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1.  ABSTRACT 

 
The electron diffraction structure of nicotinic 

acetylcholine receptor (nAChR) from Torpedo marmorata 
and the X-ray crystallographic structure of acetylcholine 
binding protein (AChBP) are providing new answers to 
persistent questions about how nAChRs function as 
biophysical machines and as participants in cellular and 
systems physiology.  New high-resolution information 
about nAChR structures might come from advances in 
crystallography and NMR, from extracellular domain 
nAChRs as high fidelity models, and from prokaryotic 
nicotinoid proteins.  At the level of biophysics, structures 
of different nAChRs with different pharmacological 
profiles and kinetics will help describe how agonists and 
antagonists bind to orthosteric binding sites, how allosteric 
modulators affect function by binding outside these sites, 
how nAChRs control ion flow, and how large cytoplasmic 
domains affect function.  At the level of cellular and 
systems physiology, structures of nAChRs will help

 
 
 
 

characterize interactions with other cellular components, 
including lipids and trafficking and signaling proteins, and 
contribute to understanding the roles of nAChRs in 
addiction, neurodegeneration, and mental illness.  
Understanding nAChRs at an atomic level will be 
important for designing interventions for these pathologies. 

 
2.  INTRODUCTION 
 

Nicotinic acetylcholine receptors (nAChRs) are 
integral-membrane, neurotransmitter-activated ion channels 
in the central and peripheral nervous systems that 
participate in signal transmission associated with the 
physiological release of acetylcholine (1).  As cation-
selective ion channels, they depolarize transmembrane 
voltage when they transition from the closed resting state to 
the open cation-conducting state by binding agonist.  
Continued exposure to agonist causes transition from the 



Structural answers and questions about nicotinic receptors 

5480 

open state to the closed desensitized state.  More than four 
decades of research have answered many structural 
questions about nAChRs.  Reviews published across these 
decades reveal the progression of questions and answers (2-
15).  Current understanding of the structural basis of how 
nAChRs work is relatively advanced compared to other 
areas of ion channel biophysics (16-27).  Despite this level 
of understanding, however, questions persist, not only 
about biophysical properties but also about the structural 
basis of how nAChRs affect cellular and systems physiology 
(28).  By reviewing research literature published primarily 
between 2003 and mid-2007, the goals of this review are to 
describe the current state of understanding of the structures of 
nAChRs and to describe questions for which atomic-level 
structural answers still await.   
 

3.  WHICH STRUCTURAL FEATURES DEFINE 
NACHRS AND OTHER CYS-LOOP RECEPTORS? 
 

Mammalian genomes contain 16 nAChR subunits 
(α1–α7, α9, α10, β1–β4, δ, γ, ε; α8 is found only in 
chicken).  Primary sequence homology and the consensus 
sequence of the Cys loop (C-x-[LIVMFQ]-x-[LIVMF]-
x(2)-[FY]-P-x-D-x(3)-C from reference (29)) are important 
unifying properties of the Cys-loop superfamily and its 
component families.  In addition, an N-terminal 
extracellular domain containing the agonist binding site, 
four transmembrane domains (M1–M4), and an 
intracellular large cytoplasmic loop between M3 and M4 
are unifying topological features.  For nAChRs, α subunits 
contain extracellular tandem cysteine residues near the start 
of M1.  Subunits assemble into pentamers to form 
homomeric or heteromeric ligand gated ion channels.  The 
nAChRs are selective for cations, typically Na+ and K+ 
with varying levels of relative permeability for Ca2+.  For 
example, the Ca:Na permeability ratio is about 10 for rat 
α7 or α7-containing nAChRs (30, 31) and about 0.2 for 
muscle-type nAChR from frog (Rana pipiens) (32). 

 
The presence of two cysteines with a disulfide 

bond and separated by 13 amino acid residues with various 
degrees of conservation has been a used as a defining 
structural characteristic for nAChR subunits from 
eukaryotes (33, 34) and, more generally, for Cys-loop 
receptor subunits (20, 22, 26).  The Cys-loop receptor and 
subunit superfamily includes nAChRs and ionotropic 
5-HT3 receptors (5-HT3R) (35, 36) (cation selective), 
ionotropic GABA receptors (37, 38) and glycine receptors 
(39-41) (anion selective), zinc-activated channels (42, 43), 
glutamate-gated GluCl chloride channels (44, 45), and 
serotonin-gated chloride channels (46, 47).   

 
Using the Cys loop as a defining feature of Cys-

loop proteins, however, might be overly restrictive for 
identifying proteins sharing overall structural homology.  
For example, requiring a Cys loop with 13 amino acid 
residues between cysteines as a defining feature excludes 
the acetylcholine binding protein (only 12 residues between 
cysteines in the Cys loop) (48, 49).  Moreover, nicotinoid 
prokaryotic proteins contain no Cys loop (50, 51), although 
they are or are likely to be structurally similar to Cys-loop 
subunits.   

The diversity of Cys-loop subunits and potential 
subunits across vertebrate, invertebrate (52-57), and 
prokaryotic genomes raises questions about which 
structural features are common to all Cys-loop subunits and 
which structural and functional features distinguish 
subgroups and individual receptors.  Comparing structural 
(primary through quaternary structure) and functional 
properties can suggest which novel proteins belong to the 
Cys-loop superfamily regardless of the presence of a true 
Cys loop.  Presently, comparing primary sequences 
probably is the best starting point for evaluating 
membership in the Cys-loop receptor family (Figure 1).  
Structural genomics of membrane and nonmembrane 
proteins, however, will provide means to identify 
candidates for membership in the Cys-loop superfamily 
based on higher order (secondary through quaternary) 
structural similarities even when primary sequence 
homology is insignificant (58-61).   

 
4.  WHAT IS KNOWN ABOUT THE STRUCTURE 
OF NACHRS? 
 

The highest resolution structural information 
about nAChRs has come from electron diffraction of 
helical tubular crystals of nAChRs from Torpedo 
marmorata (4 Å resolution) and from X-ray 
crystallography of acetylcholine binding protein (AChBP) 
(about 2 Å resolution).  Extending the Torpedo nAChR 
structure to higher resolution with electron diffraction is 
constrained by disorder of the tubular crystals.  
Understanding nAChRs based on properties of AChBP is 
constrained by the absence in AChBP of a transmembrane 
domain and the absence of ion channel function.  
Determining atomic-resolution structures of nAChR 
subtypes beyond Torpedo is an important goal for the 
future.  Structural comparisons among different subtypes 
will yield insights about distinctive patterns of ligand 
binding, ion channel behavior, and roles in physiology.  
This information also will guide the design of subtype 
specific drugs.  X-ray crystallography is a promising 
approach but presently is hampered by the difficulty of 
obtaining large amounts of nAChRs for crystallization 
trials and the difficulty of crystallizing integral membrane 
proteins.  NMR can produce information about both protein 
structure and dynamics but presently is limited by the 
maximum size of suitable proteins (about 100 kDa).   

 
Model systems can continue to yield important 

information about structures of nAChRs.  Extracellular 
domain nAChRs, which are high fidelity, pentameric 
models of full length nAChRs, might be more successful 
for crystallography if they can be crystallized without 
detergent and more successful for NMR because of their 
smaller size.  Ion channel homologues from bacteria 
recently were recognized and might be easier to produce in 
large quantity for crystallography and NMR.   

 
Static structures provide incomplete pictures of 

nAChRs.  Intramolecular dynamics is essential for starting 
and stopping ion flow through nAChRs and might be 
important for intramembranous and cytoplasmic 
interactions between nAChRs and other proteins.  



Structural answers and questions about nicotinic receptors 

5481 

 
 

Figure 1.  Multiple sequence alignment by ClustalW of the N-terminal extracellular domains from the α1 subunit from Torpedo 
marmorata, the AChBP subunit from Lymnaea stagnalis, and all 16 human nAChR subunits.  The residue numbers shown at the 
ends of the lines include the residues of the N-terminal signal sequences.  The alignment includes a portion of the N-terminal end 
of transmembrane domain M1.  Annotations above the blocks of sequences show structural features of the extracellular domain.  
The red labels α1 and α2 show α-helices; η1 shows a 310-helix, which is slightly more tightly coiled than a α-helix (a 3.613-helix 
in this nomenclature) (107).  The blue labels β1 through β10 show β-sheets.  The green labels A through F show loops of the 
principal face (A, B, and C) and complementary face (D, E, and F) of the orthosteric binding site of Torpedo marmorata (14, 24).  
The Cys loop is labeled with an orange dotted line.  Color code for amino acid residues:  red for small and hydrophobic residues, 
excluding tyrosine (AVFPMILW); blue for acidic residues (DE); black for basic residues (RK); green for hydroxyl and amine 
residues and others (STYHCNGQ).  

 
Understanding such dynamics will come not only 

from physical methods but also from computational 
methods like molecular dynamics simulations.  The 
challenge for the future is to integrate structure and 
dynamics to explain how nAChRs work.    
 
4.1.  Electron microscopy and electron diffraction 

Electron microscopy has contributed much 
information about the overall shape and internal structure 
of nAChRs (62-76).  The most comprehensive and highest 
resolution structures have come from electron diffraction 
studies of muscle-type nAChRs in helical tubular crystals 
grown from membrane vesicles of Torpedo marmorata, an 
electric fish (77-88).  The Torpedo nAChR structure at 4 Å 
resolution in the resting state is the best structure to date 

(Figure 2) and often is the foundation for homology 
modeling of other nAChRs (89, 90).   

 
In this structure, the N-terminal extracellular 

domain of each subunit contains ten β-strands and one 
major α-helix, similar to the structure of the acetylcholine 
binding protein (AChBP) (Figure 3).  Based on the AChBP 
structure, the subunit order in muscle-type receptors based 
on the locations of the principal and complementary faces 
of the binding sites is anticlockwise (α1)γ(α1)δ(β1) when 
viewed from the extracellular compartment (Figure 2).  
Adjacent subunits interact through contacts in the N-
terminal extracellular domains (mainly polar contacts), 
α-helical transmembrane domains (mainly hydrophobic 
contacts), and loops between transmembrane domains and 
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Figure 2.  Ribbon diagram of the pentameric structure of the nAChR from Torpedo marmorata.  Color scheme of the five 
subunits from N terminus through C terminus of each subunit:  α1-blue to cyan; β1-cyan to green; δ-green to yellow; α1-yellow 
to orange; γ-orange to red.  A.  View from the extracellular side of the nAChR and looking along the path of ion travel into a cell.  
The N terminal α-helix of the extracellular domain of each subunit is closest to the viewer.  The five subunits are labeled.  The 
subunit order is anticlockwise (α1)γ(α1)δ(β1) when viewed from the extracellular compartment.  B.  View in the plane of the 
transmembrane domains.  The adjacent α1 and δ subunits at the bottom of panel A are in front in panel B.  The top third of panel 
B shows the five extracellular domains.  The middle third of panel B is the plane of the membrane and shows the twenty α-
helical transmembrane domains (four from each subunit).  The bottom third of panel B shows the five amphipathic intracellular 
MA helices from the large cytoplasmic loops of the five subunits.  Electron diffraction did not identify the structure of the portion 
of the large cytoplasmic loop connecting M3 to amphipathic intracellular helix MA for any of the five subunits.  Except for the 
MA helices, therefore, the large cytoplasmic loops do not appear in this figure.  The MA helices precede the M4 helices and are 
below the plane of the transmembrane domains.  These images were created from Protein Data Bank accession 2bg9 (90).  

 
the amphipathic MA helix (91) (containing both 
hydrophobic and hydrophilic properties) in the large 
cytoplasmic loop just before M4.  The Cys loop and the 
β1–β2 loop of the N-terminal extracellular domain of a 
subunit interact with the short M2–M3 loop of the 
transmembrane domain.  This interaction across domains 
might help open the channel in the agonist-bound 
conformation.  In addition, the conformation of the two 
α1 subunits is different from the conformation of the β1, 
γ, and δ subunits.  A change in the conformation of the 

α1 subunits to match the conformation of β1, γ, and δ 
subunits might be a feature of the gating mechanism that 
opens the pore.  AChBP with a HEPES buffer molecule 
at the binding site (48) and the open channel of the 
Torpedo receptor after rapid spray-freezing with ACh 
(85) led to a model of structural transitions from the 
closed to open state (90).  A rearrangement within an α1 
subunit potentially is associated with ligand binding and 
gating and closes its B and C loops onto the ligand 
binding site.  
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Figure 3.  Ribbon diagram of a single α1 subunit of the nAChR from Torpedo marmorata viewed in the plane of the 
transmembrane domains.  Starting with violet at the N-terminus of the ribbon, the color of the ribbon proceeds through the colors 
of the rainbow ending with red at the C-terminus.  The extracellular α-helix is labeled α1.  The β-strands 1, 2, 3, 5, 5′, 6, 6′, and 8 
(labels in red) form the inner sheet of the β-sandwich core; β-strands 4, 7, 9, and 10 (labels in pink) form the outer sheet of the β-
sandwich core.  The transmembrane helices are labeled M1, M2, M3, and M4.  MA is the amphipathic intracellular helix in the 
large cytoplasmic loop near M4.  The N-terminus and C-terminus are labeled N and C, respectively.  The loops labeled A loop, B 
loop, and C loop belong to the structure of the principal face of the orthosteric binding site (14, 24).  Strand 2, the loop between 
strands 5′ and 6, and the loop between strands 8 and 9 form the complementary face components D, E, and F, respectively, of the 
orthosteric binding site (Figure 1).  The Cys loop is the 15-residue sequence beginning and ending with disulfide-bonded 
cysteines that gives the name to the Cys-loop superfamily of receptors.  The main immunogenic region (MIR) is a major focus of 
the autoimmune response leading to myasthenia gravis (482).  The structure of the large cytoplasmic loop connecting M3 to MA, 
which precedes M4, was not identified by electron diffraction and does not appear in this figure.  This image was created from 
Protein Data Bank accession 2bg9 (90). 
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Comparing the closed and open structures suggests that 
rotational movements within subunits contribute to 
channel opening.  The extracellular and cytoplasmic 
vestibules (central spaces ringed by the subunits on the 
extracellular side and cytoplasmic side, respectively, of 
the transmembrane domain) of the Torpedo receptor are 
strongly electronegative, which likely contributes to 
cation selectivity of the open channel.  Narrow windows 
in the walls of the cytoplasmic vestibule also appear to 
contribute to selectivity for ion charge and size and to 
regulation of the amount of current allowed through the 
pore.  This structure combined with AChBP structures 
form the foundation for homology modeling of other 
nAChRs and modeling Cys-loop receptors, in general. 

 
4.2.  X-ray crystallography and X-ray diffraction  

Although the supply of muscle-type nAChRs 
from natural sources is abundant, crystallizing nAChRs 
and most other integral membrane proteins is more 
difficult than crystallizing water-soluble proteins because 
of the presence of transmembrane domains (92, 93).  X-
ray diffraction of membranes from Torpedo californica 
electric organ provided estimates of the dimensions of 
the nAChRs (66).  More recently, three-dimensional 
microcrystals of detergent-solubilized nAChRs from 
Torpedo marmorata and bound with α-bungarotoxin 
were grown in a lipidic matrix (94), a technique that has 
successfully crystallized other membrane proteins (95-
97).  These crystals can serve as seeds for growing larger 
crystals.  In contrast to muscle-type nAChRs, 
obtaining sufficient quantities of native neuronal 
nAChRs for crystallization trials is considerably 
more difficult.  Heterologous expression systems 
operated at laboratory scale produce only microgram 
quantities of nAChRs under favorable circumstances.  
Hundreds of milligrams of protein often are needed 
for successful crystallization trials, although 
nanotechnology techniques applied to protein 
crystallography might considerably reduce that 
amount of protein (98).  Heterologous expression, 
however, probably is essential if site-specific 
mutations are to be studied in muscle-type or 
neuronal nAChRs.  Such mutations, impossible to 
obtain from natural sources of nAChRs, likely will be 
useful to facilitate crystallization or test hypotheses 
about nAChR function.   

 
The crystallographic structure at 1.94 Å of the 

extracellular domain of the mouse α1 subunit bound to 
α-bungarotoxin provided the first X-ray crystallography 
of a mammalian nAChR subunit and demonstrated 
advantages of recombinant production of nAChRs for 
crystallography (99).  Important findings include 
structures of the main immunogenic region (MIR; an 
important target of autoantibodies in myasthenia gravis), 
the Cys loop, and the carbohydrate chain interacting with 
α-bungarotoxin.  A hydrophilic domain with a water 
molecule forming a pocket within the subunit contrasted 
with a hydrophobic domain within the acetylcholine 
binding protein (see next section).  This difference might 
be important for ion channel function of α1 in 
pentameric nAChRs.  

4.3.  AChBP structural studies  
High resolution X-ray crystallographic 

information about the structure of nAChRs started to unfold 
in 2001 from an unexpected source:  acetylcholine binding 
protein (AChBP) (100-104).  Lacking transmembrane 
domains, this pentameric water-soluble protein was 
identified during a study of the effects of glia on synaptic 
transmission in the freshwater mollusk Lymnaea stagnalis 
(49).  Its primary sequence homology with Cys-loop 
receptor subunits, formation of homomeric pentamers, and 
binding of nicotinic ligands in a pattern similar to α7 
nAChRs supported its use as a water-soluble structural 
model for the N-terminal extracellular domain of nAChRs 
(48, 105).  Each subunit contains an N-terminal α-helix, ten 
β-strands forming a β sandwich and an immunoglobulin 
fold (106), and two 310 helices (107) (Figure 4).  Ligand 
binding sites (occupied by HEPES in the crystal) are 
formed between adjacent subunits by loops from one 
subunit (the principal face or plus side; Figure 4) and β-
strands from the other subunit (complementary face or 
minus side; Figure 4).  Loops from the plus side and β-
strands and loop β8–β9 from the minus side form interfaces 
between subunits.  The Cys loop contains 14 residues 
instead of the usual 15 residues (48).  The location of the 
Cys loop suggests a potential role for interaction between 
the Cys loop and transmembrane domains in nAChRs that 
might contribute to gating of the transmembrane domain.  
Residues of the subunit interfaces are not well conserved in 
the Cys-loop superfamily, a feature that might contribute to 
the selective association between subunits when forming 
pentamers.   

 
Crystal structures of nicotinic ligands instead of 

HEPES bound to AChBP have provided more detail about 
the ligand binding site.  The crystal structures of nicotine 
and carbamylcholine bound to AChBP suggest how 
nicotinic agonists bind to nAChRs.  They also help explain 
the results of previously reported biochemical and 
electrophysiological experiments that probed the 
interactions of specific side chains with ligands (108, 109).  
These structures answered a long-standing question about 
the negatively charged site that interacted with the positive 
charge at the tertiary nitrogen of nicotine and quaternary 
nitrogen of carbamylcholine (110-112).  The negatively 
charged site is formed by interaction with π electrons from 
the aromatic side chains of Trp143, Tyr192, Tyr185, and 
Trp53 and the backbone carbonyl of Trp143.  Compared to 
the HEPES-bound structure, loop C of the principal binding 
site contracted around each ligand.  Structures of AChBP 
with peptides that competitively inhibit nAChRs might 
resemble the resting state of nAChRs.  AChBP with α-
cobratoxin (113) showed movement of loop C away from 
the binding site compared to the AChBP structures with 
HEPES, nicotine, or carbamylcholine.  Conformational 
changes of loop C might be important distinguishing 
features of resting, open, and desensitized states of nAChRs 
and might be an important target for designing drugs to 
affect different nAChR states.   

 
The structures of AChBPs from different species 

and with different pharmacological properties have been 
the foundation for proposals about how nAChRs differ in 
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Figure 4.  Ribbon diagram of nicotine bound to two subunits of the pentameric AChBP from Lymnaea stagnalis.  Nicotine is 
shown as an orange-colored, space-filling model.  The loops labeled A, B, and C from the green subunit contribute to the 
principal face of the orthosteric binding site hosting nicotine.  β-strands 2, 5, 5′, 6, 6′ and the β8–β9 loop from the blue subunit 
contribute to the complementary face of the orthosteric binding site hosting nicotine.  This image was created from Protein Data 
Bank accession 1uw6 (108).   

 
pharmacology and how the channel gates.  The second 
example of an AChBP was obtained from Aplysia 
californica, a saltwater mollusk (114).  Comparison of the 
structures of the Aplysia AChBP without ligand, with 
nicotinic agonists (+)-epibatidine and lobeline, and with 
nicotinic antagonists α-conotoxin ImI and 
methyllycaconitine showed binding of the two agonists was 
associated with closing of loop C.  In contrast, binding of 
the two antagonists was associated with an extended or 
open loop C (115).  These results support the participation 
of loop C in the differing effects of agonists compared to 
competitive antagonists.  The α-conotoxin PnIA (A10L 
D14K) (116) binds nonselectively to AChBP homologs 
from different mollusks.  By comparison, α-conotoxin ImI 
(117) binds selectively to Aplysia AChBP and to α7 and 
α3β2 nAChRs.  The difference in structures and binding 
properties of these two conotoxins with AChBP homologs 
suggested protein contacts that might be important for 
ligands that are selective for specific nAChR subtypes.  
Galantamine and cocaine, positive allosteric modulators of 
nAChRs, bound deeply into subunit interfaces of Aplysia 

AChBP in the crystal structure without contacting the tip of 
loop C (118).  These structures from homomeric Aplysia 
AChBP suggested these positive allosteric modulators bind 
at non-α subunit interfaces in heteromeric neuronal 
nAChRs.  The third AChBP was obtained from Bulinus 
truncates, a freshwater mollusk, and was crystallized with a 
CAPS buffer molecule in four of the five ligand binding 
sites (119).  The backbone structures of AChBPs from B. 
truncates, L. stagnalis, and A. californica were similar 
although pairwise comparisons show only 20% to 40% 
sequence identity.  Differences in affinity for nicotinic 
ligands by the AChBP from B. truncates compared to 
AChBP from L. stagnalis arose primarily from differences 
at three homologous positions in the primary sequences 
(119).   

 
4.4.  AChBP with methods other than X-ray 
crystallography 

Biophysical methods other than X-ray 
crystallography have been applied to AChBP to understand 
energetics and dynamics of ligand binding and channel 
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gating of nAChRs.  The large amount of properly folded 
and water-soluble AChBP that can be heterologously 
expressed makes applying these methods to AChBP often 
easier than applying the methods to native or 
heterologously expressed neuronal nAChRs in the presence 
of membranes or detergents.  Changes of intrinsic 
tryptophan fluorescence (five Trp residues on each subunit) 
were associated with ligand binding, making fluorescence 
spectroscopy a valuable tool for probing kinetics and 
structural changes of ligand binding (120).  Fluorescent 
labels attached to AChBP through native and nonnative 
cysteine residues signaled the environments around the 
cysteines and the dynamics of distinctive changes in those 
environments caused by binding of different ligands (121, 
122).  Frictional coefficients and fluorescence anisotropy 
decay that measured hydrodynamic properties of the 
AChBP:cobratoxin complex in the presence of bound and 
specifically labeled α-cobratoxin suggested that this ligand 
was not rigidly bound but retained segmental flexibility 
(123).  Absorption and fluorescence spectroscopy of 
benzylidine-ring substituted anabaseines bound to AChBPs 
from L. stagnalis, A. californica, and B. truncates showed 
the extent of proton dissociation and the reduced flexibility 
of the bound ligand compared to free ligand (124).  
Molecular dynamics simulations and intrinsic tryptophan 
fluorescence in solution suggested changes in relative 
tryptophan conformations on loops C and D on adjacent 
subunits when ACh binds.  These studies also identified 
closing of loop C over the opening to the binding site as 
another potentially important change with ligand binding.  
These effects of binding acetylcholine might be important 
for channel gating (125).  Molecular dynamics and ligand 
docking simulations of AChBP and either d-tubocurarine or 
metocurine suggested two different orientations for these 
curare derivatives at the ligand binding site.  This 
conclusion, supported by binding measurements with 
binding site mutations, indicated that apparently minor 
differences in ligand structure could significantly alter 
binding interactions between ligand and AChBP (126).  
Hydrogen-deuterium exchange mass spectrometry (127) 
and solution NMR (128) provided evidence that binding 
agonists induced conformation changes in loop C and loop 
F at the binding site that were different from the 
conformation changes induced by antagonists.  Molecular 
dynamics modeling of AChBP with bound nicotine and 
carbamylcholine potentially augments conclusions from X-
ray crystallographic structures and suggested that water 
molecules are present at discrete locations in the binding 
site and may participate in ligand binding (129). 
 
4.5.  Homology modeling of nAChRs based on AChBP 
and Torpedo nAChR 

A frequently applied method to link findings 
about the known structure and dynamics of AChBP to 
undetermined structural and dynamic features of neuronal 
nAChRs is homology modeling (130).  This method starts 
with alignment of primary sequences of AChBP and 
nAChR and then develops structural models of pentameric 
nAChR receptors based on structures of AChBP and 
nAChR from Torpedo.  Models of nAChR subtypes α7 
(131-135), α4β2 (131, 132), muscle-type (α1)2(β1)γδ (131, 
135), α4β4 (132), and α3β2 (132) have been reported.  

Homology models of nAChRs help generate hypotheses 
about ligand binding (131-133, 135), channel gating (134), 
and ion conduction (134) that can be tested experimentally 
and that guide interpretations of experiments.  Homology 
models based on AChBP and Torpedo nAChR also have 
been developed for GABAA (136, 137), GABAC (138), 
5-HT3 (139, 140), and glycine (141-144) members of the 
Cys-loop receptor superfamily. 
 
4.6.  NMR studies  

Solution NMR as a method of determining 
protein structure has the advantages that crystals are not 
needed and protein structure and dynamics can be 
determined under a range of conditions, including 
physiological conditions.  A major obstacle for applying 
solution NMR to neuronal nAChRs is the limitation of 
about 100 kDa in the molecular mass suitable for solution 
NMR (145).  Other obstacles are the relatively large 
amount of protein needed (in the range of milligrams) and 
the need for 13C and 15N isotopic labeling of amino acids in 
a heterologous expression system.  Peptide models of the 
primary face of ligand binding site of α1 subunits (146-
149) and α7 subunits (150) have overcome these obstacles.  
Studying transmembrane domains in micelles instead of an 
entire nAChR also overcomes these obstacles while 
providing information relevant to the ion conduction path 
(151-153).  The extracellular domain of α1 combines 
native-like structure and a size small enough (31 kDa) to be 
compatible with solution NMR (154).   

 
Advances in protein NMR techniques in areas of 

isotopic labeling (155) and analysis of large (e.g., 900 kDa) 
proteins (156-159) promise to make solution NMR in the 
future more relevant to full length nAChRs.  Solid-state 
NMR overcomes some of the size limitations of solution 
NMR and can be applied to nAChRs in their native 
membrane environment, which potentially maintains 
structural and dynamic features that depend on that 
environment (160).  A solid-state NMR study of 
isotopically labeled antagonist neurotoxin II bound to 
Torpedo nAChR showed the toxin structure likely is similar 
in the free and bound state with the exception of an 
isoleucine (161).  A study with solid-state NMR of isolated 
M1 peptides suggested strong protein-lipid interaction 
involving M1 from α1 in model membranes (162). 
 
4.7.  Extracellular domain nAChRs 

The large N-terminal extracellular domain of 
nAChRs is an attractive candidate for structural studies.  
Conceptually similar to the AChBP, extracellular domains 
of nAChR subunits might form pentameric, water-soluble, 
high fidelity models for the extracellular domain of full 
length nAChRs.  The size of extracellular domain nAChRs 
(120–150 kDa), although still beyond current NMR 
technology, is more compatible for NMR than is the size of 
full length nAChRs.  Their potential for water solubility 
without detergents makes them better candidates than full 
length nAChRs for crystallization and biophysical methods 
intolerant of detergents or membranes.   

 
The feasibility of extracellular domain nAChRs 

was supported by studies with muscle-type subunits (163-
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167), α7 subunits (168-171), and α4 and β2 subunits (172).  
Extracellular domain muscle-type subunits without any 
transmembrane domains formed pentamers detected by 
electron microscopy (165).  Extracellular domain α7 and 
α4β2 nAChRs likely were pentamers and showed 
affinities for small and large ligands equal to the ligand 
affinities of the respective full length nAChRs (169, 
172).  Retaining M1 on the extracellular domain, 
however, was required for efficient expression of 
extracellular domain α7 and α4β2 nAChRs.  Based on 
this observation, preparing large amounts of water-
soluble extracellular domain nAChRs might require a 
strategy that includes in vitro removal of M1 from 
extracellular domain nAChRs.  The feasibility of such a 
strategy was supported by inserting a specific proteolysis 
site in extracellular domain α7 subunits between the 
extracellular domain and the N-terminus of M1 (169).  This 
extracellular domain α7 subunit with M1 and a specific 
proteolysis site outside M1 formed pentamers and had 
ligand affinities equal to the ligand affinities of full length 
α7 nAChRs.  Concatamers of extracellular domains with or 
without a C-terminal M1 domain offer another potential 
approach to water-soluble extracellular domain nAChRs 
that has been successful with full length α4 and β2 subunits 
(173) and other Cys-loop receptors (174). 
 
4.8.  nAChRs and unnatural amino acids  

Incorporating unnatural amino acids into ion 
channels as they are synthesized in vivo provides a 
powerful method beyond the spectrum of twenty natural 
amino acids to test hypotheses about structure and function 
of nAChRs (175-178).  Unnatural amino acids include side 
chains with chemical properties beyond properties of 
natural amino acids such as fluorescence and 
photochemical reactivity.  Unnatural amino acids first were 
incorporated into muscle-type nAChRs expressed in 
Xenopus oocytes (179).  Carboxyl, amino, and fluoro 
derivatives of Tyr190, Tyr198, and Phe198 at the agonist 
binding site changed the dose-response behavior for 
acetylcholine and the inhibition constant for 
d-tubocurarine.  The advantages of fine-tuning chemical 
properties through unnatural amino acids was evident in a 
study of the role of hydrogen bonds involving Asp89 near 
the binding site in the mouse embryonic muscle-type 
nAChR (180).  Substitution of nitro or keto groups in place 
of the carboxyl of aspartate suggested that Asp89 
contributes not only hydrogen bonds and electrostatic 
charge (181) but also a favorable arrangement of dipoles.  
Fine-tuning of side chain properties at sites of tyrosine 
residues with tyrosine derivatives (e.g., fluoro, bromo, 
p-methyl, p-methyoxy, and m-hydroxy derivatives) in 
5-HT3 receptors helped develop a model combining ligand 
binding and channel gating based on rearrangements of 
hydrogen bonds (182).  Structure of the peptide backbone 
also can be altered by incorporating components beyond 
the natural amino acids.  Replacing amino acids in M1 and 
M2 with α-hydroxy acids changed specific bonds in the 
backbone from peptide to ester bonds (183).  The changes 
in electrophysiological behavior associated with these 
changes suggested that backbone hydrogen bonds in M1 
and backbone conformation of M2 contribute to gating.  
Frameshift suppression (184) promises to open a route to 

incorporating in vivo multiple, different unnatural amino 
acids in a nAChR subunit (185).  Reassigning sense codons 
to unnatural amino acids instead of depending on nonsense 
codons to introduce unnatural amino acids into proteins is 
an alternate approach that might lead to multiple different 
unnatural amino acids in proteins (186).   
 
5.  HOW DO LIGANDS BIND TO NACHRS?   

 
The general structure of the agonist binding site, 

also called the orthosteric binding site (in contrast to an 
allosteric binding site), in nAChRs has been outlined by 
homology with AChBP (187-190).  General principles, 
however, do not explain the diversity of ligand interactions 
and functional behaviors observed with the diversity of 
subtypes of nAChRs.  Because the extent of structural 
homology between AChBP and specific types of nAChRs 
is uncertain at the atomic level, the structural information 
from AChBP is a starting point and not the final answer for 
questions about how nAChRs work.  These questions will 
continue to be answered by combining biochemical, 
electrophysiological, pharmacological, and structural 
methods to nAChRs.  Some of the questions are:  Why does 
a given agonist show different affinities and different 
potencies for different nAChRs?  Why do antagonists show 
different affinities for different nAChRs?  Is a unique set of 
interactions between agonist and nAChR required for 
opening the channel?  Which structural and chemical 
properties are required in a nicotinic agonist?  How do 
competitive antagonists bind tightly to nAChRs and keep 
the channel from opening?  How can a specific type of 
nAChR be maintained pharmacologically in its closed, 
opened, or desensitized states without affecting other types 
of nAChRs?  How does the binding of small molecules at 
sites on nAChRs other than the agonist binding site affect 
function of nAChRs?  Such sites are called allosteric 
binding sites.   

 
This section concentrates on answers and 

persistent questions associated with ligand binding at the 
orthosteric binding site and at allosteric binding sites and 
with distant effects associated with ligand binding, namely, 
channel gating.  The next section will consider in more 
detail how nAChRs gate.  
 

5.1.  Muscle nAChRs   
Recent studies about how nicotinic ligands bind 

to muscle-type nAChRs have been based on curare 
derivatives, nicotine, epibatidine, choline derivatives, and 
trimethylammonium derivatives.  A ligand binding study of 
interactions between functional groups of d-tubocurarine 
and the γ subunit of fetal mouse muscle ((α1)2βγδ) 
nAChRs was interpreted with single model of 
d-tubocurarine in the ligand binding site (191).  By 
comparison, modeling of ligand binding focused on the ε 
subunit of adult human muscle ((α1)2βεδ) nAChRs 
produced a different orientation of d-tubocurarine in the 
ligand binding site and showed that methylation of 
d-tubocurarine could dramatically change predicted 
interactions between ligand and binding site (192, 189).  
Descriptions of ligand–nAChR interactions might need to 
consider differences arising from seemingly minor changes 
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in ligand structure and in subtype and species of nAChRs.   
 
The wide range of chemical modifications 

possible with unnatural amino acids and 
electrophysiological measurements indicated a potential 
range of interactions available to agonists at the ligand 
binding site of fetal muscle ((α1)2βγδ) nAChRs (193).  
Cation-π interaction with Trp α149 was important for ACh 
binding, hydrogen bonding to a backbone carbonyl was 
important for nicotine binding, and both cation-π 
interaction and hydrogen bonding to the backbone were 
important for epibatidine binding.  Additional interactions 
between epibatidine and the desensitized ligand binding 
site were suggested from ligand binding to chimeras 
between γ and δ subunits (the binding site at the αγ 
interface binds epibatidine more tightly than does the site at 
the αδ interface) (194).  Photochemical labeling of Torpedo 
nAChRs (195, 196) with a benzoylcholine partial agonist 
might lead to understanding the basis for low efficacy of 
partial agonists and the development of photochemically-
active full agonists with well-defined photoreactive 
intermediates (197).   

 
Long, bisquaternary dicholine agonists like 

suberyldicholine (18.7 Å between quaternary nitrogens) 
appeared to bind to multiple sites on muscle-type nAChRs, 
suggesting that the extent of an agonist binding site 
depends on the agonist (198, 199).  For the simpler 
alkyltrimethylammonium functional group of choline, 
length requirements of alkylthiol derivatives of the 
minimalist agonist tetramethylammonium tethered to 
cysteines supported the sufficiency of the single agonist 
binding site formed by aromatic side chains in the AChBP 
structure (200).  This interpretation presumed that the 
AChBP structure described the open conformation of 
nAChRs.  Identifying residues from muscle-type nAChRs 
potentially interacting with peptide inhibitors waglerin-1 
(201), α-cobratoxin (202), a short-chain α-neurotoxin from 
Naja oxiana (203), and a short-chain α-neurotoxin from 
Naja nigricollis (204) was aided by comparisons with 
AChBP or Torpedo nAChR structures.  Focusing on the 
dynamics of bound α-cobratoxin, the C-terminal domain of 
fluorescein derivatives of the antagonist appeared to be 
mobile and not bound to Torpedo nAChR by time-resolved 
fluorescence anisotropy.  This result suggested that only the 
N-terminus interacts with the nAChR surface (205).   

 
Besides structural descriptions of ligand binding, 

dissociation constants of low affinity agonists (206) and 
electrostatic effects important for ligand binding to 
Torpedo nAChRs (207) provided thermodynamic and 
energetic descriptions of ligand binding to muscle-type 
nAChRs.  A model combining acetylcholine diffusion and 
binding, protein structure, reaction kinetics, and synaptic 
geometry at the neuromuscular junction incorporated the 
complex three-dimensional physiological environment for 
nAChRs (208).  Continued development of such unifying 
models will help interpret and reveal physiological roles for 
atomic level details of nAChR structure and dynamics.  

 
5.2.  Neuronal nAChRs  

Understanding ligand binding to α4β2 and α7-

containing nAChRs is important because of the prominence 
of these subtypes in the human brain.  Results from 
computer simulated docking and molecular modeling of 
nicotinic ligands suggested structure-activity relationships 
to explain how nicotine and deschloroepibatidine bind to 
α4β2 nAChR (209).  Similar methods were applied to a 
variety of nicotinic ligands that distinguish between α4β2 
and α3β4 nAChRs (210, 211).  Understanding binding to 
α4β2 nAChRs is complicated by the existence of 
multiphasic binding or dose-response curves suggesting 
receptor populations with different relative α4:β2 
stoichiometries (212, 213, 173, 214, 215).  In contrast to 
the multiphasic concentration-response curves of ACh, 
nicotine, and cytisine with α4β2 nAChRs, binding of TC-
02559 was monophasic (216).  Similar to muscle-type 
nAChRs, comparing ligand binding to α4β2 and α7-
containing nAChRs suggested the importance of subunit-
specific local interactions at the binding site (217) as well 
as long-range electrostatic interactions (218).  Residues of 
α-bungarotoxin, a long α-neurotoxin, that interact with α7 
nAChRs are identical to or overlapping with the toxin 
residues that interact with muscle-type nAChRs (219).  
Chimeras of short α-neurotoxins, long α-neurotoxins, and 
κ-neurotoxins have helped identify regions of these toxins 
important for interaction with α7 nAChRs and for 
selectivity of κ-neurotoxins with α3β2 nAChRs (220).  The 
agonist properties of antihelminthic drug pyrantel with α7 
nAChRs depend on interaction with Gln57 of the 
complementary face (221).  Molecular dynamics 
simulations of the extracellular domain of α7 nAChRs have 
allowed more global assessment of predicted structure and 
dynamics induced by ligand binding (222, 223).  High 
resolution X-ray crystal structures and physicochemical 
characterization of nicotinic ligands are important 
components of molecular dynamics and docking 
computations (224). 

 
Understanding ligand binding to α4β2 and α7-

containing nAChRs also helps develop subtype-specific 
drugs and, more narrowly, state-specific (e.g., the open 
state) drugs for a given subtype (225-233).  Epibatidine has 
been the starting point for synthesizing derivatives with 
high affinity for α4β2 nAChRs and low affinity for α7-
containing nAChRs (234-236) or low affinity for other β2-
containing or β4-containing nAChRs (237-240).  
Epibatidine also has been the starting point for fluorescent 
derivatives that potentially will be useful for high-
throughput screening and single-molecule analysis of 
binding (241).  Derivatives of pyridine (242, 243); 
piperazines, diazepanes, diazocanes, diazabicyclononanes, 
diazabicyclodecanes (244); and cytisine (245) also have 
shown promise for selectivity for α4β2 nAChRs.  For finer 
discrimination of subunit composition, a piperidine 
derivative selectively and noncompetitively blocked α3- 
and α4-containing nAChRs when only β2 or β4 subunits 
also were present.  The presence of additional nonessential 
subunits α5, α6, or β3, however, decreased inhibition by 
this blocker (246).  Pyridine derivatives are the basis for 
α4β2-selective radioligands for detection by positron 
emission tomography (PET) (247).  Drugs with high 
affinity for α7-containing nAChRs (248, 249) and with 
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minimal cross-reactivity with 5-HT3 receptors (250) are 
targets for medicinal chemistry that might become 
therapies for Alzheimer disease and schizophrenia.  In 
other contexts, insecticides for example, low affinity for 
human nAChRs is the goal.  Understanding the structural 
basis of binding by the neonicotinoids class of compounds 
(e.g., imidacloprid and thiacloprid) specifically to insect 
nAChRs will lead to better insecticides with lower human 
toxicity (251, 252).  

 
Conotoxins are an especially rich source of 

tools for achieving and analyzing subtype-specific 
interactions (253-259).  Marine snails of the Conus genus 
produce these peptide toxins in their venom that target 
ligand-gated and voltage-gated ion channels.  Members 
of the family of α- and αA-conotoxins contain multiple 
disulfide bonds and are competitive antagonists for 
nAChRs.  Many α- and αA-conotoxins are selective for 
muscle-type and/or α3- and α7-containing nAChRs.  
With an estimated 50 to 200 peptide toxins produced by 
each Conus species (260), many useful toxins for nAChR 
research have yet to be characterized.  Recently 
identified conotoxins are specific for different types of 
nAChRs:  muscle-type nAChRs (261-263), α3β4 
nAChRs (264), α3β2 and α7 nAChRs (265), α7-
containing nAChRs (266), and α9α10 nAChRs (267).  
Conotoxin antagonism against α9α10 nAChRs showed 
both a role of α9α10 nAChRs in neuropathic pain and 
the potential therapeutic role of conotoxins (268).  With 
α3-containing nAChRs, α-conotoxin BuIA kinetically 
distinguished β2 subunits from β4 subunits because of 
much slower off-rates with β4 subunits (269).  
Understanding structural features of conotoxins and of 
conotoxin interactions with muscle-type (270), α7 (271), 
and α3β2 (271, 272) nAChRs might lead to targeted 
modifications of conotoxins for enhanced subunit 
selectivity or novel activities.  For example, a 
benzoylphenylalanine derivative of a α-conotoxin GI 
was designed as a photoaffinity label for Torpedo nAChRs 
(273). 

 
5.3.  Allosteric binding  

Beyond the orthosteric binding sites of nAChRs 
are allosteric binding sites (274-277).  The concept of 
allosteric binding sites that modulate channel activity arises 
from observations that some compounds affect channel 
function stimulated by agonists.  These compounds 
themselves do not have agonist activity nor are they 
competitive inhibitors of agonist binding at the orthosteric 
binding site.  The interpretation of these observations is that 
binding of allosteric modulators to allosteric binding sites 
on nAChRs modifies the function of nAChRs.  These 
binding sites, in principle, can be within the ion pore or can 
be within the extracellular, cytoplasmic, or transmembrane 
domains.  Positive allosteric modulators increase agonist-
induced activity; negative allosteric modulators decrease 
such activity.  Because allosteric binding sites are outside 
the orthosteric binding site, allosteric modulators extend 
beyond the constraints of the orthosteric site the 
opportunities for developing subunit and subtype specific 
modulation.   

Defining allosteric binding sites and the activity 
of allosteric modulators is important for understanding 
nAChR function and for drug development.  Galantamine, 
a positive allosteric modulator of human α7 and α4β2 
nAChRs important for treatment of Alzheimer disease 
(278-280), binds at the subunit interface in AChBP without 
interacting with loop C.  This result suggests this drug 
binds at non-α subunit interfaces in heteromeric neuronal 
nAChRs (118).  In contrast, this drug was a partial agonist 
without allosteric activity on mouse muscle nAChRs (281).  
It was not a competitive inhibitor of nicotinic agonists, so 
the binding site of its agonist activity likely is distinct from 
the binding site of the typical nicotinic agonists ACh and 
carbachol.  The negative allosteric effects of kynurenic acid 
might attenuate the positive allosteric effects of 
galantamine on α7-containing nAChRs (282).  A collection 
of derivatives of methyllycaconitine with negative 
allosteric modulator activity on α3β4 nAChRs produced 
quantitative structure-activity relationship and 
pharmacophore models useful for detecting other negative 
allosteric modulators (283).  Derivatives of (2-amino-5-
keto)thiazole were positive allosteric modulators of α2β4, 
α4β2, α4β4, and α7 nAChRs but did not potentiate 
(α1)2(β1)γδ, α3β2, or α3β4 nAChRs (284).  
Desformylflustrabromine showed promise as a positive 
allosteric modulator of α4β2 nAChRs (285, 286).  Four 
positive allosteric modulators of α7 nAChRs showed two 
classes of effects, raising the possibility that combinations 
of modulators could produce additional options for 
therapeutic effects on α7-containing nAChRs in vivo (287).  
Crystal violet, a negative allosteric modulator, bound at a 
site overlapping the phencyclidine binding region in the 
resting and desensitized states of Torpedo californica 
nAChRs (288).  Docking computations can suggest 
allosteric binding sites on nAChRs as was tested with 
positive allosteric modulators galanthamine, codeine, and 
serine and with α7, α3β4, and α4β2 nAChRs (289).  
Neurosteroids had allosteric effects on nAChRs (290) and 
GABAA receptors (291) in the transmembrane domain.  
Mutations leading to autosomal dominant nocturnal frontal 
lobe epilepsy reduced the positive allosteric effect of Ca2+ 
on α4β2 nAChRs (292, 293).  Zn2+ also modulated the 
function of neuronal nAChRs (294, 295).  Residues in α4 
at the interface with β2 or β4 subunits might mediate this 
modulation by Zn2+ (296).  This proposed location of the 
Zn2+ allosteric site might be structurally and functionally 
analogous to the site for benzodiazepine binding on 
GABAA receptors.   
 
5.4.  Effects of post-translational modifications 

N-linked glycosylation of the extracellular 
domain affects nAChRs during subunit assembly into 
mature nAChRs and during transport to the cell surface.  
The importance of glycosylation for these processes was 
demonstrated for Torpedo nAChRs (297-301) and α7 
nAChRs (302).  Glycosylation also affected desensitization 
and conductance of Torpedo nAChRs (303).  Partial 
deglycosylation of purified Torpedo californica nAChRs 
did not appear to affect structure, internal dynamics as 
measured by 1H/2H exchange, or ability to desensitize with 
agonist (304).  In contrast, deglycosylation adversely 
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affected binding of α-bungarotoxin to the extracellular 
domain of human α1 (166).  Establishing the cellular 
machinery for adding mammalian patterns of glycosylation 
to nAChRs produced in high-level expression systems like 
yeast (305-307) and baculovirus (308, 309) might be 
important for efficiently producing large amounts of human 
nAChRs for structural studies.  Nitrosylation of tyrosines is 
another post-translational modification potentially affecting 
nAChRs (310). 

 
6.  WHAT ARE THE FUNCTIONALLY IMPORTANT 
DYNAMICS OF NACHRS? 
 
6.1.  How does the channel open and close?   

One of the most important actions induced by 
agonist binding to nAChRs is opening the channel (i.e., the 
transmembrane domains) thus permitting the flow of 
cations.  How does the channel open?  A second question 
involving structure and dynamics of desensitization is, How 
does the channel close?  The first question is being 
answered in terms of residues, secondary structures, and 
dynamics of nAChRs.  Rotational movements within α1 
subunits of muscle-type nAChRs that serve to open the 
channel were suggested by electron microscopy of resting 
and open Torpedo nAChRs (85, 90).  As another 
possibility, tilting of the pore-lining M2 segments was 
suggested as a mechanism for opening the channel of a 
homomeric α7–5-HT3A chimeric receptor.  This 
mechanism was based on Zn2+ binding to metal ion binding 
sites created by substituting histidine residues into M2 
(311).  Molecular dynamics simulations (312) suggested 
both types of motions might be contributing to channel 
opening in α7 nAChRs (313-318).  Transient photoreactive 
accessibility of residues in M1, M2, and the M2–M3 loop 
of the δ subunit of Torpedo during gating was evidence of 
gating-specific and possibly subunit-specific 
transmembrane domain motions (319).  A computational 
analysis of Torpedo nAChR using elastic networks theory 
suggested that symmetric quaternary twisting and 
asymmetric tilting of M2 combine to open the channel and 
that loops A and F and the large cytoplasmic loop also 
affected channel gating (320).   

 
Different regions and residues of nAChR 

subunits have been implicated in channel gating.  Loops 
β1–β2, β6–β7, and β8–β9 at the interface between the 
extracellular domain and transmembrane domain have 
attracted much attention as potential transducers of the 
opening signal from the agonist binding site to the 
transmembrane domain.  The successful construction of a 
chimeric ion channel gated by ACh and containing the 
AChBP extracellularly and the 5-HT3A receptor sequence 
starting at M1 demonstrated the importance of the loops 
β1–β2, β6–β7, and β8–β9 (321).  Residues in loop β6–β7 
(Cys loop) and the M2–M3 loop influenced fast opening 
(322).  Conserved proline and serine residues of the M2–
M3 loop were coupled to the agonist binding site through a 
conserved glutamate on loop β1–β2 and a conserved 
arginine on the C-terminal end of the β10 strand of the α1 
subunit (323, 324).  Unnatural amino acid substitutions 
supported the importance of the conserved proline residue 

in the M2–M3 loop for channel gating in mouse 5-HT3A 
receptors (325, 326).  Adjacent residues within the β2 
strand of the β4 subunit affected the coupling of binding 
and gating for the species selective agonist 5-
(trifluoromethyl)-6-(1-methyl-azepan-4-yl)methyl-1H-
quinolin-2-one (TMAQ) (327).  Electrostatic interactions 
among three residues (αK145, αD200, and αY190) in the 
human α1 subunit at the periphery of the agonist binding 
site (328) and interaction of two residue pairs at the α–δ 
(αY127 and δΝ41) and α–ε (αY127 and εΝ39) subunit 
interfaces (329) in muscle nAChRs affected gating.   

 
The link between the agonist binding site and 

channel gating might not be restricted to a few residues.  
An investigation of charged residues within loops β1–β2, 
β6–β7, and β8–β9 of muscle nAChRs and GABAA and 
glycine receptors concluded the overall distribution of 
electrostatic interactions rather than interactions between 
specific ion pairs was important at the gating interface 
between the extracellular domain and transmembrane 
domain (330).  Analysis of covariance of amino acid 
residues in the multiple primary sequence alignment of 
Cys-loop receptors suggested highly coupled positions 
form a three-dimensional network connecting the agonist 
binding site to the transmembrane domain and to channel 
gating (331). 

 
In α7 nAChRs, a network of electrostatic 

interactions involving residues in loops β1–β2 and β6–β7 
and the M2–M3 linker linked the agonist binding site to 
gating of the channel (332).  The inner and outer layers of β 
sheets in the β-sandwich (Figure 3) of the extracellular 
domain participated in coupling agonist binding and 
channel gating in α7 nAChRs (333, 334).  Accessibility of 
inner layer residues to cysteine modification suggested that 
motions in addition to rotational motion within the 
extracellular domain might be important in the gating of α7 
nAChRs.  The dynamics of the transition between closed 
and open states of muscle-type nAChRs has been 
characterized by rate equilibrium linear free energy 
relationship (REFER) analysis.  This method compares 
changes in the opening rate to changes in the equilibrium 
between closed and open states when a specific position is 
mutated to several different amino acid types (335).  The 
REFER analysis is interpreted to measure to what extent a 
given position in the primary sequence is in an open-like 
state when the nAChR reaches its transition state between 
closed and open.  Positions near the agonist binding site 
were in an open-like state; positions in the transmembrane 
domain were in a closed-like state.  Positions located 
between the agonist binding site and the transmembrane 
domain in the nAChR in three-dimensional space were in 
states with a gradient of contributions of open and closed 
states (336, 337).  This spatial variation of open state 
character in the transition state suggested that, during the 
transition to an open channel, parts of the nAChR near the 
agonist binding site move before parts near the 
transmembrane domain.  The apparently asynchronous 
movement of different parts of the nAChR during opening 
suggested a broad potential energy surface without sharp 
features (338, 339).  Investigations involving REFER 
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analysis have focused on the extracellular domain (340); on 
M2 (341, 342), M3 (343), and M4 (344) domains; and on 
the theoretical underpinnings of the interpretation (345-
347).   

 
Structural answers to the second question, about 

how the channel closes, have come from investigating 
where ion conduction is blocked along M2 in the resting 
and desensitized states.  A site of such blocking of ion 
conduction, called a gate, was identified in the resting state 
in the middle of M2 in GABAA (348) and 5HT3 (349) 
receptors by scanning cysteine accessibility mutagenesis 
(SCAM) (350, 351).  A gate located near the cytoplasmic 
end of M2 was suggested for nAChRs by SCAM (352, 
353).  Additional understanding of how to interpret SCAM 
experiments might reconcile these gate locations for 
different Cys-loop receptors (348).  Different gates might 
act in different structural states of the channel.  For 
example, ion channel block by choline affected a gate for 
the resting state in nAChRs but did not affect a gate for the 
desensitized state, implying the gate of the resting state is 
different from the gate of the desensitized state (354). 
 
6.2.  Pore structure and dynamics:  How do ions 
traverse the membrane through nAChRs?  

Experimental and computational studies focusing 
on the transmembrane domains, especially M2, are 
contributing information about the structure, dynamics, and 
ion permeation of the pore region (355).  Molecular and 
Brownian dynamics computations of the transmembrane 
domain of Torpedo nAChR suggested that a hydrophobic 
region of the channel prevents cation flow in the closed 
state.  For the open state, small changes in channel structure 
led to large changes in conductance (356-358).  Molecular 
dynamics of M2 domains with spatially fixed M1, M3, and 
M4 domains showed asymmetrical dynamics in M2 and 
bending motions at this central hydrophobic region of M2 
that could correspond to the hydrophobic gate (359).  A 
hydrophobic region of M2 also might be the gate for ion 
flow for α4β2 nAChRs (360) and α7 nAChRs (361), based 
on profiles of pore radius and water density from molecular 
dynamics calculations of the transmembrane domains.  A 
model of a pore composed solely of M2 peptides from the δ 
subunit of Torpedo marmorata (362, 363) or rat (364) 
agreed with results from solid-state NMR and other 
experimental methods and might represent the closed form 
of the pore.  Lysine substitutions at a single homologous 
position within the central hydrophobic region of M2 of the 
four subunits of human muscle-type nAChRs caused 
differing effects on open channel conductance.  This 
finding suggested that the subunits at this position 
experience substantially different microenvironments and 
are unequally affected by transmembrane voltage (365).  
Substitutions of lysines at all positions and histidine and 
arginine at some positions of M2 in the δ subunit of mouse 
muscle-type nAChRs detected individual proton binding 
events of single open channels (366).  These substitutions 
also identified the positions of δM2 facing into the pore in 
closed and open states.  These results suggested that 
rotation of M2 during opening is minimal.  A point 
mutation at a conserved leucine near the middle of M2 of 
α3 affected gating in α3β4 and α3β2 nAChRs (367).  

Rhodamine labeling of a Cys residue substituted into the 
extracellular end of M2 of β1 demonstrated the feasibility 
of time-resolved fluorescence for investigating the 
dynamics of channel opening (368).   

 
In addition to understanding ion flow through the 

transmembrane domain, understanding how channel 
blockers interact with the transmembrane domain and with 
nAChR dynamics is important.  For example, such 
understanding could guide the development of new and 
more specific channel blockers.  The noncompetitive 
channel blocker chlorpromazine interacted with several M2 
residues of muscle-type nAChR according to molecular 
dynamics simulations with the whole nAChR embedded in 
a lipid bilayer (369).  Moreover, chlorpromazine also 
inhibited conformational changes in the nAChR that might 
be important for transitions between resting, open, and 
desensitized states. 

 
Although M2 lines the ion conduction path, the 

other transmembrane domains indirectly might affect 
nAChR gating and conductance even though they do not 
directly interact with ion flow.  For example, mutations at 
position 15′ in the middle of M1 of different subunits in 
mouse muscle-type nAChRs affected kinetic parameters of 
gating in a subunit-specific manner.  This finding suggested 
M1 contributes to gating (370).  M1 peptide from Torpedo 
californica showed unexpected conformational flexibility 
in solid-state NMR experiments with phospholipids, 
possibly because of the effect of a conserved proline 
residue near the middle of M1 (371).  Interaction between 
the transmembrane segments M1 and M2 in muscle 
nAChRs was found to affect gating (372).  Molecular 
dynamics simulations of the transmembrane domain of 
muscle nAChR suggested that M4 plays a role in 
communicating effects from the membrane environment to 
M2 and then to channel gating (373).  In this modeling, 
conformations of side chains of M2 contributed to channel 
gating.  M4 appeared to link the lipid environment to 
nAChR gating (374).  Electrostatic forces facilitating ion 
flow through the pore likely arise from the transmembrane 
domain and to a much lesser extent from longer range 
interactions from the extracellular domain or large 
cytoplasmic loop (375, 376).     

 
Beyond gating and ion flow, the pore also 

participates in the structure of the nonconducting 
desensitized state.  According to infrared spectroscopy, the 
α-helices of the transmembrane domain of Torpedo 
californica nAChRs were preferentially perpendicular to 
the membrane surface and showed no reorientation with 
desensitization (377).  In general, however, the structure of 
the desensitized state is poorly understood. 

 
7.  WHAT IS THE STRUCTURAL BASIS FOR 
FUNCTIONS OF THE LARGE CYTOPLASMIC 
LOOP? 

 
The amino acid sequence of the large 

cytoplasmic loop between M3 and M4 shows considerable 
diversity among different nAChR subunits.  The functions 
of the large cytoplasmic loop, however, have not been 
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studied as extensively as the functions of the extracellular 
domain or transmembrane domain.  The structure of this 
loop was not seen in the 4 Å structure of Torpedo nAChR 
(90) and was presumed to be disordered.   

 
Structural disorder is important to the functions 

of some proteins (378) and might contribute to various 
functions of large cytoplasmic loops in the resting, open, 
and desensitized states.  Studies of the large cytoplasmic 
loop from the δ subunit from Torpedo californica and rat 
suggested the possibility of structural studies of this domain 
isolated from the remainder of the subunit or nAChR (379, 
380).  Residues in the large cytoplasmic loop near the 
intracellular end of M4 affected assembly of subunits and 
electrophysiological properties of nAChRs (381-384).  
Because of the sequence diversity of the large cytoplasmic 
loop, this region might be important for subunit-specific 
behavior and interactions with cellular components and 
physiology.  The large cytoplasmic loop interacts with 
cytoplasmic transport machinery for trafficking nAChRs to 
synapses (385-389).  Residues in M1 (390) and at the 
cytoplasmic and extracellular ends of M4 (391) of α1 
affected assembly and targeting to the cell surface.  At the 
cell membrane, the large cytoplasmic loop interacted with 
cytoskeleton (392-394).  Phosphorylation of the large 
cytoplasmic loop (395, 396) affected desensitization (397, 
398), expression (399, 400), and cytoskeletal interaction 
(401).  Palmitoylation (402, 403) affected expression of α7 
nAChRs (404).  Future development of the structural 
description of how nAChRs work will need to include the 
dynamic structure of the large cytoplasmic loop, including 
posttranslational modifications and interactions with other 
proteins. 

 
8.  HOW DO CELLS REGULATE BIOSYNTHESIS 
AND FUNCTION OF NACHRS? 
 

Considered broadly, elements of structural 
biology contribute to the function of nAChRs during their 
whole life cycle.  Extending beyond nAChRs in isolation, 
these elements include the structural basis of genomic 
regulation and allelic variations; structures and dynamics 
important to subunit translation and assembly; and nAChR 
interactions with cellular elements, including other proteins 
and lipids.   
 
8.1.  Genomic regulation 

Components of gene regulation for nAChRs 
(405, 406) include activation and repression elements 
(407), long range regulatory elements coordinating 
expression of nAChR gene clusters (408), cell-specific 
promoter activity (409), and transcription factors 
controlling nAChR expression (410).  RNA splicing is 
known to affect transcripts for ε (411), α7 (412-415), insect 
α6 (416), and the glycine receptor β subunit (417).  A 
functionally significant allelic variation of the CHRNA7 
gene for α7 was identified in a Japanese population (418).  
 
8.2.  Subunit assembly 

Diverse combinations of neuronal subunits can 
assemble into diverse types of nAChRs with functional 
implications (419-423).  Some details about the process of 

subunit assembly are known, but much remains to be 
discovered.  Ultimately, a set of five stable subunit-subunit 
interfaces must form.  What structural intermediates exist 
between primary sequences of amino acid residues and the 
final quaternary structures?  What conformational changes 
convert one intermediate to the next?  The process of 
subunit assembly is best understood for muscle-type 
nAChRs (424-426), where (α1)2(β1)δγ and (α1)2(β1)δε are 
endpoints.  For neuronal nAChRs, the diversity of 
endpoints remains a subject of investigation (427, 428).  
Which subunits assemble together (429-431)?  What is the 
stoichiometry of assembly for heteromeric nAChRs (432, 
213, 433, 434)?  Knowing structures of subunit-subunit 
interfaces might help decode rules that regulate which 
subunits can assemble to form nAChRs. 

 
Subunit composition of nAChRs changes during 

development (435) and affects where the nAChRs are 
positioned within spatially complex neurons (436).  
Because neurons often produce several types of subunits 
that potentially can produce a diverse set of nAChRs, what 
factors influence the types of nAChRs that are produced 
from a diverse pool of subunits?  Signals in the cellular 
environment can affect the outcome.  For example, the 
inflammatory cytokines interleukin-1β and tumor necrosis 
factor α affected the relative production of α4β2 and α4β4 
nAChR from a pool of α4, β2, and β4 subunits (437). 
 
8.3.  Interactions with cellular components 

In cells, nAChRs interact with other cellular 
components, notably proteins and lipids.  These 
interactions affect expression, targeting, 
electrophysiological function, signaling, and survival (438).  
Rapsyn, originally identified as a 43 kDa protein associated 
with Torpedo nAChRs, mediated the effect of agrin and 
helps cluster muscle-type nAChRs (439-442).  The tumor 
suppressor protein adenomatous polyposis coli (APC) 
participated in the signaling path downstream of agrin and 
the muscle-specific kinase MuSK for clustering nAChRs in 
muscle (443).  

 
In neurons, proteins in the PSD-95/SAP90 family 

(444), splice variants of PSD93 (445), and APC (446) 
promoted the organization of nAChRs at synapses.  The 
chaperone protein 14-3-3η (447) and possibly other 14-3-3 
isoforms (448) modified expression of α4β2 nAChRs and 
changed the proportions of nAChRs with high and low 
agonist sensitivity (448).  These effects possibly were 
mediated by interactions with a phosphorylated site in the 
large cytoplasmic loop of α4 subunits.  Visinin-like 
protein-1 (VILIP-1), a protein sensor of intracellular 
calcium, also appeared to interact with the large 
cytoplasmic loop of α4 subunits and increased the surface 
expression of α4β2 nAChRs (449).  PICK1 likely bound to 
the large cytoplasmic loop of α7 and decreased clustering 
of α7 nAChRs (450).   

 
RIC-3 is a transmembrane protein of the 

endoplasmic reticulum produced from the resistance to 
inhibitors of cholinesterase (ric-3) gene in Caenorhabditis 
elegans and found in humans, mice, and Xenopus.  It has 
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varying effects on expression of nAChRs.  In Xenopus 
oocytes, RIC-3 increases the functional expression of α7 
nAChRs but reduces the whole-cell currents from α4β2 
and α3β4 nAChRs and abolishes current from 5-HT3 
receptors (451).  It had little effect on current from α1 
glycine receptors (452).  RIC-3 appears to interact with an 
isoleucine residue near the extracellular end of M1 to stop 
transport to the cell surface and with residues in an 
amphipathic helix (residues 410–427) in the large 
cytoplasmic loop of α7.  The outcome is to increase the 
total number and the surface expression of α7 nAChRs 
(451, 453).  In contrast to the mixed effects of RIC-3 on 
nAChRs expressed in Xenopus oocytes, co-expression of 
nAChR subunits and RIC-3 in human kidney tsA201 cells 
increased functional expression of α7, α8, α3β4, α4β2, 
α3β2, and α4β4 nAChRs.  RIC-3, however, did not 
increase functional expression of α9 or α9α10 nAChRs 
(454).  Association between RIC-3 and unassembled α4 
subunits and β2 subunits suggested RIC-3 interacts with 
nAChR subunits during assembly and maturation into 
nAChRs (454).  Calnexin (455), a chaperone protein in the 
endoplasmic reticulum, also interacted with nAChR 
subunits during subunit folding and assembly (456-459).  
The ubiquitin-proteasome system helped regulate the 
number of active nAChRs by degrading subunits removed 
from the endoplasmic reticulum by the process of ER-
associated degradation (ERAD) (460).   

 
The gene lynx1 originally was found in mice 

(461) and produces the protein lynx1 with sequence and 
structural similarity to snake neurotoxins like α-
bungarotoxin.  The protein lynx1 physically associated with 
α7 and α4β2 nAChRs and modified the current through 
and enhanced desensitization of α4β2 nAChRs (462).  
Deletion of lynx1 in mice was expected to increase 
cholinergic function and did improve learning and memory 
(463).  Deletion of lynx1, however, led to a vacuolar 
degeneration of the brain that was consistent with the 
presence of hypersensitive nAChRs.  These results 
suggested that lynx1 helps modulate neuronal activity in 
vivo.  Another member of the ly-6/neurotoxin gene 
superfamily, lynx2, was expressed at specific locations in 
the mouse nervous system during development (464).  This 
gene superfamily has twenty-seven members in the human 
genome (465), some of which beyond lynx1 might have 
roles in the nervous system.  

 
Lipids directly interact with the transmembrane 

domain of nAChRs.  These lipid-protein interactions not 
only affected ion conduction (466) but also might affect 
nAChR trafficking (467, 468).   

 
9.  WHY IS UNDERSTANDING NACHRS AS 
BIOPHYSICAL MACHINES RELEVANT TO 
QUESTIONS ABOUT NORMAL AND 
PATHOLOGICAL FUNCTION OF THE NERVOUS 
SYSTEM? 

 
Understanding structures of nAChRs when 

interacting with other cellular components is important for 
understanding structural aspects of normal function and 

pathological function of nAChRs in addiction, 
neurodegeneration, and mental illness.  For example, 
features of the structural mechanism of upregulating 
nAChRs by nicotine and other nicotinic ligands are 
beginning to emerge.  Nicotine might interact as a protein 
folding chaperone with the extracellular domain leading to 
enhanced expression of α4β2 nAChRs and other nAChRs 
(469-473, 421).  Thermodynamics of ligand interaction at 
the binding site of α4-containing nAChRs might explain 
increased assembly and upregulation of these nAChRs 
(474).  Other proposed mechanisms of upregulation of 
α4β2 nAChRs by nicotine include effects on nAChR 
trafficking (475) and stabilizing by nicotine of a form of the 
receptor that is more sensitive to activation (476).  
Understanding the mechanism of nAChR upregulation by 
nicotine will lead to methods for preventing and treating 
nicotine addiction.  Interactions between nAChRs and 
14-3-3η might help control the activity of nAChRs, a 
potentially important feature in schizophrenia and 
neurodegeneration (447).  Designing new drugs for 
diseases related to the function of nAChRs will benefit 
from a comprehensive and detailed understanding of the 
structural basis for nAChR function in cellular 
environments.   
 
10.  WHAT CAN WE LEARN FROM NACHRS 
ABOUT PROTEIN FOLDING AND DE NOVO 
DESIGN OF PROTEINS? 

 
Lessons relating structure and function for 

nAChRs will contribute other pieces to the protein folding 
puzzle for integral membrane proteins (477, 478).  The 
combined presence of aqueous phase, lipid phase, and 
surface charge on the lipid bilayer brings greater 
complexity to protein folding for integral membrane 
proteins than is encountered with water-soluble proteins.  
Creating nAChRs containing unnatural amino acids 
(section 4.8) illustrates the potential of nAChRs with 
properties tailored by human imagination.  Foreshadowed 
by nAChRs as biosensors (479-481), understanding how 
nAChRs are produced and work as biophysical machines 
under controlled conditions of single channel recording and 
in a complex cellular milieu will guide the development of 
proteins with novel functions. 
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