
[Frontiers in Bioscience  5279-5293, May 1, 2008] 

5279 

The redundant-signals paradigm and preattentive visual processing 
 
Michael Zehetleitner1, Hermann Josef Muller1, Joseph Krummenacher2 
 
1Ludwig-Maximilians-Universitat, Germany, 2Universite de Fribourg, Switzerland 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. What redundancy gains reveal about preattentive visual processing 

2.1. The redundant-target paradigm 
2.2. The question of architecture: parallel, co-active, or serial? 
2.3. Is integration spatially selective? 
2.4. Is integration feature-based or dimension-based? 
2.5. Weighting or priming? 
2.6. Implementation of saliency maps and dimensional weighting in the brain 
2.7. Conclusion 

3. Acknowledgments 
4. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

Physiological and cognitive models of vision 
agree that the preattentive processing of visual stimuli is 
organized in a parallel and segregated fashion. However, 
several incompatible models have been proposed for the 
subsequent processing stages. They differ in their 
assumptions about architecture (serial, parallel, or 
coactive/integrative), stopping-rules (self-terminating, or 
exhaustive), spatial specificity of saliency signal coding 
(signal pooling across locations, or spatially distinct 
processing), and dependency of target detection on the 
prior allocation of attention (preattentive, or post-selective). 
We review how studies employing the redundant-signals 
paradigm in visual pop-out search contribute to discerning 
between the different assumptions. We find strong support 
for the notion of a saliency map, into which feature contrast 
signals are pooled, and especially the dimension weighting 
account (1) receives further support: Instead of a priming 
mechanism that could increase weights for several 
dimensions independently, evidence favors a weighting 
mechanism that effectively limits the total weight available 
for allocation to the various dimensions through 
competitive interactions, whereby increasing the weight for 
one dimension goes along with decreasing the weights for 
other dimensions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. WHAT REDUNDANCY GAINS REVEAL ABOUT 
PREATTENTIVE VISUAL PROCESSING 
 

In their seminal work, Livingstone and Hubel 
showed that visual processing operates in separate and parallel 
‘channels’ from the retinal level onwards (2-6). The separation 
of retinal cells specialized for high temporal- and, respectively, 
high spatial-frequency information is maintained in the laminar 
network of the lateral geniculate nucleus (LGN) and further in 
cortical areas. One pathway specialized for extracting motion 
information runs through distinct layers of the LGN, V1, and 
V2 on to the medial temporal area (MT), whereas the other 
pathway coding color and form information runs though 
distinct layers and sections (blobs, inter-blobs of V1, and thin-, 
inter-stripes of V2) on to V4 and higher-level areas in infero-
temporal cortex. Although the exact nature of these pathways 
is under debate (see e.g. 7 for a review), the basic finding that 
neuronal visual processing operates in functionally separate, 
parallel pathways is undisputed. 

 
Many cognitive and neuro-cognitive models are 

based on this initial parallel processing of different aspects 
of the visual scene – for example, Feature Integration 
Theory (FIT: 8, 9), Guided Search (GS: 10), Dimension 
Weighting (DW: 1, 11), and the neuro-computational 
models of Koch and Ullman (12) and Itti and Koch (13). 
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Figure 1. The observed reaction time in a race model is the sum of TM, the time necessary for response and motor processing, 
and the minimum of the two detection times TD for signals S1 and S2. Each single signal has its own decision unit that can trigger 
the response. Figure adapted with permission from ref. 28. 

 
These models largely agree on the initial 

processing stages: Local feature contrast is computed in 
parallel for separate visual dimensions (e.g., color, motion, 
orientation; see 14, 15, for reviews). The models differ, 
however, in the assumptions about later stages that follow 
the initial parallel coding stage. In this paper, we 
summarize recent evidence from studies of redundancy 
gains in visual pop-out search, which can help to determine 
the nature of these further processing steps. In pop-out 
search, the observers’ task is to detect a singleton target 
which differs from distracting (non-target) items in one or 
more dimensions, such as color or orientation. Search time 
for such targets is usually independent of the number of 
display items, that is, all items in the display are searched 
efficiently (14).  

 
While there is general agreement that features are 

initially registered in parallel in dimensionally segregated 
pathways, there are various models of the subsequent 
processing stages required for successful target detection. 
These models differ in a number of respects with regard to 
the further stages of processing necessary for arriving at a 
response decision: (i) the basic processing architecture 
(serial, parallel, vs. integrated processing of dimensions), 
(ii) stopping rules for the search process (self-terminating 
vs. exhaustive), (iii) spatial specificity of saliency signal 
coding (signal pooling across locations vs. spatially distinct 
processing), and (iv) dependency of target detection on the 
prior allocation of focal attention (preattentive vs. post-
selective). 

 
First, we will describe the basic redundant-target 

paradigm and its applicability to visual pop-out search. 
Second, we will elaborate each of the above questions and 
review relevant studies that show how analysis of 
redundancy gains can contribute to answering them. Third, 
we will review evidence from single-cell recordings in 

monkeys and fMRI studies in humans concerning the 
neural implementation of preattentive search processes. 

 
2.1. The redundant-target paradigm 

In a redundant-target paradigm, participants have 
to respond as soon as a critical stimulus – that is, an 
element of a predefined set of target stimuli – appears. 
Each target of this set is mapped to the same response. 
Performance for trials on which only a single target is 
presented (single-signal trial, SST) is then compared to 
performance for trials on which two targets are presented 
(redundant-signals trial, RST). The presentation of 
redundant signals can be achieved by presenting the same 
target element simultaneously at two locations, or two 
different elements of the target-defining set at the same 
location or at different locations. Frequently, a benefit of 
RSTs over SSTs has been found, which is referred to as 
redundancy gain or redundant-signals effect (RSE) (e.g., 
16-26). 

 
Regardless of the specific nature of the two 

signals, the redundant-signals effect can be accounted for in 
two mutually exclusive ways: by ‘independent parallel 
race’ models or by ‘coactivation’ models. Raab (27) 
explained the redundant signal effect in terms of statistical 
facilitation. He proposed that the processing of redundant 
targets is analogous to a horse race. A RST is composed of 
two simultaneous single signals that are processed in 
parallel. The signal that triggers the response first wins the 
race and determines the observed reaction time (RT) 
(Figure 1). Thus, on each RST, the two single signals are 
processed in parallel by independent processors which 
accumulate activation in such a way that, once a threshold 
is exceeded for any of the two signals, the response is 
triggered. If the processing times of both single signals on a 
RST are drawn from the two SST reaction time 
distributions, it is highly probable that the processing time 
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Figure 2. The observed reaction time in a co-activation model is the sum of TM the time necessary for response and motor 
processing, and the decision latency TD. Both single signals are fed into a common decision unit. Figure adapted with permission 
from ref. 28. 

 
in one channel is faster/slower than that in the 

other, which leads to a faster mean processing time, 
because the faster of both channels determines the decision 
time. In more formalized terms, the minimum of two 
distributions (the processing times of both single signals on 
a RST) is less than each of the single distributions. In 
summary, Raab explained the redundant-signals effect by 
assuming an independent parallel race between the two 
signals on a RST, which leads to a reaction time 
distribution that is shifted to the left of the distributions of 
both SSTs, resulting in a faster mean reaction time for 
RSTs than for SSTs (i.e., statistical facilitation). 

 
Miller (17) showed that there is an upper bound 

for the size of the redundant-signals effect under the 
assumption of a race model. If the redundancy gains exceed 
a certain boundary, given by the ‘race model inequality’ 
(RMI), then statistical facilitation can no longer account for 
this gain. The upper bound of the benefit deriving from 
redundant targets under the assumption of a race model is 
formulated in terms of reaction time distributions, rather 
than mean reaction times. The RMI makes use of the fact 
that, in the race model, the reaction time distribution for 
redundant targets is the minimum of the distributions of 
both single targets. That is, on a RST, the processing times 
for the single targets are drawn from the corresponding 
single-signal distributions. Statistically, one of the targets is 
almost always processed faster than the other, giving rise to 
the redundancy gain. This gain can be maximized if the 
distribution of processing times for single signals, rather 
than being stochastically independent, are maximally 
negatively dependent (29) – such that, if the processing 
time of one single signal is fast, then the processing time of 
the other single signal is slow. This upper bound is given 
by the sum of both single-signal distributions, and, under 
the assumption of a race model, the distribution of reaction 
times for redundant signals is always below (or does not 

differ from) the sum of the reaction time distributions for 
both SSTs: 

 
 

P(RT < t | S12) ≤ P(RT < t | S1) + P(RT < t | S2)  
 
where Si denotes channel i for a SST, and S12 denotes a 
RST with a target presented in both channel 1 and channel 
2. 
 

Given that a race model cannot account for 
observed redundancy gains, if the RMI is violated, the 
alternative proposed by Miller (17, 18) are co-activation 
models (Figure 2). In a co-activation model, the signals in 
the two channels of a RST do not race against each other; 
rather, they are integrated/summed before triggering a 
response. Hence activity accumulates faster and to a higher 
level on RSTs compared to SSTs, resulting in redundancy 
gains that cannot be accounted for by parallel-race models. 

 
The redundant target paradigm has been applied 

in a variety of areas, such as bi-modal (e.g., visual and 
auditory) processing (17, 30, 31), divided attention 
(between two locations: 20, 21, 32), and neuro-
psychological research (26, 33, 34).  

 
The studies relevant to the present review used a 

redundant-signals paradigm in visual pop-out search. In 
pop-out search, targets possess a unique feature relative to 
the non-targets/distracters – for example, a horizontal 
(target) bar is presented among vertical (distracter) bars or 
a red bar appears among green bars. As already stated, 
several cognitive and neuronal models assume that feature 
contrast signals are computed in parallel in different 
dimensions (e.g., orientation and color). In terms of the 
notation introduced above in the abstract description of the 
redundant-signals paradigm, feature contrast in one 
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Figure 3. Example displays with targets defined in a single dimension or redundantly in two dimensions. (a) presents a color 
target, (b) an orientation target, and (c) a target defined redundantly by orientation and color contrast. (d) presents a dual-target 
display, with two pop-out targets defined in separate dimensions, which are in close spatial proximity. 

 
dimension (e.g., orientation) can be denoted as a single 
stimulus S1, and feature contrast in another dimension 
(e.g., color) as single stimulus S2. Redundant targets are 
then the combination of both S1 and S2, such as a red 
horizontal among green vertical bars. If such a redundant 
pop-out target is presented, feature contrast is processed 
initially in both dimensions in parallel. The RMI provides 
then a tool to decide between different architectures of how 
responses may be elicited: If feature contrast in both 
dimensions can independently elicit a detection response, 
then redundancy gains are expected without violations of 
the RMI. However, if the RMI is violated, a parallel 
architecture of feature contrast signals independently racing 
to trigger a detection response can be excluded, and an 
integrative/co-active model can account for the redundancy 
gains. 

 
2.2. The question of architecture: parallel, co-active, or 
serial? 

Thus, the initial question concerns the 
fundamental processing architecture: how are the separate 
dimensional feature contrast signals processed prior to 
eliciting a response? Does the initial parallel processing 
continue until response selection? That is, can both 
dimensional signals elicit a response in parallel? Or are 
dimensional feature contrast signals integrated in some 
kind of overall-saliency (or ‘master’) map, in which the 
signals from separate dimensions are summed for each 
location (10, 13)? Or are dimensional feature contrast 
signals processed in serial for response decision, either in a 
self-terminating search (i.e., the search stops as soon as a 
target is found in one dimension; e.g., 9, 35), or in an 
exhaustive manner (i.e., all dimensions are serially checked 
even if a target is found in one; e.g., 36)? For divided-
attention paradigms, in which a target may be presented at 
two possible locations, Mordkoff and Yantis (20, 21) have 
proposed an interactive-race model in which there may be 
cross-talk between the separate channels prior to response 
selection. 

 
In summary, the processing architecture of the 

initially separate dimensional contrast signals could be 
parallel (with independent channels or with cross-talk 
between the channels), it could be serial (either self-
terminating or exhaustive), or it could be integrative/co-

active (as with models that assume an overall-saliency 
map). 

 
Krummenacher, Müller, and Heller (22) used the 

redundant-signals paradigm in visual pop-out search to 
address these questions. In their Experiment 1, the displays 
consisted of an array of distracters (green vertical bars) 
with a singleton target (presented on 50% of the trials) that 
could be either color-defined (red vertical bar), orientation-
defined (green 45°-tilted bar), or redundantly defined (i.e., 
differ from the distracters in both color and orientation, red 
45°-tilted bar, see Figure 3 for an illustration of the 
stimuli).  

 
When comparing reaction times to targets defined 

in one dimension only to redundantly defined targets, they 
found a significant redundancy gain of about 20 ms. 
Furthermore, when comparing the cumulative density 
functions (CDFs) of reaction times for redundant targets to 
the sum of the CDFs for both single-dimension targets, 
violations of the RMI were observed. These violations 
exclude serial self-terminating and parallel self-terminating 
or parallel exhaustive models of visual processing in pop-
out search. 

 
The more theoretical alternatives of serial 

exhaustive and parallel interactive models have been 
examined by Zehetleitner, Krummenacher, and Müller 
(37), combining a redundant-signals paradigm with a 
double-factorial design (36). The redundant signal-
paradigm permits the RMI to be tested, as a means to 
exclude parallel-race models. However, even if violated, 
the RMI cannot exclude serial exhaustive (38) or 
interactive-race models (20, 21). Townsend and Nozawa 
demonstrated that, by using a factorial design together with 
a redundant-signals paradigm, it is possible to test the 
model architectures (serial, parallel, or co-active) and 
stopping rules (self-terminating or exhaustive). The double 
factorial design is derived from Sternberg’s (39) additive-
factors method. Applied to a visual-search paradigm, it 
combines the presentation of a pop-out target defined in 
two possible dimensions with the factorial manipulation of 
a second variable, such as feature contrast. So, observers 
are presented with an ‘absent’ display, with single 
dimension displays (in which the target differs from 
distracters in one dimension), or with redundant-dimension 
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displays (in which the target differs from distracters 
simultaneously in two dimensions). The feature contrast 
can be manipulated by varying the difference between 
targets and distracters. Townsend and Nozawa proved that 
analyzing the interaction between feature contrasts in both 
dimensions of redundant targets can differentiate between 
different architectures and stopping rules. There are four 
possible types of redundant target in the double factorial 
paradigm (2 dimensions x 2 levels of feature contrast). For 
instance, with orientation and luminance as the critical 
dimensions, orientation targets may differ from distracters 
by an angle of 6° (low feature contrast) or 45° (high feature 
contrast), while luminance targets may be either dim (low 
feature contrast) or bright (high feature contrast). Thus, the 
four different types of redundant targets are: (i) tilted 45° 
and bright, (ii) tilted 45° and dim, (iii) tilted 6° and bright, 
and (iv) tilted 6° and dim. If the two factors are 
independent, they should have additive (non-interacting) 
effects on the processing speed of redundant targets. Sub-
additivity occurs if lowering the feature contrast in one 
dimension has a smaller slowing effect on RTs when the 
feature in the other dimension is already of low feature 
contrast. If lowering feature contrast in one dimension has a 
larger effect when the feature in the second dimension is of 
low contrast, then super-additivity is said to occur. 
Townsend and Nozawa (36) proved that (under general 
conditions) parallel-race models predict super-additivity in 
the mean interaction contrast, parallel exhaustive models 
predict sub-additivity, and both exhaustive and self-
terminating models predict simple additivity when looking 
at the interaction of feature contrast for both dimensional 
components of redundant targets.1  

 
Using the paradigm and stimuli described above, 

Zehetleitner et al. (37) found a super-additive interaction of 
the intensity levels in redundant targets, hence excluding 
serial models of both stopping rules (self-terminating and 
exhaustive).  

Interactive parallel-race models that can lead to 
violations of the RMI assume cross-talk between the 
parallel channels, that is, exchange of information between 
the two channels before the decision unit is reached. This 
information is helpful only if there are 
correlations/contingencies between the signals in the two 
channels. For instance, if the color channel identifies the 
presence of a pop-out target, this information could be 
made available to the orientation channel via cross-talk. If 
the presence of feature contrast defined in the color 
dimension is uncorrelated with the presence of feature 
contrast in the orientation dimension, this information is 
not beneficial for processing in the other channel. For 
example, if the probability of color feature contrast being 
present is greater given the presence, rather than the 
absence, of orientation contrast (i.e., if the probability of a 
redundant target is greater than the probability of a simple 
color target), then exchange of information about the 
presence of feature contrast favors redundant targets – 
because information about the presence of feature contrast 
in one dimension (e.g., color) makes the presence of feature 
contrast in the other dimension (e.g., orientation) more 
probable than its absence. Under these circumstances, 
detection of redundant targets can be expedited as 

compared to single targets, which can lead to violations of 
the RMI that are not due to co-activation (20, 21). 

 
It is possible to design an experiment in which 

the correlations between channels do not favor redundant 
targets, if more than one type of ‘absent’ stimulus is 
introduced – which is, however, not possible logically in 
visual pop-out search. Thus, in order to test whether an 
interactive race-model could account for observed 
violations of the RMI (22, 23), Zehetleitner et al. (37) 
manipulated the amount of information that can aid 
detection of redundant targets via channel cross-talk, 
assuming that this manipulation would modulate 
redundancy gains and the degree to which the RMI is 
violated. Zehetleitner et al. varied the ratio of ‘present’ 
compared to ‘absent’ displays (50:50 vs. 75:25), crossed 
with variation of the proportion of single targets compared 
to redundant targets (50:50 vs. 66:33). Each of these 
combinations of ratios leads to contingencies that differ in 
the strength of benefit for redundant over single targets. 
The interactive-race model predicts redundancy gains and 
violations of the RMI to be the greater the stronger these 
contingencies are. However, at variance with this, 
Zehetleitner et al. failed to find any variation of redundancy 
gains or of the magnitude of the RMI violations when 
manipulating inter-channel contingencies. 

 
In summary, the available evidence most strongly 

supports co-active/integrative models of visual processing 
of feature contrast signals. Independent parallel models can 
be excluded because redundant pop-out targets lead to 
violations of the RMI. Serial exhaustive models, which in 
theory, can also lead to violations of the RMI, can be 
excluded because of an over-additive interaction for 
redundant targets. Interactive-parallel models are unlikely, 
because manipulating the amount of information that would 
facilitate processing of redundant targets via channel-cross-
talk did not alter redundancy gain or the magnitude of RMI 
violations. 

 
2.3. Is integration spatially selective? 

Both neuronal and cognitive models of visual 
processing agree that the initial parallel computation of 
feature contrast is topographically organized. The evidence 
of Krummenacher et al. (22) as well as of Zehetleitner et 
al. (37) strongly support co-activation models, consistent 
with the idea of an overall-saliency (master) map into 
which feature contrast signals are summed. The models of 
both Wolfe (10, see also 1) and Itti and Koch (13) assume 
that the integration stage is topographically organized, that 
is, the integration is spatially specific (Figure 4). In models 
of this type, redundant signals can only be integrated if they 
are in close spatial proximity. 

 
An alternative model would assume that dimensional 
signals are spatially pooled before the integration stage. An 
example model of this type is the original feature 
integration theory (FIT; 8, 40), which assumed that there 
are dimensional pooling units that signal presence of 
feature contrast in one dimension, irrespective of its precise 
location, as presented in Figure 5. That is, crucial with 
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Figure 4. Example saliency summation model (e.g., 1, 10, 13). The display is first analyzed by spatio-topically organized feature 
analyzers for different colors, orientations, motion directions, etc. Each map is a topographical representation of the display, with 
black representing no activity and white strongest activity. Feature maps are summed into dimension maps, which are then 
summed into the master saliency map. The contribution of each dimension map to the activity of the master saliency map can be 
modulated by dimension weights wc, wo, and wm (for the color, orientation, and motion dimensions, respectively). 
 
regard to the question of spatial specificity, these 
dimensional units convey information only about signal 
presence in a dimension, but not spatial information about 
where the signal originates from. This notion of 
dimensional signals, which are spatially unspecific has 
been revived recently by Chan and Hayward (41) and 
Mortier et al. (42). This notion predicts, that processing of 
redundant pop-out target signals, which are defined by 
feature contrast in two dimensions, is independent of the 
spatial arrangement of the individual signals (for example, 
a single target redundantly defined in two dimensions 
compared to dual targets defined in different dimensions). 
 

Another model makes exactly the opposite 
prediction, namely, that integration of dimensionally 
redundant target signals happens only if both dimensional 
signals originate from the same location: the dimension 
action (DA) model of Cohen and Feintuch (43), which is 
based on the cross-dimensional response selection model of 

Cohen and Magen (44, see also 45, 46). The DA model 
assumes that there are dimension-specific feature analyzer 
units as well as multiple response selection units, one per 
visual dimension (43, p. 589). While the dimensional 
response selection units compute responses in parallel, the 
response decision of only one such unit can be transferred 
to an executive (working memory) stage which mediates 
overt reactions. Thus, if targets defined in multiple 
dimensions are present in the display, their critical features 
will be analyzed in parallel in a dimension-specific manner. 
Likewise, the response for each target feature will be 
selected separately in parallel. However, which specific 
response will be transferred to the reaction stage depends 
on focal attention: responses will be processed further only 
for signal locations to which spatial attention is allocated. If 
the two dimensional signals originate from the same 
position (i.e., with a single dimensionally redundant target), 



Redundancy gains and and preattentive visual processing 

5285 

 
 

Figure 5. Example model in which presence of feature contrast in one dimension is represented in a non-spatial fashion (e.g., 8, 
40). The display is analyzed in terms of color, orientation, and motion contrast. The possible activity is represented by the light 
grey boxes. Large activity is represented by a tall dark grey bar, low activity by a small dark grey bar. 

 
response units from both dimensions will be activated and 
their signals transferred on to working memory in a co-
active manner, provided that focal attention is directed to 
the target location (43, pp. 591-592). Regarding the spatial 
range of cross-dimensional signal integration, this model 
predicts that co-activation can take place only if the two 
component signals of a dimensionally redundant target are 
presented at one location. 

 
In contrast, guided-search-type models (10, 13) 

assume that integration of redundant dimensional signals 
happens on the overall-saliency (master) map in a spatially 
specific manner. Thus, these models predict – in contrast to 
models with a FIT-type architecture – that feature contrast 
signals from two dimensions that are too far apart spatially 
will not be integrated, because summation is spatially 
specific. At the same time, they predict – in contrast to the 
DA model – that dimensionally redundant signals that are 
spatially not too far apart may still be integrated, albeit to a 
lesser extent.  

 
To examine these alternatives, Krummenacher et 

al. (23) examined the role of spatial information in a 
variant of the redundant-signals paradigm for pop-out 
targets. Targets differed from distracters in either color or 
orientation. Redundancy could be of two types, either in 
one target (which differed from the distracters in both 
dimensions), or in two targets, one defined in orientation 
and the other in color. By introducing dual (redundant) 
targets, spatial distance between the redundant signals 
could be manipulated. Krummenacher et al. found that 
redundancy gains decreased with increasing spatial distance 
between the dual targets, as predicted by models that 
assume spatially specific integration. Violations of the RMI 
occurred only for redundant target signals separated by one 
to two units of distance (1.5°–3.6° of visual ), but not for 
redundant targets separated by three units of distance (more 
than 3.5° of visual angle). In addition, the range of reaction 

times for which the RMI was violated was smaller for the 
medium than for the short distance. 

 
Two conclusions can be drawn from these 

findings: (i) integration of redundant signals is spatially 
specific, and (ii) the strength of integration decreases with 
increasing distance between the two redundant signals. If 
the two targets are too far apart spatially, no integration 
occurs at all. This is at odds both with theories that assume 
spatial (intra-dimensional) pooling of the separate signals 
prior to the integration stage (e.g., FIT) and with models 
that assume integration of redundant signals to be possible 
only at one position, the locus of focal attention (DA 
model). In contrast, it is consistent with models that assume 
a topographically organized overall-saliency (master) map: 
integration is spatially scaled, so that redundant signals that 
originate from the same location benefit maximally in 
terms of integration strength, and strength of integration 
decreases with increasing spatial distance. 

 
If integration of redundant signals requires spatial 

proximity, does integration also require spatial (focal) 
attention? The answer provided by the DA model is ‘yes’, 
because dimensional response units require deployment of 
focal attention for co-active processing (i.e., the integration 
of redundant dimensional signals is assumed to be a post-
selective process). To address this question, Krummenacher 
et al. (23) combined the redundant-signals paradigm with a 
spatial-cueing procedure. At the start of a trial, participants 
were informed of the display quadrant, a circumscribed 
region (with the maximum center-to-center distances 
varying between 2.05° horizontally and 2.9° vertically), 
highly likely (p=.79) to contain a target by a central-arrow 
indicator. Observers did make use of the cues, as evidenced 
by overall faster reaction times for (valid) targets that 
appeared at the cued location, compared to (invalid) targets 
at uncued locations. Importantly, Krummenacher et al. 
found violations of the RMI to be independent of the locus 
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of attention. The RMI was violated both for redundant 
targets that were placed within the cued quadrant and for 
targets placed within an uncued quadrant. This finding is at 
variance with the assumption of post-selective signal 
integration made by the DA model, but consistent with 
models that assume an overall saliency map that guides 
spatial-attentional selection. In these models, integration of 
redundant signals is assumed to be a preattentive process, 
that is, independent of the locus of focal attention – a view 
advocated by Krummenacher et al. (23). 

 
In summary, co-activation of redundant pop-out 

target signals is spatially specific (or spatially scaled): the 
two components of redundant targets must be in spatial 
proximity in order to be integrated. This is consistent with 
models that assume a center-surround computation of 
feature contrast (13). Although spatially specific, spatial 
attention is not necessary for integration: integration of 
redundant pop-out targets is a preattentive process in the 
sense that it affects build-up of activation on the salience 
master map, before this activation is used to guide 
deployment of spatial attention (10, 13).  

 
2.4. Is integration feature-based or dimension-based? 

The redundant-signals paradigm applied to pop-
out search provides support in favor of a co-
active/integrative architecture of processing of 
dimensionally different feature contrast signals and against 
serial and, respectively, parallel (independent or 
interactive) models. It also provides evidence that the 
integration of feature contrast signals is spatially specific 
and preattentive. Cognitive and neuronal models that are 
based on an overall-saliency map (1, 10, 13) additionally 
assume that feature contrast signals are dimensionally 
pooled before being integrated into the overall-saliency 
map: as illustrated in Figure 4, according to these models, 
feature contrast is computed in parallel for each feature 
(e.g., red, green, vertical, right-tilted, bright, dim, etc.). 
Before being pooled into a master saliency map, feature 
contrast signals that stem from the same dimension (see 14) 
are first summed into a dimension-specific map. 
Dimension-specific signals may be weighted prior to being 
transferred to the master saliency map (1). If the weight is 
set higher for a particular dimension, activity from this 
dimension has an earlier and/or greater impact on the 
activity on the master saliency map. 

 
Explicit computational models (13) would also 

predict integration to be possible only between different 
dimensions, not between different features within the same 
dimension – because the signals on the dimensional maps 
are assumed to be normalized before further processing. If 
a redundant target consists of two pop-out signals defined 
in the same dimension (e.g., a red and a blue target among 
green distracters), these would initially produce larger 
signals on the color-specific (dimension) map, due to the 
summation of signals from the feature maps (red and blue), 
compared to single targets. That is, the activity on the color 
map for two targets defined by separate feature contrasts 
(e.g., red and blue vs. green) would be higher than the 
activity generated by a target defined by only one feature, if 
the two targets are in close spatial proximity. In more 

detail, the activity produced by a target on any map, rather 
than being confined to a single point, is spread out (e.g., in 
the way of a two-dimensional Gaussian distribution). When 
there are two targets in close proximity, they produce 
spatially overlapping activations on different feature maps. 
When such signals are pooled (i.e., when their overlapping 
activations are summed), there would be co-activation of 
dimension-specific units by separate features within a given 
dimension, analogous to the co-activation of master 
saliency units by dual pop-out targets defined in separate 
dimensions (23). But in order to assure that all dimensions 
contribute equally to overall-saliency, dimensional signals 
are normalized (to values between 0 and 1; 13, p. 1493) 
before being summed into the master map. Due to this 
normalization, enhanced activity on dimension-specific 
maps generated by dual pop-out targets in the same 
dimension is not propagated to the overall-saliency map. In 
summary, the critical difference between dimension-
specific maps and the master saliency map is that activity is 
normalized on the former (a process by which redundancy 
gains are lost), but not the latter (which permits for 
redundancy gains to have an effect). 

 
To examine this assumption, Krummenacher et 

al. (23) analyzed the processing of redundant target signals 
that were spatially separate, but in close proximity, for two 
conditions: within-dimension and cross-dimension. In the 
within-dimension condition, the two signals on RSTs were 
defined both in either the color (red and blue) or the 
orientation dimension (tilted to the left and to the right). In 
the cross-dimension condition, one of the targets was 
defined in the orientation, the other in the color dimension. 
Violations of the RMI were observed only when the two 
targets were defined in separate dimensions, but not when 
they were defined within the same dimension. This finding 
strongly supports models that assume dimensional pooling 
with some kind of normalization before contrast signals are 
fed into a master saliency map (1, 13). 

 
2.5. Weighting or priming? 

Maljkovic and Nakayama (47) observed that 
target detection on trial n was affected by the target on trial 
n-1. In their experiments, a pop-out target was present on 
each trial. For example, in the color condition, the target 
could be either red or green, and the distracters were green 
or red, respectively. If the target definition stayed the same 
on successive trials, search performance was faster than 
when the target definition changed from one trial to the 
next. To rule out that this intertrial effect is due to top-
down processes, Maljkovic and Nakayama varied the 
predictability of the target/distracter feature swap. They 
found that, even when the sequence was made perfectly 
predictable (i.e., the target definition changed regularly 
every two trials in AABBAA…manner) and observers 
were informed about this rule, change of the 
target/distractor features still produced substantial reaction 
time costs. Hence, Maljkovic and Nakayama interpreted 
this effect in terms of the passive (top-down impenetrable) 
‘priming of pop-out’. 

 
A similar effect of the previous target definition 

on search performance on a given trial was described by 
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Müller et al. (1). Their observers had to discern the 
presence (vs. the absence) of an orientation pop-out target 
in either a within-dimension or a cross-dimension 
condition. In within-dimension search, targets, if present, 
were always defined in the orientation dimension. In cross-
dimension search, targets could be defined in the 
orientation, the size, or the color dimension. Comparison of 
the reaction times to the right-tilted orientation target 
presented in both conditions revealed costs of about 60 ms 
for cross-dimension as compared to within-dimension 
search. Similar to Maljkovic and Nakayama (47), Müller et 
al. (1) took this result as evidence for a bottom-up 
modulation of search performance. But, in contrast to 
Maljkovic and Nakayama who swapped target and 
distractor features, Müller et al. used dimensionally 
variable targets (with a constant distractor background), 
emphasizing the importance of dimensional changes for 
producing search reaction time costs. 

 
Subsequently, Found and Müller (11) examined 

the relative contributions of the dimensional and featural 
effects on change costs across consecutive trials. Observers 
had to discern the presence of a target among green vertical 
distracter bars. The target, if present, could be either color-
defined (red or blue) or orientation-defined (tilted to the left 
or right of vertical). The target type was varied randomly 
from trial to trial. Hence, on two consecutive trials, the 
target could either be repeated (i.e., be defined in same 
dimension by the same feature, e.g., a red target following a 
red target), it could change feature while remaining defined 
in the same dimension (e.g., a red target following a blue 
target), or it could be defined in a different dimension (e.g., 
a red target following a right-tilted target). Found and 
Müller found substantial reaction time costs when the target 
changed dimension, and only slight costs (if any) when the 
target changed feature within a repeated dimension – 
relative to the condition in which the target was unchanged. 
They concluded that the slowing of reaction times was 
(mainly) due to dimension changes rather than feature 
changes. In their ‘dimension weighting’ account, Müller 
and colleagues (1, 11) assumed that dimensional signals 
can be modulated by dimension-specific weights, prior to 
integration into the overall-saliency (master) map (see 
weights wc, wo, and wm in Figure 4). These weights can be 
affected in two ways: (i) in bottom-up fashion by the trial 
history, and (ii) in top-down fashion by the observer’s 
intentions (48, 49). 

 
It is possible to examine changes of dimensional 

weights dependent on trial history in more detail. The 
dimension weighting account assumes that the target’s 
feature contrast signal(s) on trial n-1 gives rise to weight 
adaptations, which then modulate saliency computations on 
the following trial n. On the assumption that preattentive 
feature contrast signals, rather than attentionally analyzed 
conjunctions of the target features, are determining changes 
of dimensional weights, there are in principle two 
fundamentally different ways in which such a weight-based 
signal modulation may be implemented: ‘priming’ or 
‘weighting’. On the priming account, presenting a target in 
one dimension on trial n-1 increases the weight for that 
dimension. The increased weight leads to a faster build-up 

and a larger final signal on the overall-saliency (master) 
map when the target on trial n is defined in the same 
dimension – which becomes evident in a reaction time 
benefit for repeated-dimension targets. Nearly the same is 
true on a weighting account, with one important difference: 
Similar to the priming account, presenting a target in a 
specific dimension on trial n-1 increases the weight for 
signals defined in this dimension (expediting reaction times 
to targets defined in the same dimension on the subsequent 
trial n). But, in contrast to the priming account, the 
weighing hypothesis states that increasing the weight for 
one dimension entails decreasing the weights for other 
dimensions. If targets occur in only two possible 
dimensions in an experiment, other, irrelevant dimensions 
would never receive a weight increase (as they are never 
reinforced by a target event). However, they would receive 
an inhibitory signal (by the target events in the relevant 
dimensions), driving the dimensional weights towards the 
minimum. That is, while the priming account assumes 
dimensional weights to be an unlimited resource, the 
weighting account assumes that the total weight is limited 
such that the weight of one dimension cannot be increased 
without decreasing the weight of other dimensions. 

 
Again, the redundant-signals paradigm in pop-out 

search can help to decide between the two alternatives: 
weighting versus priming, since the two accounts differ in 
their predictions about the effect of a dimensionally 
redundant – such as a color- plus orientation-defined target 
– signal on trial n-1. On the assumption of priming, a 
redundant target increases the weights for both dimensions: 
the color component of the redundant target increases the 
weight for the color dimension (just like a singly defined 
color target), and the orientation component increases the 
weight for the orientation dimension (just like a singly 
defined orientation target). Hence, the priming account 
predicts performance for a singly defined color target on 
trial n to be the same, regardless of whether the preceding – 
trial n-1 – target was color-defined or redundantly defined, 
because the weight for the color dimension is changed by 
both types of target in the same way. By comparison, 
responses to a color target on trial n are predicted to be 
slower if the target n-1 was defined by orientation. The 
same would hold for a singly defined orientation target on 
trial n, responses to which would be independent of 
whether target n-1 was orientation-defined or redundantly 
defined, while responses would be slower when the 
orientation target is preceded by a color target. 

 
The weighting account makes a very different 

prediction, based on the assumption that the weights for a 
given dimension are dynamically adjusted by competitive 
interactions that strengthen the weight for a given target-
defining dimension by withdrawing weight from other 
dimensions. That is, the weight for a given dimension can 
only be increased by decreasing the weight for one or more 
of the other dimensions, implementing a limited-capacity 
weight resource. Thus, on a redundant-target trial, the color 
component strengthens the weight for color, while 
simultaneously reducing that for orientation. 
Concomitantly, the orientation component of the redundant 
target would increase the weight for orientation and 
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decrease that for color. That is, on redundant-signals trials, 
the weight of each (relevant) dimension would be 
simultaneously strengthened and weakened. Consequently, 
responses to a color target on trial n are fastest if it follows 
a color-defined target, intermediate if it follows a 
redundantly defined target, and slowest if it follows an 
orientation-defined target. The reason is that, if target n-1 is 
color-defined, the weight for the color dimension receives 
only a facilitatory input; if it is redundantly defined, the 
color weight receives both a facilitatory (from the color 
component of the redundant target) and an inhibitory input 
(from the orientation component); and if target n-1 is 
orientation-defined, the color weight receives only an 
inhibitory input. (Analogous predictions hold for an 
orientation target on trial n following an orientation-
defined, a redundantly defined, or a color-defined target on 
trial n-1.) 

 
Thus, the two different models of how 

dimensional weights are changed – priming versus 
weighting – lead to differential predictions regarding the 
effect of a redundantly defined target on search 
performance for the next target. The data of Krummenacher 
et al. (22) permit these predictions to be tested, by 
analyzing the effects of orientation, color, and redundant 
targets on trial n-1 on reaction times to targets on trial n. 
They found that targets defined in a given dimension were 
detected fastest when the preceding target was defined in 
the same dimension, and slowest when it was defined in a 
different dimension. This is consistent with both the 
priming and the weighting account. However, search 
performance for a singly defined target (whether by color 
or by orientation) preceded by a redundant target was in-
between performance for same-dimension and different-
dimension targets. This pattern is inconsistent with the 
priming account (which predicts a redundant target on trial 
n-1 to lead to the same reaction time performance as a 
same-dimension target), but expected on the weighting 
account. 

 
Thus, dimensional weights do not behave in 

terms of an unlimited resource that can be increased for 
each dimension without any constraints. Rather, 
dimensional weights may be conceived of as a limited 
resource, in the sense that it is impossible to increase the 
weight of one dimension without decreasing the weight of 
other dimensions, as originally proposed by Müller and 
colleagues (1, 11). 

 
2.6. Implementation of saliency maps and dimensional 
weighting in the brain 

Although an integral part of many cognitive and 
computational theories, the neural implementation of an 
overall-saliency map is not yet fully clear. The properties of 
such a neural map have to include: (i) topographical 
organization, (ii) featureless representation of stimuli 
(locations), and (iii) strength of activity related to strength 
of local center-surround contrast. Several structures are 
currently hypothesized to provide an implementation of an 
overall-saliency map: the pulvinar (e.g. 50), the lateral 
intraparietal area (e.g. 51), and the frontal eye fields (FEF; 
e.g. 52, 53) – with the FEF being a particularly promising 

structure. Quite likely, though, there is not only a single 
implementation of a saliency map in the primate brain, but 
rather a network of multiple, interacting areas: the 
oculomotor network (54). In the following section, we will 
focus on evidence relating to the FEF, which has been 
gained using visual-search paradigms.  

 
The FEF fulfills all three of the above criteria. It 

is topographically organized such that neighboring neurons 
represent neighboring points in retinotopic coordinates (55, 
56 for monkeys; 57 for humans). The featureless and 
feature-contrast dependent response characteristics of FEF 
neurons have been demonstrated by Sato et al. (58). They 
manipulated two aspects of a visual search task in a 
monkey single-cell study that both lead to increased 
reaction times: (i) they varied the saliency of the target, that 
is, the similarity between the target and distracters, and (ii) 
they introduced response interference by infrequently 
changing the location of the target. The task was to saccade 
to an odd-ball target defined by either color or motion 
contrast. Search difficulty was manipulated by varying the 
color similarity of the target to the distractors and, 
respectively, the proportion of dot stimuli moved 
coherently in one direction within a pattern of randomly 
moving dots. In the response interference condition, the 
target and one distracter changed locations after initial 
presentation of the search array. The monkey had to cancel 
the initial saccade and shift gaze to the new target location. 
Although both manipulations affected the latency and 
variability of reaction times, only the perceptual 
manipulation had an influence on the time taken by visually 
responsive neurons in the FEF to select the target. Thus, 
activity of visually responsive FEF neurons reflects the 
strength of feature contrast, and responses are triggered by 
feature contrast whether defined by motion or color 
differences.  

 
Given the evidence for FEF neurons signaling 

overall-saliency, two new questions arise within the present 
context: can FEF neuronal activity explain redundancy 
gains and intertrial change effects in visual pop-out search? 
Concerning the former, cognitive and computational 
models of visual search (1, 10, 13) assume that redundant 
targets give rise to both a faster and a higher build-up of 
activation on the master saliency map compared to single 
targets. Accordingly, if there is a neural implementation of 
the master saliency map in the FEF, visually responsive 
FEF neurons should be able to select targets faster when 
they are redundantly defined by feature contrast in two 
dimensions, compared to being defined by feature contrast 
in one dimension only. This prediction still needs to be 
tested in single-cell studies.  

 
Relating to the second question, the DWA 

assumes that repetition of the target-defining dimension 
(e.g., color) across trials leads to an increase of the weight 
for this dimension, and a decrease of weight for other 
dimensions. Thus, feature contrast signals from the 
repeated dimension (e.g., color) would have an earlier and 
greater impact on the master saliency map, compared to 
signals from a non-repeated dimension. Thus, if visually 
responsive FEF neurons signal saliency, they should show 
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an earlier, enhanced response to a pop-out target defined in 
a repeated (rather than changed) dimension. Indeed, Bichot 
and Schall (53) observed a similar pattern using a pop-out 
search paradigm adapted from Maljkovic and Nakayama 
(47), in which the identity of targets and distractors (rather 
than the target-defining dimension) could change from trial 
to trial. In Bichot and Schall’s task, monkeys were trained 
to saccade to an odd-one-out target defined by either color 
or shape, with the target and distractor features varying 
randomly across trials. Bichot and Schall found that 
activity of visually responsive FEF neurons to targets and, 
respectively, distractors separated faster if the target and 
distracter features were repeated, rather than changed, from 
the previous trial. This suggests that a similar pattern of 
FEF neuronal responses would also be observed for 
dimension repetitions versus changes across trials; 
however, this prediction still requires explicit testing. 

 
Concerning the brain mechanisms responsible for 

controlling the assignment of dimensional weights, data 
from fMRI studies suggest that these comprise a fronto-
posterior network. Pollmann et al. (59) found that changes 
(vs. repetitions) in the dimension defining a pop-out target 
lead to increased activation in the left frontopolar cortex 
and inferior-frontal gyri, as well as high-level visual 
processing areas in parietal and temporal cortex, and dorsal 
occipital visual areas. Follow-up studies (60-62) support 
the view that the mechanisms responsible for controlling 
the change of dimensional weights involve fronto-polar 
cortex and that the effect of changes in dimensional 
weights is mediated via feedback connections to the 
extrastriate visual areas that process the features of the new 
target dimension. For example, in the fMRI study of 
Pollmann et al. (60), the target-defining dimensions were 
either color or motion direction. BOLD activity for trials 
with targets successively defined in the same dimension 
was tonically increased in posterior fusiform gyrus (which 
contains human area V4) for repeated color targets and in 
lateral occipital cortex (which contains the hMT + 
complex) for repeated motion targets. This supports the 
view that dimension-specific feature contrast signals can be 
weighted before being summed onto a master saliency map, 
where signals from a weighted dimension lead to a faster 
build-up of activation (for further details see 62, this issue).  

 
While the framework discussed thus far assumes 

that the master saliency map is a relatively high-level 
representation, an alternative – low-level – representation 
was recently proposed by Li (64). According to Li, V1 
computes a saliency map that is not based on the 
summation of feature-contrast signals (summation models, 
as proposed by others) (1, 8, 10, 13). Instead, the saliency 
of a location is determined by the firing rate of the most 
active V1 cells responding to the feature singleton 
(maximum model). The firing rates of V1 do not only 
depend on input strength, but also on the ‘context’ (65). 
Thus, for example, in a display with a horizontal bar 
surrounded by vertical bars, the cells responding to vertical 
orientation would be subject to iso-orientation suppression, 
whereas the cells responding to horizontal orientation 
would not be suppressed. As a result, the feature singleton 
target would lead to more active V1 cells tuned to 

horizontal orientation and to less active V1 cells tuned to 
vertical orientation. The most salient location is then 
simply signaled by the most active V1 cells (maximum 
selection rule). – This notion of a V1 saliency map 
resembles that of an overall-saliency map as conceived in 
summation accounts: saliency is signaled in a topographical 
and featureless manner, with saliency strength being related 
to strength of local center-surround contrast. 

 
This alternative model is also relevant to the 

present question at issue, namely, how redundantly defined 
pop-out targets are processed. In summation models, 
redundant targets are processed faster because activity on 
the master map is generated by signals originating from 
two dimensions simultaneously. In contrast, in Li’s 
maximum model, all dimensions contribute independently 
of each other to overall-saliency. If there were only 
dimension-specific cells in V1 (e.g., cells tuned to either 
color or orientation), processing would resemble a parallel 
horse race model – which is, however, excluded by 
established violations of the RMI (22). But V1 contains 
also cells that respond to features of more than one 
dimension (e.g., tuned for red vertical bars, or for bright 
bars that are moving upwards). Such cells have been 
demonstrated by, for example, Leventhal et al. (66) who 
analyzed responses of single V1 neurons in V1 of 
anaesthetized, paralyzed monkeys: they reported most V1 
cells to be responsive simultaneously to color, orientation, 
and motion. Most importantly, there was no negative 
correlation between color- and orientation-sensitive cells, 
as would be the case if each cell were tuned to a feature of 
one dimension exclusively. Following Leventhal et al., 
there have been more frequent reports of cells 
conjunctively tuned to features of two dimensions in V1 
and V2 (67-69). 

 
The existence of such conjunction cells is 

relevant to the detection of dimensionally redundant pop-
out targets. For instance, for a red vertical target among 
green horizontal distracters, there are three types of cell in 
V1 which are most active at the target location: color cells 
tuned to red, orientation cells tuned to vertical, and 
conjunction cells tuned to red and horizontal. Based on the 
V1 maximum model of saliency, Koene and Zhaoping (70) 
contended that saliency is larger for dimensionally 
redundant, relative to singly defined, pop-out targets if 
there exist conjunction cells in V1 for the respective 
combination of dimensions. Based on neuronal evidence 
(71-73), they argued that there are no conjunction cells in 
V1 for the combination of color and motion (CM), whereas 
there are such cells for the combinations of color and 
orientation (CO) and motion and orientation (MO). They 
therefore hypothesized that the RMI would be violated only 
for the combinations of CO and MO, but not the 
combination CM. This dissociation was supported by their 
experiment, in which participants had to respond to the 
location (i.e., left or right half of the display) of a pop-out 
target that was defined in either one dimension (of color, 
motion, or orientation) or redundantly in two dimensions 
(CO, MO, or CM): there were reliable violations of the 
RMI only for CO and MO targets, but not for CM targets. 
Koene and Zhaoping took this pattern as support for their 
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V1 maximum model of saliency, based on the non-
existence of cells in V1 cells conjunctively tuned to color 
and motion. 

 
However, at variance with Koene and Zhaoping’s 

(70) null-result, Krummenacher and Müller (74) found pop-
out targets redundantly defined by a combination of color 
and motion to significantly violate the RMI (see also 24, 
who reported redundancy gains and violations of the RMI 
for targets defined by color and motion). Thus, given the 
non-existence of color-motion cells in V1 (for which the 
evidence is actually mixed: while 66, reported finding such 
cells, others, such as 71, failed to do so), the findings of 
Krummenacher and Müller as well as of Katzner et al. 
would argue against the V1 maximum model of saliency 
advocated by Li (64) and Koene and Zhaoping (70). In 
summary, it is not yet possible to unequivocally decide 
between the summation saliency (10, 13) and the V1 
maximum models (64), but if color-motion cells are indeed 
non-existent in V1, as assumed by Koene and Zhaoping, 
the results of Krummenacher and Müller provide further 
good grounds to argue in favor of the summation saliency 
model. 

 
2.7. Conclusion 

In the present review, we have summarized 
research on several critical questions concerning the nature 
of early visual processing and we have shown how the 
redundant-signals paradigm in visual pop-out search 
provides a powerful tool for answering these questions. 
Applied to pop-out search, this paradigm yields a number 
of dependent measures, including mean redundancy gains, 
violations of the RMI, and effects of redundant targets on 
cross-dimensional intertrial transitions. The findings 
strongly support co-activation models that assume 
summation of feature contrast signals in a master saliency 
map (e.g., Guided Search model, the dimension-weighting 
account, and the model of 13). Exclusion of parallel- and 
interactive-race models, as well as of serial models 
supports summation models in general. Several other 
findings, such as spatial specificity of integration, the 
preattentive nature of integration, and the dimensional 
organization of feature contrast signals are supported by 
various studies that have employed the redundant-signals 
paradigm as a tool. Especially the dimension weighting 
account receives further support regarding the limited-
resource nature of dimensional weights. Instead of a 
priming mechanism that could increase weights for several 
dimensions independently, a weighting mechanism (as 
proposed by 1) seems to determine stimulus-driven changes 
in the dimensional weight set: increasing the weight for one 
dimension goes along with decreasing the weights for one 
or several other dimensions – by a competitive interaction 
that implies a limit to the total weight available to be 
allocated to the various dimensions. 

 
Issues for further research include the effect of 

redundant targets, as well as that of cross-trial changes in 
the target-defining dimension, on FEF neuronal activity: 
the DWA predicts that redundantly defined targets as well 
as targets defined in a repeated dimension would lead to 
expedited discrimination between targets and distracters in 

FEF neurons, compared to targets defined in a single 
dimension, and targets defined in a changed dimension 
relative to the target on the previous trial. Also, the 
alternative to summation models of saliency, namely: Li’s 
V1 maximum model of saliency (64) requires further 
behavioral and neuro-physiological research to permit an 
unequivocal decision to be made between the alternative 
models. 
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