes. Instead of a 
fusion of the two images, the brain alternates between the 
two views every few seconds. At each time there is only 
one dominant image that correlates with perception, the 
other one being perceptually suppressed. In flash 
suppression, the perceptual suppression of a constant 
monocular stimulus is obtained by flashing a different 
stimulus to the other eye. Although two stimuli are 
presented, subjects are only aware of the flashed stimulus. 
Then, the experimental design to study the neural correlates 
of conscious perception is very simple. We only need to 
present to one eye a picture that elicits the activation of a 
neuron of a given area and to the other eye a picture that 
does not. For example, with binocular rivalry, we could see 
if the neuron keeps its firing constant --since the visual 
stimulus does not change-- or if it modulates its firing 
according to the subjective perception. 

 
In a series of studies aiming at understanding how 

neural activity correlates with perception along the ventral 
visual pathway, Logothetis and coworkers trained macaque 
monkeys to report their perceptual responses (2, 3). By 
recording from single neurons, they found that the 
correlation between neural activity and the animal’s 
perception increased at successive stages of early visual 
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cortical areas (3). In V1, the firing of the majority of the 
neurons remained unaffected by the conscious percept 
reported by the animal, since the activity of only 20% of 
them followed perception (53). In area V4, their proportion 
increased to approximately 40% (2). The striking result was 
found at higher visual areas, like IT and the superior 
temporal sulcus (STS), where approximately 90% of the 
recorded cells followed reliably the perceptual state of the 
animal (53). In a very recent study Afraz and colleagues 
(54), applied electrical microstimulation to activate small 
clusters of IT neurons recorded from monkeys performing a 
categorization task.  Interestingly, they found that 
microstimulation of face-selective sites strongly affected 
the judgment of a monkey towards the face category. 
Microstimulation biased choices significantly in favor of 
face choices for 19 of 31 face selective sites. Its effect on 
perceptual decision was even much larger when 
microstimulation was applied to clusters of face-selective 
neurons, demonstrating a causal relationship between the 
activity of these neurons and face perception. 

 
In humans, the possibility of performing invasive 

recordings are very rare and limited, in the sense that areas 
from which recordings are performed are exclusively 
determined by clinical criteria (55). For this reason, most 
studies of visual perception in humans have used non-
invasive techniques, such as fMRI to identify brain regions 
that correlate with perception, as inferred indirectly from 
the blood oxygen level-dependent (BOLD) signal. In an 
early work, Lumer and colleagues (56) studied the neural 
activity associated with perceptual transitions during 
binocular rivalry, finding neural activity correlated with 
rivalrous transitions at multiple levels of the ventral visual 
pathway, but not in V1. Grill-Spector and collaborators 
(57), found a significant correlation between recognition 
performance and fMRI signal in an area preferably 
activated by objects when subjects were presented with 
pictures in condition of difficult recognition (stimuli were 
presented from 200 to 500 milliseconds). Tong and 
Kanwisher (58) studied fMRI responses of the fusiform 
face area (FFA) and the parahippocampal place area (PPA), 
two regions of human visual cortex highly selective to 
specific stimulus classes (faces and houses, respectively). 
In line with monkey studies in IT, they found that activity 
in the FFA and the PPA --at a high stage in the ventral 
visual pathway-- reflects the perceived, rather than the 
actual stimulus.  

 
Undoubtedly, Imaging studies in humans have 

provided very valuable information about visual processing 
in different areas along the ventral visual pathway. The 
main limitation of these studies is that they measure the 
neuronal activity indirectly and therefore they cannot deal 
with the question of how neurons encode visual 
information. 
         
3.4. Models of object recognition 

As stated in the Introduction, the main problems 
that an algorithm for object recognition must face are 
selectivity (or specificity), invariance, and generalization. 
When building models to understand how object 
recognition can be achieved by the brain given the 

architectural and timing constraints, additional problems 
appear (1, 5, 6).  

 
The first model of visual recognition we discuss 

is the one by David Marr, originally introduced by Marr 
and Nishihara in 1978 (59, 60). Focusing on vision from an 
information-processing point of view, he proposed that 
objects are represented in a view-invariant manner, where 
an object is decomposed into parts and it is the important 
features of an object and their spatial relations what 
underlies recognition (23).  

 
A well-known successor of Marr’s model is the 

‘recognition by components’ (RBC) theory developed by 
Biederman (61-63). Its central idea is that any object can be 
segmented into an arrangement of a small set of simple 
geometric components, called ‘geons’. This theory is also 
view-invariant but, in contraposition to Marr’s theory, it 
received some empirical support. However, the RBC theory 
has a number of limitations. One of the main criticisms is 
based on the fact that humans can easily recognize objects 
with rather similar structural descriptions, such as faces, 
which present similar or identical geon-based 
representations (64).  

 
Despite the economical advantages of a visual 

system using a small set of components, psychophysical 
(65, 66) and physiological (1, 67) evidence support a 
viewpoint-dependent representation. In such a scheme, 
parts of objects, or entire images of them are encoded in a 
view-specific manner and object recognition processes are 
based on the similarity between encoded and perceived 
images (65). 

 
Among the numerous models that have been 

proposed to achieve the goals of invariance and specificity 
with biological plausibility, a few of them mimic the 
hierarchical organization of the visual pathway described in 
Section 3.1.  

 
One of these pioneering hierarchical models is the 

one developed by Fukushima in 1980, a multilayer neural 
network which was dubbed “neocognitron” (68). This 
model successfully accounted for translational invariance, 
since its responses are not affected by the object’s position 
(68). However, a model in agreement with physiological 
and neural data remained elusive for many years. An 
important step in this direction was given by the HMAX 
model of Riesenhuber and Poggio (69), a simple 
hierarchical model that mimics the architecture of the 
ventral visual pathway. HMAX, being related to previous 
approaches (70, 71), is based on a feedforward architecture 
and is capable of dealing with both invariance and 
selectivity by means of (to some extent) biologically 
plausible mechanisms. Numerous extensions and 
alternatives have been presented since then (6, 72-74). In 
particular, Deco and Rolls’ approach (75) extended a 
previous model of object recognition (71) incorporating 
top-down backprojections to account for attentional effects. 

 
Whereas it has recently been shown that 

feedforward architecture can successfully account for rapid 
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categorization (76), many other features related to object 
recognition, including our every day’s visual experience 
with natural images, are known to be highly influenced by 
feedback and lateral interactions. An interesting proposition 
(16) trying to reconcile the impressive speed of certain 
visual tasks (as determining whether a picture contains a 
face or not), with slower detailed perception (as 
understanding ambiguous images) states that processing 
along the feedforward hierarchy is automatic and implicit, 
whereas explicit perception (conscious perception), begins 
at the high-level cortex, and gradually returns downward as 
needed. For a recent discussion on the subject see (77). 
 
4. THE MEDIAL TEMPORAL LOBE 
 

The inferotemporal cortex, the last exclusively 
visual area in the ventral pathway, includes massive direct 
projections to the Medial Temporal Lobe (MTL) (7, 78, 
79). The MTL comprises multiple interconnected areas 
including the hippocampus, amygdala, parahippocampal 
gyrus, entorhinal cortex, and perirhinal cortex. 

The entorhinal cortex provides the main input to 
the hippocampus, which in turn receives projections from 
the perirhinal cortex, the parahippocampal cortex, as well 
as other direct inputs from orbital frontal cortex, cingulate 
cortex, insular cortex, and superior temporal gyrus (80). 

      
4.1. Medial Temporal Lobe and memory 

Based mainly on evidence from neurological 
patients and studies with animal models with selective 
lesions of the MTL, it is widely accepted that the MTL is 
crucial for declarative memory, the conscious or explicit 
memory for facts and events (80-83).  

 
 Our current knowledge about the role of MTL in 
memory has largely benefited from the study of patient 
H.M., whose severe epilepsy was treated by an 
experimental bilateral MTL resection in 1953 (84-86); for a 
current overview, see (87). Although after surgery H.M. 
had normal intelligence --as assessed by neuropsychogical 
tests-- and short-term memory (i.e. memory lasting from 
seconds to minutes), he developed severe anterograde 
amnesia; i.e. he could not later remember new information. 
Interestingly, this amnesia was limited to declarative 
memory, since he could still acquire non-declarative 
memories, such as learning a motor skill. Due to the fact 
that H.M could still recognize people and objects, it has 
been postulated that the MTL is not involved in 
recognition. Since both his short-term and long-term 
memory systems seemed not compromised by the surgery, 
what appeared to be disrupted was his ability to transform 
new short-term memories into long-term memories.  
 

Studies from other patients support this view. 
One of these cases is patient R.B., who developed 
anterograde amnesia after an ischemic episode involving 
both hippocampi, as assessed by post-mortem histological 
analysis (88). Converging results were also obtained with 
patient K.C., who suffered a severe head injury --
compromising the MTL-- following a motorcycle accident 
(89). Subsequently, K.C. developed a severe anterograde 
and retrograde amnesia involving episodic information. 

However, he had an average IQ and normal short-term 
memory. His semantic memory for knowledge acquired 
prior to the accident as well as his performance in 
perceptual priming, a form of non-declarative memory, 
were intact. However, he had no episodic memory of 
having seen the cues that had been used in previous 
sessions. These clinical data are corroborated by animal 
studies. Surgical lesions in different areas of MTL in 
monkeys affect memory performance, as assessed by delay 
non-matching to sample tasks (80, 90, 91). Imaging studies 
in healthy human subjects also support this view (92-95). 

 
 The above-mentioned interpretation follows the 
‘standard model of consolidation’, which states that MTL is 
necessary for the consolidation of new semantic and 
episodic memories in neocortex. This view has been 
challenged by more recent evidence, suggesting that the 
hippocampus is always necessary for the retrieval of 
contextual aspects of episodic memory (96). A re-
examination of H.M. episodic memory seems to support 
this ‘memory trace’ view (97). Note that both models are in 
line with the finding of abstract MTL neurons that follow 
conscious perception (see section 8). This could be 
interpreted as the consolidation of long-term semantic and 
episodic memories, according to the standard model of 
consolidation, or also for the retrieval of episodic 
memories, according to the memory trace theory.  
 
5. FROM FULLY DISTRIBUTED TO SPARSE 
REPRESENTATIONS 
 

Among the possible strategies that the brain could 
use to encode visual information, two opposite views have 
been discussed in the literature: a distributed and a sparse 
representation. 

 
In a distributed representation, the information 

about a particular stimulus is represented by the 
orchestrated activity of a large ensemble of neurons. One of 
the advantages of such a scheme is its robustness against 
neuronal variability (98). Another advantage is its large 
memory capacity and ability to represent a number of 
different stimuli attributes simultaneously.  

 
In a sparse representation, only a small number of 

neurons are simultaneously activated by a given stimulus. 
The theoretical limit of a sparse coding, where the 
representation of an object is reduced to a single neuron, is 
often referred to as a grandmother cell (see Figure 3 for a 
sketch of possible neural coding strategies). Sparse codes 
present many advantages for an organism. In particular, 
they are convenient in terms of energy consumption 
because only a relatively small number of neurons is 
needed to represent a concept, thus saving energy that is 
metabolically expensive (99, 100). Moreover, sparse codes 
represent information in an explicit way, which makes it 
easy to read-out information for decoding algorithms or 
neurons in other areas (101) .  

 
In a distributed representation, the number of 

stimuli that can be represented increases exponentially with 
the number of components (64), i.e. a set of 2 binary  
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Figure 3.  Sketch of neural coding strategies in order of increasing sparseness (see text). Left.  A Grandmother Cell type of 
coding, where each cell codifies one stimulus. Middle.  sparse representation, where only a few neurons are active in response to 
a stimulus. Right.  Fully distributed representation.  Any stimulus elicits activity of a large population of cells. 
 
neurons can be in any of 4 states (on-on, on-off, off-on, off-
off), and therefore can code for any of 4 stimuli seen; 3 
neurons can code for 8 stimuli, and so forth. In contrast, for 
a grandmother cell coding –where each neuron encodes one 
and only one stimulus-  the representational capacity 
increases linearly with the number of components.     
 

As we have described in Section 3, cells of the 
visual pathway are hierarchically organized, with cells in 
higher levels having a preferred firing towards more 
complex stimuli. A possible interpretation of selectivity in 
terms of neural coding implies that each area of the 
hierarchy elaborates on the representation based on the 
processing in earlier areas, representing the stimulus in a 
more specific way, from local representations that are 
closely linked to the retinal image to abstract 
representations that are extensively connected to perception 
(46) .  

 
In order to quantify the type of representation 

used to encode information, some measures of “selectivity” 
or “sparseness” have been proposed (102-104). These 
measures usually assess “lifetime sparseness”; i.e. the 
number of stimuli to which a neuron responds to. Lifetime 
sparseness is related to ‘population sparseness’, which is 
the number of neurons that respond to one stimulus. In 
particular, one expects that if neurons in a given area 
respond to very few stimuli, then each of these stimuli will 
elicit activations in a relatively low number of neurons --
although technically this does not need to be the case, since 
very few neurons can respond to a large number of stimuli 
and vice versa--. Ideally, one would like to measure 
selectivity values at the different stages of the ventral visual 
pathway and see whether there is an increase in selectivity as 
one goes from V1 to higher visual areas. However, it is 
difficult to compare selectivity values in different areas, since 
they depend on the stimuli set  (102, 104) and different types of 
stimuli are usually used in different areas (e.g. oriented bars in 
V1 and faces in IT). On top of this, a recent work in which 
cells were recorded from areas V1, V2, and V4 of awake 
macaques that were presented with simple (bars and sinusoids) 

and relatively complex stimuli (angles, intersections, arcs, and 
non-Cartesian gratings),  revealed that shape representation 
along recorded areas do not parallel directly the stepwise 
organization of the anatomical hierarchy (105).  

 
6. GRANDMOTHER CELLS 
 

At the extreme of a sparse representation, a 
neuron would respond to one and only one person or 
concept, such as a grandmother, following the popular term 
“Grandmother Cell”, coined by Jerry Lettvin (106-108). 

 
As early as in 1890, the psychologist and 

philosopher William James in his Principles of Psychology 
first introduced the related idea of “pontifical cells”. James 
said: “There is, however among the cells one central or 
pontifical one to which our consciousness is attached” (109) 
(p.179). About 50 years later, Sir Charles Sherrington 
discussed James´s idea of pontifical cells and favored the view 
of the mind as a “million-fold democracy whose each units is a 
cell” (110).  

 
 In 1967, the neuropsychologist Jerzy Konorski 
went a step further and predicted the existence of single 
neurons sensitive to complex stimuli such as faces, hands, 
emotional expressions, etc. (111). He named them Gnostic 
units, after “gnosis”, the Greek term for recognition. He not 
only suggested their existence, but also predicted that certain 
specific brain areas were devoted to the representation of 
different categories, the impairment of which would cause 
category-specific agnosias (like prosopagnosia, an impairment 
in the ability to recognize familiar faces). This discussion had a 
significant boost after 1967, when Jerome Lettvin introduced --
and basically disregarded-- the idea of ‘Grandmother Cells’ in 
a course at MIT, with the fictitious and by now very 
famous story of the Neurosurgeon Akakhi Akakhievitch 
(67). Akakhievitch, seeking for long awaited recognition, 
ablated all the mother cells in Portnoy, one of his patients, 
and as a result, Portnoy lost the concept of his mother. 
Akakhievitch then decided to go for the grandmother 
cells…  
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 Soon after Konorski and Lettvin, Horace Barlow 
proposed in a seminal work five dogmas to account for the 
relationship between single-unit activity and sensation 
(112). Barlow’s central proposition was that “our 
perceptions are caused by the activity of a rather small 
number of neurons selected from a very large population of 
predominantly silent cells. The activity of each single cell 
is thus an important perceptual event and it is thought to be 
related quite simply to our subjective experience. The 
subtlety and sensitivity of perception results from the 
mechanisms determining when a single cell becomes 
active, rather than from complex combinatorial rules of 
usage of nerve cells” (112). Gathering information from his 
own experiments on the frog’s retina (where he found 
retinal neurons that act as “bug detectors” and respond 
invariantly to the same external patterns despite changes of 
average luminance), the hierarchical organization of 
selectivity from Hubel and Wiesel experiments on the 
visual cortex in cats (24), and the interpretation of 
multisensory experiments linking sensation and patterns of 
neurophysiological activity in terms of the brain as an 
information processing system (112), he built a framework 
to link single neuron activity and perception. He revisited 
Sherrington´s idea of pontifical cells but favored the view 
of a relatively low number of “cardinal cells” encoding 
each percept. “Among the many cardinals only a few speak 
at once; each makes a complicated statement, but not, of 
course, as complicated as that of the pontiff if he were to 
express the whole of perception in one utterance” (112).  
 
 One of the main criticisms to grandmother cell 
coding is that it leads to the so-called “combinatorial 
explosion” in the number of neurons necessary to represent 
a given percept (113, 114). As mentioned in Section 5, the 
number of stimuli that can be encoded using a grandmother 
cell coding increases linearly with the number of cells. 
Therefore, a huge amount of neurons would be required to 
represent the total number of patterns that can be seen. 
Moreover, this scheme is not robust against cell death. 
Supposing our grandmother is represented by only one 
neuron, the death of this particular cell would imply to lose 
this concept, as achieved by Akakhievitch in Lettvin’s 
parable.     
 
7. INVARIANCE 
 

As discussed in the previous section, probably the 
strongest argument against grandmother cells, or extremely 
sparse representations, comes from the fact that, if only one 
neuron were to represent a given object, then there are just 
not enough neurons in the brain to represent all possible 
things we can store (113). For example, one would need 
one neuron for our own grandmother in frontal view, 
another one of her in profile, another one for her dressing 
her favorite dress, etc. However, the selectivity of a cell can 
be related to changes in its invariance against stimuli, e.g. 
some cells in the frog’s retina respond invariantly to the 
same external patterns despite changes of average 
luminance (112). In the primary visual cortex, neurons 
display a variety of responses to motion, color, orientation, 
etc. irrespective of all other stimulus features. As we will 
see in the following, the key to avoid combinatorial 

explosion with very sparse representations is given by 
invariance and an abstract representation. 
 
7.1. Invariance in IT 

The first visually evoked responses in monkey IT 
were obtained by Gross and collaborators (26, 115). These 
seminal findings were later confirmed and expanded by 
many studies (27, 33, 116-119), setting IT as the last 
exclusively visual area in the ventral pathway. More than 
85% of the neurons in this area were found to be responsive 
to different simple or complex visual stimuli (33). 
Interestingly, the anterior part of IT (anterior IT or TE) is 
the earliest area in which selectivity for complex shapes, 
such as faces, can extensively be found (26, 33, 116). 
Although selective responses to complex features have 
been traced to V4 and the posterior part of IT (120), which 
are earlier stages of the visual pathway, most responsive 
cells in these areas fire to simple features and the size of 
their receptive fields are much smaller than the ones of 
neurons in anterior IT. This last property turns out to be 
crucial for achieving invariance. IT neurons show various 
degrees of invariance to image transformations. Indeed, 
more than half of the IT neurons exhibit size and position 
invariance (67, 121). The response of the rest of the 
neurons in IT indicate some degree of size specificity, 
suggesting that at least certain images of objects might be 
stored in a size-specific manner (122).    
 

Even though cells in IT respond to complex 
features of a stimulus, the specificity is not enough as to 
represent an object through the activity of a single cell (1, 
7). By recording simultaneously from different units, 
Tanaka and collaborators found that a large part of IT is 
composed of columnar modules in which cells within the 
same column respond to similar features (7). Following this 
result, Tanaka proposed that a given feature of an object is 
represented by the activity of many cells within a single 
columnar module (7). He argued that such a representation 
would help to solve two of the main problems in visual 
recognition: invariance among subtle changes in input 
images and selectivity. However, it is not clear how the 
information from different columns is combined to 
represent a whole image.  

 
Other investigators have studied the tuning of 

individual IT neurons by using parametrical variations of 
the stimuli (123-125). For instance, monkeys were 
presented with faces varying in its degree of 
characterization, from a neutral identity-ambiguous face to 
a caricature where some distinguishing features have been 
exaggerated (125, 126). In one of such experiments, 
Leopold and colleagues found that most individual face-
responsive neurons in monkey IT exhibited a roughly linear 
increase in their activity as a function of face identity, and 
are therefore tuned around an ‘average’, identity-
ambiguous face1. In (125), it is suggested that a norm-based 
mechanism in which an incoming facial expression would 
be compared to the stored average face could be 
advantageous for face recognition in terms of time saving 
and storage capacity. Further evidence of norm-based 
coding strategies have also been reported following 
different paradigms (124, 128).  
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Figure 4.  A single unit in the right posterior hippocampus that responded selectively to different pictures of the actress Jennifer 
Aniston, but not to other pictures (including pictures of the same actress with Brad Pitt). For each picture, the raster plots and the 
post-stimulus time histograms are depicted. The vertical dotted lines (1 sec apart) mark the onset and offset of picture 
presentations. Adapted with permission from (136).  
 
Current evidence indicates that individual IT neurons do 
not explicitly encode information about the stimulus 
identity and that this information is encoded at the 
population level. Indeed, Hung and collaborators found that 
very small IT neuronal populations (around 100 randomly 
selected cells) convey scale- and position-invariant object 
category and identity information (129). Notably, the same 
study found no difference in the time course of the 
information conveyed for “categorization” and 
“identification” tasks, arguing against previous findings 
claiming that single neurons conveyed two different scales 
of facial information in the latencies of their spike trains 
(130). Similar results were recently found by Kiani and 
colleagues (131), by following a different experimental 
paradigm in which monkeys were presented with a large 
(>1000) set of natural object images. Taken together, these 
studies suggest that category and identity information in IT 
is largely distributed over a rather small cell population, 
corresponding to a sparse coding strategy. 

 
In sum, extensive studies have shown that many 

neurons in IT are highly selective for complex stimuli. 
Among these neurons, some of them show scale invariance, 
i.e. their firing is independent from the size of the object at 
the retina, and some others show location invariance, i.e. 
their responses do not depend on the object position in the 
visual field. However, this type of invariance in IT is very 
basic. In particular, the tolerance of individual neurons for 
rotations is very limited (1). A word of caution is in order at 

this point. A limited invariance in IT is not necessarily a 
drawback in terms of coding strategies. Indeed, it is also 
possible that a population code with highly selective and 
non-invariant neurons, as well as non-selective neurons 
showing invariance to image transformation, encodes 
different aspect of a given percept, as recently proposed 
(132, 133).  

 
7.2. Invariant representation in the MTL 

Under exceptional circumstances, epilepsy 
patients who do not improve with medication are implanted 
with intracranial electrodes to identify the seizure focus for 
potential resective surgery. In many of these cases, 
recordings are done in the medial temporal lobe, including 
the hippocampus, amygdala, and entorhinal and 
parahippocampal cortices. These recordings offer the 
unique opportunity to study single cell activity in the 
human brain. These studies led to the discovery of 
“category-specific” neurons in the MTL that responded 
selectively to visual stimuli from different categories, such 
as faces, landmarks, and animals (134, 135). More recently, 
a remarkable type of neuron that responded selectively to 
the identity of given individuals or objects was found (136). 
For example, Figure 4 shows one of such neurons that 
responded strongly in an invariant manner to different 
pictures of the actress Jennifer Aniston, but not to other 
persons, objects, etc. This particular neuron dramatically 
increased its firing rate from 0.03 spikes/s to 16 spikes/s 
during the presentation of pictures of Jennifer Aniston, 
being almost silent to the other 80 pictures shown. 
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These results suggest that the MTL is encoding 
an abstract representation of the identity of the individual 
shown, rather than a complex set of features of the 
particular picture.  

 
Are these true Grandmother cells? In other words, 

is this the only cell in the brain firing to Jennifer Aniston 
and absolutely nothing else? Very simple arguments make 
this interpretation extremely unlikely. In particular, with the 
current recording and data processing technology, using 
advance mathematical methods to identify the activity of 
different neurons from each recording electrode --i.e. spike 
sorting algorithms-- (137), it is possible to record from up 
to 100 neurons simultaneously. Given that MTL has of the 
order of 109 neurons (138), the chance of hitting the one 
and only cell responding to Jennifer Aniston is negligible. 
Therefore, if one of these cells was found, there should 
definitely be more2. Furthermore, the fact that the neuron 
responded selectively to Jennifer Aniston within the dataset 
of about 100 pictures shown, does not imply that it will not 
respond to anything else if more pictures had been shown. 
In fact, this same cell also responded to a picture of Lisa 
Kudrow in a follow-up experiment, as we will describe in 
the next section. 

 
Given the total number of neurons in MTL, the 

subset of neurons from which we record from, the number 
of pictures shown, and the probability of getting responses, 
using Bayesian inference it was estimated that about 2 to 5 
million neurons are activated by a typical stimulus, and that 
each neuron fires in response to 50-150 distinct 
representations (138). This is however an upper bound, 
because: i) for these experiments pictures of things very 
familiar to the patient were used, thus increasing the 
probability of getting responses and ii) it is possible that 
more selective cells remained silent during the experiments 
since none of the very few pictures to which they respond 
were shown. Still, an activation of the order of million of 
cells seems far away from a grandmother cell 
representation but given that there are about 109 neurons in 
MTL, this supports the idea of ultra-sparse coding, along 
with the view of ‘Cardinal cells’ by Barlow (see Section 6). 
Indeed, abstract neurons that are essentially silent during 
the presentation of most pictures and only respond to a 
small subset of images (like pictures of Jennifer Aniston in 
the example) are certainly far away from a distributed 
representation and suggest a sparse and invariant coding. It 
is interesting to notice that silent neurons with baseline 
firing rates smaller than 1 spikes/s are in agreement with 
energy consumption estimations for pyramidal neurons in 
human neocortex (100). Moreover, increasing evidence 
from studies using diverse recording methods seem to 
support a scenario where many neurons are silent most of 
the time  (139). 

 
We remark that given the well-established 

evidence described in section 4.1., it is very unlikely that 
these cells are involved in perception. Based on these 
findings, it is very plausible that these MTL neurons play a 
key role in the transformation of visual percepts into long-
term and abstract memories (136). In other words, the 
neuron responding to Jennifer Aniston is not necessary for 

recognizing her, but it may be necessary later to remember 
seeing her again. Alternatively, following the memory trace 
view (see section 4.1) these neurons may be critical for the 
recollection of memory traces related to a concept (96). 
Either of these interpretations is in agreement with the idea 
of invariance and abstract representation, since we tend to 
remember abstract concepts rather than details. 

 
In spite of the fact that these cells are not directly 

involved in perception (but see (140)), they are giving us a 
hint about the final representation of visual information. No 
such an extreme sparse and invariant coding has been 
reported in monkey IT, but unless this representation only 
arises in hippocampus, it is in principle possible that such a 
scheme is present in IT as well. Alternatively, as mentioned 
above it has been proposed that the limited invariance 
found in IT is important to encode different aspects of a 
given stimulus (133). We already mentioned that MTL cells 
are likely involved in storing percepts into long-term 
memory (something like the RAM memory in a PC). Then, 
this representation can be dynamic (with neurons changing 
its selectivity on a day-by-day basis according to the 
relevant items that have to be stored) and highly redundant. 
In other words, in MTL we may have many more cells 
coding for concepts we want to store into memory in 
comparison to IT. Therefore, it would be more likely to 
find such neurons there. Future experiments carefully 
testing for invariance in monkey IT and MTL may shed 
more light to this issue. 
 
8. ASSOCIATIONS AND ABSTRACT 
REPRESENTATIONS 
 

The existence of invariant responses in the MTL 
presents clear benefits, given the role of this area in the 
formation of new memories. In fact, one does not usually 
remember unnecessary details about a known person or 
object. 

 
 Invariance can directly be linked to association 

and categorization, which are important concepts in the 
fields of object recognition and memory. Indeed, humans 
can easily recognize objects regardless of large variations 
in viewpoint, illumination conditions, etc. As seen in 
Section 2, to accomplish this, a vision system needs to 
capture the invariant properties of objects. For a memory 
system, associations are essential. For example, we 
associate the different pictures of Jennifer Aniston in 
Figure 4 to the same individual. Similarly, we may 
associate different individuals or objects to the same 
concept, e.g. mother and father are associated to the 
concept of parents. Largely, learning and memory can be 
though of as the creation of associations and categories. For 
example, one can link a group of people as a single 
category (e.g. the people we met at the party). Of course, 
when having the chance to know them better one may 
individualize them and each subject will be a category that 
could also be linked to other concepts, for example, to form 
episodic memories.  

 
To illustrate this discussion, in Figure 5 we show 

the responses of a cell in the right posterior hippocampus of  
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Figure 5.  A unit in the right posterior hippocampus that responded selectively to different pictures of the Pisa tower and a 
picture of the Eiffel tower. Adapted with permission from (136). 
 

 
 
Figure 6.  A single unit in the right posterior hippocampus that responded selectively to different pictures of Jennifer Aniston and 
also to a picture of the actress Lisa Kudrow, a co-star of the TV series “Friends”. Adapted with permission from (136). 
 
a patient. This particular cell responded selectively to 
different pictures of the Pisa tower and also very strongly to 
a picture of the Eiffel tower3.  
 
  It is evident that such an invariant pattern of 
activation cannot be explained in terms of common visual 
features of the images shown. What seems to be important 
for these cells is the meaning of the stimuli, which is very 
likely linked to a single concept for the patient (e.g. 
landmarks of Europe).  

 
Figure 6 shows another example of associated 

concepts. This cell responded to both pictures of Jennifer 
Aniston and Lisa Kudrow, her co-star on the television 
show Friends. Therefore, it may be showing the association 
of these two linked persons into a single concept, which fits 
well with the fact that the same neuron on a previous day 
(Figure 4) did not respond to Jennifer Aniston with Brad 
Pitt since it may have evoked a different concept of 
association, even if involving the same person. 
Interestingly, single neurons recorded from the temporal 
cortex in monkeys, have been shown to acquire selectivity 
for visual patterns through associative learning (141, 142). 

 
In terms of coding strategies, the encoding of 

associated concepts in similar (but not identical) neural 
ensembles would allow a big representational capacity with 
only a few active neurons. As mentioned in Section 5, 
energy consumption imposes big constraints on the number 
of active neurons engaged in a certain task (100). A sparse 
and invariant abstract representation of visual stimuli would 
contain the necessary ingredients for achieving an optimal 

coding strategy with enough representational capacity and 
the economic benefit of having a few active neurons.  
 
9. PERSPECTIVE 
 

The understanding of how our brains perceive 
and recognize objects so fast and accurately (143) is still 
one of the major challenges of neuroscience. The precise 
role of neural ensembles in information encoding and the 
strategies for neural coding are likely to continue attracting 
enormous interest in the forthcoming years. Since the 
pioneering work of Hubel and Wiesel describing the neural 
representation in primary visual areas, much progress has 
been made. It is clear that object perception is performed by 
neurons in a hierarchical network, whose basic properties 
we are starting to understand.    

  
We have described a representation in the human 

MTL that is abstract and selective. Animal studies may 
elucidate whether a representation with such degree of 
invariance and abstraction is characteristic for humans or 
can be also found in other species. In particular, the 
Jennifer Aniston type of cells has striking similarities with 
place cells in rats (144). Interestingly, for a rat it is crucial 
to navigate in an environment, whereas for us it is crucial to 
recognize each other. Monkeys have social interactions and 
can recognize each other in a colony, so it is very likely that 
such neurons will be also eventually found with monkey 
recordings. Maybe these studies should also look at MTL 
neurons, since due to its function in memory storage the 
information in MTL may be more redundant than in IT, 
thus dramatically increasing the likelihood of finding them.  
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Footnotes: 1 It is interesting that similar results have 
recently been reported in humans by means of fMRI 
experiments in the fusiform face area (127). 2 Otherwise 
one of us, RQQ, would be by now living out of his amazing 
luck in Las Vegas. 3 This is actually another strong blow to 
the view of these neurons as grandmother cells. 
 
Abbreviations: IT: inferotemporal cortex, LGN: lateral 
geniculate nucleus, V1: primary visual area, MTL: medial 
temporal lobe, PET: positron emission tomography, fMRI: 
functional magnetic resonance imaging, BOLD: blood 
oxygen level-dependent, STS: superior temporal sulcus, 
RF: receptive field, FFA: fusiform face area, PPA: 
parahippocampal place area, EBA: extrastriate body area. 
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