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1. ABSTRACT 
 

AMPK is a metabolic “master” controller activated 
in skeletal muscle by exercise in a time and intensity 
dependent manner, and has been implicated in regulating 
metabolic pathways in muscle during physical exercise. 
AMPK signaling in skeletal muscle is regulated by several 
systemic and intracellular factors and the regulation of 
skeletal muscle AMPK in response to exercise is the focus 
of this review. Specifically, the role of LKB1 and 
phosphatase PP2C in nucleotide-dependent activation of 
AMPK, and ionized calcium in CaMKK-dependent 
activation of AMPK in working muscle is discussed. We 
also discuss the influence of reactive oxygen species 
produced within the muscle as well as muscle glycogen and 
TAK1 in regulating AMPK during exercise. Currently, 
during intensive contraction, activation of alpha2-AMPK 
seems mainly to rely on AMP accumulating from ATP-
hydrolysis whereas calcium signaling may have some 
importance during more gentle contraction conditions. 
Factors that regulate alpha1-AMPK during exercise are less 
clear but it appears, at least to some extent, to rely on an 
adenine nucleotide-dependent mechanism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

The primary functions of skeletal muscle are to 
participate in regulation of whole-body glucose metabolism 
and to generate mechanical work where the latter requires a 
substantial amount of energy in the form of ATP. During 
low to moderate exercise intensities, ATP levels remain 
fairly stable despite the considerable contraction-induced 
increase in ATP turnover (109). To re-synthesize consumed 
ATP, skeletal muscle is dependent on availability of 
energy-containing substrates in addition to ATP-producing 
organelles and metabolic enzymes. The chief energy 
substrates for skeletal muscle are carbohydrates originating 
from plasma glucose and muscle glycogen as well as fatty 
acids originating from plasma and intramuscular lipid 
stores (47, 70, 97). During exercise, in addition to 
hormonal-induced changes in intracellular energy-
substrates, the cytosolic content of several factors (e.g. 
Ca2+, free AMP, Pi, creatine, H+, NAD+, reactive oxygen 
species, phosphatidic acid) can change. Many of these have 
been suggested to be initiators of signaling cascades that 
acutely increase substrate uptake and/or mobilize 
intracellular energy stores as well as in pathways inducing 
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chronic skeletal muscle adaptation. The biochemical 
regulation of proteins involved in these processes is likely 
to be under both allosteric and covalent control and this has 
been summarised in several reviews (70, 106, 125, 142). 
Since isoforms of mitogen activated protein kinases 
(MAPKs), Ca2+/calmodulin-dependent kinases (CaMKs), 
conventional/novel PKCs and the 5´AMP-dependent 
protein kinase (AMPK) are activated or alter their 
subcellular location during muscle contraction, these 
molecules have all been proposed to be involved in 
regulating muscle metabolism during contraction and 
muscle adaptation to repeated exercise (4, 96, 103, 105, 
145). Knowledge of how these signaling pathways are 
regulated is important as it may aid in the development of 
strategies to combat chronic metabolic disease and skeletal 
muscle dysfunction. 
 

The role of AMPK in regulating muscle 
metabolism has received considerable attention over the 
past decade. AMPK is a ubiquitously expressed, multi-
substrate heterotrimeric serine/threonine protein kinase and 
consists of one catalytic subunit (α) and two functionally 
and structurally different regulatory subunits (β, γ). Two 
isoforms of the α- and β-subunit (α1-2 and β1-2) and three 
isoforms of the γ-subunit (γ1-3) have been identified (69). 
AMPK, or perhaps more suitably the AMPK system, is 
hypothesised to function as a metabolic master regulator 
that aims to maintain cellular energy homeostasis by 
switching on catabolic pathways and turning off anabolic 
pathways (37, 67, 69). Studies of resting (non-contracting), 
fully differentiated rodent skeletal muscle and cultured 
muscle cells have shown that AMPK promotes ATP-
synthesis by increasing GLUT4 translocation (13, 75, 136) 
and glucose uptake (45, 81, 85), as well as uptake and β-
oxidation of fatty acids (11, 80, 81, 148). In addition, 
activation of AMPK in muscle aids in energy homeostasis 
by shutting down several energy consuming anabolic 
pathways such as glycogen synthesis (16, 62, 151) and 
ribosomal protein synthesis (10, 52, 58, 95). Furthermore, 
chronic activation of AMPK with chemical activators in 
resting muscle increases mitochondrial content (8, 64, 146, 
163) and expression of proteins necessary for glucose 
uptake and processing (14, 48, 64) and regulation of these 
processes by AMPK may be viewed as a mechanism of the 
muscle cell to prepare for future metabolic challenges.  
 
3. ACTIVATION OF SKELETAL MUSCLE AMPK 
BY EXERCISE 
 

A number of studies have shown that AMPK is 
activated in rodent muscle by electrical stimulation ex vivo, 
and by motor nerve stimulation of both living animals and 
in situ perfused rat hindlimb (26, 45, 56, 139). Furthermore, 
in vivo exercise studies have shown that AMPK is activated 
in rat muscle during treadmill running and in human 
muscle during cycle exercise in a time and exercise-
intensity-dependent manner (19, 32, 88, 126, 127, 135, 145, 
153, 154). While studies of rodents using electrically 
stimulation to induce muscle contraction or in vivo exercise 
in general report activation of both skeletal muscle α1- and 
α2-AMPK, studies of human and rodent subjected to 
ergometer bicycle- and treadmill exercise find that α2-

AMPK is activated by moderate exercise whereas α1-
AMPK, if found to be activated, in general requires high 
exercise intensities (19, 32, 88, 89, 126, 154). Although this 
difference may relate to both intensity and fiber type 
recruitment, it has become apparent that the expression 
pattern of AMPK isoforms varies between rodent and 
human muscle and between muscle types as well (18, 28, 
31, 150). A recent study has shown that of the three main 
AMPK complexes (α2β2γ1>>α2β2γ3=α1β2γ1) expressed 
in mixed human vastus lateralis (150), it is essentially 
solely α2β2 containing AMPK complexes which are 
activated during both sprint- and endurance bicycle 
exercise (9, 135). Finally, activation of muscle AMPK is 
higher in women compared with men during prolonged 
exercise (99) and is activated by resistance exercise in 
human muscle (27, 73).  
 

While experimental approaches such as in situ 
muscle perfusion and ex vivo incubation of isolated muscle 
indirectly show that activation of AMPK can be regulated 
by local factors within the muscle during contraction (26, 
45, 65), this findings does not necessarily rule out some 
contribution of circulating factors during in vivo exercise. 
Several studies have shown that circulating factors such as 
adiponectin, leptin, interleukin-6 (IL6), ciliary neutrophic 
factor (CNTF) and catecholamines can activate AMPK in 
resting muscle (15, 82, 107, 141, 162). The role of 
catecholamines is particularly interesting because both 
adrenaline and noradrenaline are increased greatly in a time 
and intensity manner during in vivo exercise in human 
serum (22, 34). It may therefore be envisioned that 
activation of muscle AMPK during in vivo exercise, at least 
to some extent, is potentiated by circulating factors such as 
catecholamines. Even though studies of incubated rodent 
muscle and cultured muscle cells have shown that adreno-
receptor agonists increase AMPK activity (57, 82), a recent 
human study by Kristensen and colleagues (74) questions 
an influence circulating factors, including catecholamines, 
on muscle AMPK activation during moderate in vivo 
exercise. In this study, muscle AMPK was activated by 
one-legged exercise and serum catecholamine levels were 
after 20 min of work further elevated by adding arm-
cranking exercise to the one-legged exercise for an 
additional 20 min. The main findings was that AMPK 
activity in the non-contracting leg remained at basal during 
the entire exercise protocol in spite of a vast increase in 
serum catecholamines (up to 15-23 fold), and that a further 
increase in catecholamines induced by adding arm-cranking 
exercise did not increase AMPK activity further in the 
working leg. It was based on these findings suggested that 
physiological levels of adrenaline and noradrenaline do not 
activate AMPK in resting muscle and that activation of 
muscle AMPK during moderate in vivo exercise is not 
dependent on circulating factors but relies on local 
mechanisms within the working muscle (74). Whether 
these factors only constitute already known myofibrillar 
protein signaling cascades or if parameters such as 
myofibrillar pH, local blood flow or some degree of 
hypoxia play an additional role remains to be established. 
 

As hypothesized by several research groups, it 
seems evident to attribute a role for AMPK in acute 
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Figure 1. Schematic illustration of factors regulating AMPK activity. Binding of free AMP to the two Bateman domains on the 
γ-subunit induces a conformation change of the AMPK holoenzyme which directly increases AMPK activity allosterically as 
well as activating AMPK covalently by affecting the affinity of PP2C, and maybe also LKB1, towards AMPK α-T172. Binding 
of AMP to AMPK renders it a worse substrate for PP2C thus decreasing phosphatase activity towards α-T172 indirectly 
activating AMPK by conserving α-T172 phosphorylation. The activity of LKB1 is not believed to be regulated either covalently 
or allosterically in skeletal muscles but some observations suggest that the affinity of LKB1 towards α-T172 is increased with 
AMP. Several observations in particular in vitro and in cell culture have shown that the Ca2+/calmodulin activated protein kinas 
kinase CaMKK is an additional AMPK kinase linking AMPK activation with cellular Ca2+ signaling. Finally, recent evidence has 
added the transforming growth factor-activated kinase (TAK1) to the list of AMPK kinases but knowledge of the role of TAK1 
on muscle AMPK activation is still limited. 

 
regulation of muscle metabolism in response to contraction. 
However, it has been surprisingly difficult to produce solid 
evidence demonstrating an executive role for AMPK in 
these processes. For instance, some observations (60, 85, 112) 
suggest that AMPK has a partial role in regulating glucose 
uptake in ex vivo contracting muscles whereas others (7, 33, 
65) have found AMPK to be redundant. AMPK has also been 
speculated to play a role in adaptations of the metabolic 
“machinery” of skeletal muscle to exercise training. Studies 
using transgenic mice deficient in AMPK in general suggest 
that AMPK is not essential in initiating mitochondrial 
biogenesis and upregulating GLUT4 expression in response to 
exercise training (49, 64, 66, 98) whereas some (98), but not all 
(64), finding suggest some reliance on AMPK in training-
induced expression of hexokinase II. These findings do in 
general not support a major role of AMPK in either acute 
or chronic metabolic regulations in response to exercise and 
exercise training. However, it is important to highlight that 
caution should be taken when evaluating these finding as 
present mouse models deficient in AMPK are still 
recognized by some level of residual AMPK activity. These 
areas will not be addressed further in this review and the 
reader is referred to other reviews (39, 63, 147). 

4. ALLOSTERIC AND COVALENT REGULATION 
OF AMPK ACTIVITY 
 

Several biochemical and mutation studies have 
produced results describing mechanisms regulating AMPK 
activity. AMPK is allosterically activated by cooperative 
binding of at least two AMP molecules to the two 
“Bateman domains” on the γ-subunit motifs (20, 120). In 
addition, AMPK activity can be increased covalently by 
reversible phosphorylation on T172 on the activation loop 
of the catalytic α-subunit (41) (see Figure 1). Of these two 
means of activation, the covalent activation of AMPK 
increases kinase activity much more potently than the 
allosteric AMP activation (23, 84, 114, 143). Early in vitro 
studies by Hawley and colleagues showed that the 
Ca2+/calmodulin sensitive CaMK kinase phosphorylates α-
T172 leading to AMPK activation (43). More recent studies 
took advantage of the conservation of the Snf1/AMPK 
pathway in combination with the yeast genetic systems and 
identified two putative AMPK kinases by their function as 
Snf1-activating kinases. This genetic selection method 
yielded two authentic AMPK kinases, namely LKB1 and 
CaMKK (40, 42, 50, 51). Furthermore, recent studies 
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identified the transforming growth factor-activated kinase 
(TAK1), a member of the MAPK-kinase-kinase family, as 
an additional Snf1/AMPK kinase (83) (see Figure 1). 
AMPK activity can in addition be modulated by removal of 
activating phosphorylation, and isoforms of the protein 
phosphatase 2C (PP2C) dephosphorylate α-T172 thereby 
reducing AMPK activity (24). Modulation of phosphatase 
activity towards α-T172 is now thought to be of 
considerable importance as well (116, 128). 

 
Binding of free AMP to the γ-subunit, in addition 

to its direct allosteric action, also affects covalent activation 
of AMPK. Previous reports suggested that AMP binding 
increases α-T172 phosphorylation by rendering AMPK a 
better substrate for LKB1, while simultaneously rendering 
it a worse substrate for deactivating phosphatases (23, 38). 
Recently, however, three independent studies have 
challenged this view by reporting that AMP binding 
activates AMPK only by rendering it a worse substrate for 
PP2C phosphatase activity (77, 116, 128) (see Figure 1). 
This notion favors a scenario where AMPK, at least in 
response to metabolic stress, is activated indirectly by 
conserving T172 phosphorylation of the catalytic α-AMPK 
subunit – a view which also seems to agree with the 
concept of LKB1 being a constitutively active kinase in 
skeletal muscle, as discussed below. 
 
5. NUCLEOTIDE DEPENDENT ACTIVATION OF 
AMPK  
 

It is well established that muscle contraction is 
associated with a vast increase in fuel turnover (>100 fold) 
and provides a major energetic challenge to the muscle 
fiber (110). During such conditions, AMP concentration 
increases are accompanied by only a small decrease in ATP 
concentration (109). Even though free cytosolic AMP 
content is heavily buffered by protein binding, estimates of 
the pool of free cytosolic AMP suggests that it increases in 
response to contraction and exercise, and that the increase 
is exercise-intensity dependent (79, 108, 137). The working 
muscle counteracts increases in the AMP ratio by 
converting AMP to inosine monophosphate (IMP) 
enzymatically by AMP deaminase (138). Accordingly, 
accumulation of muscle IMP indicates that ATP hydrolysis 
had exceeded ADP phosphorylation, and hence that the 
muscle was incapable of sustaining ATP resynthesis. 
Binding of AMP to the “Bateman domains” on the γ-
subunit is antagonized by ATP, and the cellular 
(AMPfree)/(ATP) ratio is thus thought to be the best 
indicator of AMPK activation in response to a metabolic 
challenge (19, 23, 90). AMPK activation has also been 
linked to the phospho-creatine system. An earlier study 
suggests that the high-energy phosphate phospho-creatine 
inhibits AMPK activity allosterically, and the dramatic 
decrease in phospho-creatine during the onset of intensive 
exercise could thus be speculated to contribute to AMPK 
activation by a “relief of inhibition” mechanism (94). 
However, recent evidence has challenged this view by 
showing that phospho-creatine does not affect AMPK 
activity in vitro and activation of AMPK during intense 
exercise is not directly linked to changes in phospho-
creatine levels (129). However, phospho-creatine is still an 

important element in buffering muscle ATP during 
intensive exercise, thereby diminishing AMP accumulation 
and potentially delaying AMPK activation.  
 

So what AMPK kinase(s) are translating the 
metabolic challenge associated with muscle work into 
activation of AMPK? LKB1 is believed to be a crucial 
AMPK kinase in nucleotide-dependent activation of 
AMPK. LKB1 is a multi-substrate serine-threonine kinase 
which complexes with the two accessory subunits STRAD 
and MO25 and phosphorylates a related protein family of at 
least 13 kinases (5, 12, 78). LKB1 was originally identified 
as a tumor-suppressor protein that is mutated in patients 
with Peutz-Jeghers syndrome (2) and is expressed in 
skeletal muscle (111) with a higher  content in slow-twitch 
rat muscle types compared with fast-twitch muscle types 
(130). Studies in rodent muscle have shown that LKB1 
activity measured during well-defined in vitro conditions is 
not increased in response to in situ stimulated muscle 
contractions, or by ex vivo incubation with AICAR or 
phenformin (111). These data suggests that LKB1 activity 
is not covalently regulated in muscle in response to several 
stimuli, including muscle contraction. This notion is further 
supported by the finding that in vitro activity of AMPK-
kinase(s) purified from rat liver is not reduced in response 
to phosphatase treatment (41) even though LKB1 is 
expressed in liver tissue and known to be phosphorylated at 
several specific sites (118, 119, 121). It could be argued 
that LKB1 is activated by allosteric factors following 
muscle contraction and that this regulation is lost when 
assessing LKB1 in vitro. This seems, however, to not be 
the case as activity of the LKB1 targets QSK, QIK, MARK 
1/2 and MARK4 is not altered in response to muscle 
contraction, AICAR or phenformin, indicating that 
endogenous LKB1 kinase activity towards these targets is 
not altered (111). These findings indicate that LKB1 
functions as a constitutively active component in 
phosphorylating AMPK at α-T172 in response to metabolic 
stress. Whether an increased rate of α-T172 
phosphorylation is mainly because AMP binding to the γ-
subunit increases the affinity of LKB1 towards AMPK, or 
in addition is dependent on AMP binding inhibits PP2C 
activity towards AMPK, is currently not clear (see Figure 1 
& 2).  
 

The use of transgenic mice not expressing LKB1 
protein in heart and skeletal muscle has been a valuable 
tool to address the dependence of LKB1 in regulation of 
AMPK signaling. Three individual LKB1 knockout mice 
have been generated so far (72, 112, 131) and they in 
general report similar findings regarding regulation of α2-
AMPK activity. Knockout of LKB1 is associated with an 
almost totally ablated α2-AMPK activity in resting muscle, 
and when AICAR is used as a surrogate for metabolic 
stress, lack of LKB1 completely prevents α2-AMPK 
activation (72, 112, 131). Interestingly, activation of α2-
AMPK by electrically-induced contraction of incubated 
muscles and of hindlimb muscles is practically completely 
abolished in muscle lacking LKB1 (72, 112). Furthermore, 
AMPK signaling expressed as α-T172 and ACCβ S227 
phosphorylation in general shows good agreement with α2-
AMPK activity as virtually no signals are detected in rest 
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and in response to AICAR when LKB1 is deleted. During 
contraction, α-T172 phosphorylation is not increased, but 
some increase in ACCβ phosphorylation is still detected in 
both ex vivo and in situ models (72, 111, 131) which could 
reflect the isolated event of allosteric AMPK activation or 
other stress-sensitive ACC S227 kinases. Interestingly, α1-
AMPK activity is normal or only modestly reduced in 
resting LKB1 knockout muscles and increases normally in 
response to AICAR exposure (72, 112). The role of LKB1 
in regulating α1-AMPK activity during contraction is more 
difficult to address since different research groups provide 
conflicting evidence about whether α1-AMPK is activated 
by ex vivo contractions. While Sakamoto and colleagues 
did not observe activation of α1-AMPK with contraction 
(111), Koh and colleagues (72) reported that a 2 fold 
increase in α1-AMPK activity in response to ex vivo 
induced contraction in EDL muscle was reduced by 50% 
with deletion of LKB1. Interestingly, if subjecting LKB1 
deficient heart muscle to ischemia and anoxia, activation of 
α2-AMPK is completely abolished and α1-AMPK is 
activated to near normal levels (113) which agree with the 
hypothesis that LKB1 is essential in α2-AMPK activation 
while only partially involved in α1-AMPK activation in 
response to metabolic stress.  

 
Collectively, these findings depict LKB1 as the 

main kinase involved in α2-AMPK activation in resting 
muscle in response to AICAR, and during intensive 
electrically-induced contractions. α1-AMPK is also 
activated in muscle by conditions mimicking metabolic 
stress, and in several cases by contraction, and current 
observations suggest that LKB1 is not the only upstream 
α1-AMPK kinase. Furthermore, these findings suggest that 
changes in adenine nucleotide levels are important in 
activating AMPK signaling in contracting muscle. 
However, this idea is to a large degree based on studies 
using electrical stimulation protocol to induce contraction 
of rodent muscle and in vitro biochemical assays and one 
could question how these findings compare with 
observations in human muscle during in vivo exercise. If 
exercising non-trained humans at a moderate intensity 
(66% of VO2max) for up to 120 min, both α1-AMPK and 
α2-AMPK are activated in a time-dependent manner and 
the degree of activations correlate with increases in the 
(AMPfree)/(ATP) ratio (79). Also, the intensity dependent 
activation of especially α2-AMPK with increasing exercise 
intensities (40%, 59%, 79% of VO2max) correlate with 
increases in the (AMPfree)/(ATP) ratio (19). Finally, in 
humans subjected to a short-term exercise-training program 
which improves metabolic control without inducing fiber-
type changes, both AMP accumulation and AMPK 
activation are diminished during a subsequent exercise bout 
compared to before training (79). Thus descriptive studies 
of humans using more physiological exercise strategies are 
in agreement with the proposal that AMP content has a 
significant role in muscle AMPK activation during 
prolonged exercise.  

 
6. CALCIUM DEPENDENT ACTIVATION OF AMPK  
 

In spite of a broad line of evidence that suggests an 
essential role for LKB1 and PP2C system in activating 

AMPK in response to metabolic stress, an increasing body 
of evidence implies that signaling molecules sensitive to 
ionized calcium (Ca2+) also act as AMPK kinases, and that 
these perhaps also are involved in regulating AMPK 
activity in contracting skeletal muscle. The first evidence 
linking calcium signaling with AMPK was published by 
Hardie and colleagues (43) more than a decade ago and 
showed that purified CaMKK phosphorylates and activates 
AMPK in vitro. CaMKK is one of a family of 
Ca2+/calmodulin-dependent protein kinases that also 
includes CaM kinases I, II and IV, elongation factor-2 
kinase, myosin light chain kinases and phosphorylase 
kinase (for review, see (36)). There exist two isoforms of 
CaMKK (α and β) which are encoded by two separate 
genes with alternative splicing variants, and both isoforms 
are activated by Ca2+-CaM (3, 29, 53). Knockdown of the 
β-CaMKK using siRNA in LKB1deficient HeLa cells 
reduces AMPK activation substantially, whereas less 
pronounced reductions are observed with an α-CaMKK 
knockdown (42, 55, 155). These findings are confirmed by 
the observation that in vitro incubation of AMPK with 
either CaMKK isoform activates AMPK (with β-CaMKK 
the most potent) and with the observation that over-
expression of β-CaMKK, but not α- CaMKK, accentuates 
AMPK activation by the Ca2+ ionophore 23187 in CCL13 
cells (42, 155). Furthermore, inhibition of CaMKK with the 
STO-609 compound in cells deficient in LKB1 
significantly reduces AMPK activation by A23187 and 
ionomyocin (42, 55, 155).  
 

Contrary to an earlier report (132), it has recently 
been shown that CaMKK is expressed in skeletal muscle 
(60, 104, 122, 144). Thus, it seems prudent to hypothesize 
some reliance on Ca2+/calmodulin-CaMKK signaling in 
activating AMPK during exercise, given the well-described 
role of Ca2+ in excitation-contraction coupling. Indeed, 
over-expression of constitutively active α-CaMKK in fast-
twitch mouse muscle increases basal AMPK 
phosphorylation in addition to basal α1- and α2-AMPK 
activities (149). Despite an earlier study did not reported 
activation of muscle AMPK using caffeine to raise 
cytosolic Ca2+ (158), a recent, more detailed study by 
Jensen & colleagues (59) demonstrated that while caffeine 
treatment does not alter total AMPK α-T172 
phosphorylation or α2-AMPK phosphorylation, it does 
increase ACCβ- and α1-AMPK phosphorylation. It should 
be kept in mind when interpreting these findings that most 
strategies used to raise cytosolic Ca2+ aim to induce 
concentrations too low to cause muscle contraction, and 
that higher Ca2+ concentrations perhaps would result in 
more robust AMPK activation. 
 

Recent work using chemical inhibitors of 
Ca2+/CaM sensitive molecules have shed some light on 
whether CaMKK is involved in contraction-stimulated 
AMPK activation. Initial experiments aimed to determine if 
the Ca2+/CaM-competitive inhibitor KN93, which in 
addition to inhibiting CaMK I, II and IV is assumed to 
inhibit CaMKK, was associated with impaired activation of 
AMPK in response to ex vivo electrically-induced 
contraction (60). Interestingly, in contrast to an earlier 
observation which showed no effect of CaMK inhibition on 
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Figure 2. Hypothetical model of regulation of AMPK activity in muscle at rest and in response to gentle and intensive 
contractions based on observation in ex vivo electrically stimulated rodent skeletal muscle. A: Observations in LKB1 knockout 
mice may suggest that PP2C activity at resting conditions overrules LKB1 activity thereby preventing AMPK activation. As 
(Ca2+) is low in non-contracting muscle CaMKK activity would be expected low as well B: During gentle contraction the muscle 
is fairly capable of maintaining the (AMPfree)/(ATP) ratio. Recent evidence suggests that increased Ca2+ signaling during gentle 
contraction intensity activates CaMKK subsequently leading to increased AMPK activity. C: During intensive ex vivo electrically 
stimulated contraction muscle ATP is reduced paralleled by some increase in free AMP and close to an equimolar increase in 
IMP. The subsequent increase in the (AMPfree)/(ATP) ratio leads to a potent activation of AMPK. The role of Ca2+ signaling 
during intensive contractions is less clear, but studies in LKB1 knockout mice and in mice over-expressing CaMKK indicate that 
AMPK activation during intensive contractions is not reliant on Ca2+/CaM CaMKK signaling. Some evidence also suggests that 
the continual breakdown of muscle glycogen during prolonged exercise indirectly potentiates AMPK activation by a “relief of 
inhibition” resulting from lowered glycogen. 

 
contraction-stimulated AMPK phosphorylation (157), it 
was shown that KN93 completely prevented activation of 
both α1-, and α2-AMPK in the mouse soleus muscle 
following 2 minutes of a relatively moderate contraction 
protocol (60). Of note, both AMPK isoforms increased 
normally with KN93 after 10 minutes of contraction (60). 
This study was then replicated using STO-609 at a 
concentration reported to specifically inhibit CaMKK 
activity (42). Using this compound, it was shown that 
contraction-induced α1-, and α2-AMPK activation was 
impaired after both 2 minutes and 10 minutes, in both 
soleus and EDL muscle (60). Results obtained using 
inhibitors are always associated with the risk of undesirable 
side effects on both related and unrelated molecules and it 
could be argued that STO-609 directly inhibited LKB1 or 
AMPK activity in spite of the low concentration (42). This 
possibility was tested using recombinant 
LKB1/MO25/STRAD and it was found that LKB1 activity 
was unaffected by STO-609, and that AICAR increased 
AMPK activity normally in the presence of 5µM STO-609. 
These findings suggest that the abolished AMPK activation 
during contraction with STO-609 was not due to 
undesirable inhibition of LKB1 but more likely due to 

inhibition of CaMKK per se. This in turn suggests that 
CaMKK signaling may play a role in regulating muscle 
AMPK activity during contractions, independent of LKB1. 
However, these findings are in contrast to earlier 
observations in LKB1 knockout mice suggesting that 
LKB1 is essential in activating α2-AMPK during 
contraction (72, 112). The discrepancies between 
observations in the LKB1 knockout mice and those with 
STO-609 treatment could be due to the more intensive 
protocols used to induce muscle contraction in the LKB1 
knockout studies compared to the STO-609 inhibitor study. 
Thus, activation of AMPK during moderate intensity 
contraction may rely more on Ca2+-signalling while 
activation of AMPK during intensive contraction may rely 
more heavily on increases in AMP (see Figure 2). In 
concert, in rat epitrochlearis muscle subjected to low-
frequency ex vivo stimulation protocol not affecting the 
(AMP)/(ATP) ratio, α1-AMPK activity is still increased 
which supports the hypothesis that AMPK can be activated 
during muscle contraction by a mechanism not related to 
changes in adenine nucleotides (134). On the other hand, if 
mouse muscle is subjected to an intensive ex vivo 
stimulation protocol expected to increase the 
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(AMPfree)/(ATP) ratio significantly (133, 134), incubation 
with STO-609 does not affect AMPK phosphorylation 
(149) which suggests that CaMKK does not contribute 
significantly to activation of AMPK during this condition.  
 

Even though it is undoubtedly necessary to show 
that CaMKK activity is increased with muscle contraction 
similar to CaMKII (101, 103, 104) and to confirm 
observations based on the STO-609 inhibitor using e.g. 
transgenic animals, current findings may still suggest that 
CaMKK plays a role in activating muscle AMPK during 
contraction at less intensive contraction protocols of mouse 
muscle (see Figure 2). Noteworthy, observations in LKB1 
knockout skeletal muscle could be interpreted to mean that 
CaMKK is mainly involved in regulating α1-AMPK but the 
finding that STO-609 inhibits activation of both catalytic 
AMPK subunits during contraction challenges this idea. If 
these ideas hold true for human muscle, α1-AMPK should 
be expected to be activated immediately with the onset of 
exercise as increased Ca2+-signaling is required to 
facilitated actin-myosin cross-bridge formations of the 
muscle fiber. While the literature is not entirely clear 
regarding α1-AMPK activation during moderate to 
intensive exercise, it is unequivocal that neither α1-AMPK 
nor α2-AMPK are covalently activated during low intensity 
exercise (32, 79, 154) which do not supporting this notion. 
Furthermore, measures of AMPK activation after 30 and 
120 sec of ergometer bicycle sprint exercise show that α2-
AMPK is activated at both time points while α1-AMPK 
activity is actually decreased (9). Thus, while CaMKK may 
play a partial role in regulating AMPK activation in mouse 
muscle in response to electrical stimulation, current 
descriptive studies of exercising human may not favor such 
a relationship.  
 
7.  MUSCLE GLYCOGEN DEPENDENT 
ACTIVATION OF AMPK 
 

Muscle glycogen appears to be an important 
controller of muscle AMPK activity but despite the strong 
negative relationship between muscle glycogen content and 
AMPK activity, little is known about the precise 
mechanistic link. Correlative studies of glycogen effects on 
metabolic processes in skeletal muscle from human and 
rodent have commonly used a combined exercise and diet 
protocol where muscle and liver glycogen is depleted by a 
single bout of prolonged exercise which is followed by a 
diet either high or low in carbohydrate. Feeding this diet 
subsequently gives experimental groups the next day with 
high and low muscle glycogen, respectively. Studies of 
fast-twitch and slow-twitch muscle types from rodents have 
shown that glycogen loaded muscles exhibit suppressed 
AMPK activation in response to electrically-induced 
contraction and AICAR (26, 151, 152). The negative 
correlation between glycogen content and AMPK activity 
is only significant for α2-AMPK activity, and not for α1-
AMPK activity, suggesting that the effect of glycogen is 
mainly targeting α2-AMPK complexes (151). Human 
studies based on healthy untrained subjects generally 
support these findings as bicycle exercise for 30-60min at 
65-70% of VO2max is associated with greater activation of 
α2-AMPK in glycogen depleted than in glycogen loaded 

muscles (100, 152). As α2-AMPK in general is reported to 
be more sensitive to metabolic stress than α1-AMPK (114), 
an obvious explanation could be that glycogen depletion 
leads to a muscle more prone to develop metabolic stress 
during exercise because of reduced substrate availability 
for ATP re-synthesis. While measures such as ATP, AMP 
and phospho-creatine are not reported to be affected by 
glycogen manipulation in response to contraction and 
exercise (26, 79, 151, 152) the calculated (AMPfree)/(ATP)  
ratio is increased to a greater extent during exercise in 
humans with low glycogen compared with a high glycogen 
situation (79). Thus, some lines of evidence suggest that the 
inverse relationship between glycogen content and AMPK 
activation during exercise can be explained by a greater 
increase in (AMPfree)/(ATP) with low glycogen than high 
glycogen. However, as glycogen loading of rat muscle 
suppresses basal and AICAR-stimulated α2-AMPK activity 
in rat muscle not expected to be metabolically stressed 
(151), this relationship seems not to be solely explained by 
an adenine nucleotide dependent mechanism.  
 
Several observations based on more biochemical and 
molecular strategies lean toward a scenario suggesting 
some reliance on a direct interaction between glycogen and 
AMPK. For instance, the AMPK β-subunit possesses a 
starch/glycogen-binding domain (GBD) that binds AMPK 
to glycogen in a cell free system which is evidenced by that 
mutations of key carbohydrate binding residues either 
partially or completely abolishes β-GBD binding to 
glycogen in cell free systems (92, 93). Furthermore, 
expression of this domain is essential in spatial targeting of 
AMPK to glycogen-containing granules in the cytoplasm of 
cultured human cell (54). On the other hand, a recent study 
used a refined glycogen purification protocol and reported 
that AMPK was not co-purified with glycogen, even 
though well-known glycogen associated proteins such as 
glycogen phosphorylase and glycogen debranching enzyme 
were co-purified with glycogen using this protocol (91). At 
first glance this finding does not support a direct interaction 
between AMPK and glycogen, but the finding could also 
simply reflect differing affinities for glycogen exhibited by 
AMPK and other glycogen associated proteins – that 
AMPK was lost during the purification. In line with the 
latter view, a more recent study reported that the 
dissociation constants of the AMPK β-GBD with 
oligosaccharide glycogen-mimicking structures do predict 
that AMPK does bind with glycogen, but also, that the of 
affinity AMPK towards glycogen is not very tight (71). 
 

The majority of these data do suggest that 
AMPK binds directly with glycogen, but since binding of 
AMPK with glycogen particles purified from liver do not 
reduce AMPK activity in vitro the mechanism by which 
glycogen inhibits AMPK activation does not seem to 
involve a direct inhibition (54, 92). This idea is supported 
by observations in muscles from McArdle patients which 
are recognized by having chronically high muscle glycogen 
levels due to deficiency in glycogen phosphorylase. When 
these patients are exercised at a moderate intensity, α2-
AMPK activity is not suppressed compared with control 
subjects in spite of high muscle glycogen levels. Thus, it 
may be envisioned that glycogen possibly functions as a 
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scaffolding factor bring AMPK together with factors 
regulating α-T172 phosphorylation rather than interfering 
directly with its kinase activity. Nevertheless, if the γ3-
subunit is knocked out in mouse muscle the inverse 
relationship between glycogen content and AMPK activity 
is no longer seen (6) which could suggest that glycogen 
specifically targets γ3-containing AMPK complexes. The 
finding that primarily γ3-containing complexes are 
activated in response to bicycle exercise in human muscle 
(9) may increase the importance of glycogen breakdown in 
regulating AMPK activity in response to exercise. 
Interestingly, one may speculate that the reduction in 
muscle glycogen during exercise in part explains the steady 
increase in AMPK activity seen during prolonged bicycle 
exercise (102, 127, 153) by a gradual relief from a 
glycogen-related inhibition. Noteworthy, changes in 
AMPK activity in in situ contracting rat gastrocnemius 
muscle correlate more closely with changes in glycogen 
concentrations than changes of the (AMPfree)/(ATP) ratio. 
In particular, the increase in (AMPfree)/(ATP) ratio occurred 
before any changes in AMPK and ACC phosphorylation 
suggesting that glycogen may retard the ability of AMP to 
activate AMPK during contractions, at least in fast-twitch 
rat muscle. (Rose AJ, Alsted TJ & Richter EA, unpublished 
observation). Collectively, the mechanism by which 
glycogen regulates AMPK activity is still not clear but it 
does make sense in that a reduction in muscle glycogen 
leads to greater risk of developing metabolic stress during 
contraction/exercise which in turn leads to higher AMPK 
activation. On the other hand, since glycogen loading still 
suppresses AMPK activity in basal non-contracting muscle 
other mechanisms seem to be involved as well but it is at 
present not entirely clear if this is related to the β-subunit 
GBD dependent binding of AMPK to glycogen. 
 
8.  REACTIVE OXYGEN SPECIES DEPENDENT 
ACTIVATION OF AMPK  
 

Low-grade chronic oxidative stress is normally 
associated with impaired insulin signaling in several tissues 
including skeletal muscle (46) but recent findings suggest 
that acute increases in skeletal muscle reactive oxygen 
species (ROS) levels activates AMPK (117, 133). Reactive 
oxygen species are mainly produced by the mitochondria, 
and xanthine oxidase may be a significant player in ROS 
formation in working skeletal muscle (35, 61, 86, 140). 
Observations based on incubated rodent muscle have 
shown that acute exposure to H2O2, a well-described ROS 
donor, increases glucose uptake in a time and concentration 
dependent manner, and that the increase can be prevented 
by the antioxidant N-acetyl-L-cysteine (NAC) (17, 117, 
124, 133). Reactive oxygen species have also been linked 
to AMPK signaling as incubation of rat muscle with H2O2 
or the super-oxide donor system hypoxanthine/xanthine 
oxidase specifically activates α1-AMPK but not α2-AMPK 
(133). An increase in AMP was not detected, but since ATP 
was decreased and IMP was increased, the mechanisms by 
which ROS activates α1-AMPK may rely, at least to some 
extent, on changes in muscle adenine nucleotide ratios in 
this set-up (133). In line with this study, perfusion of 
isolated rat heart with H2O2 sufficient to activate AMPK 
does not alter the (AMP)/(ATP) ratio but is associated with 

a significant increase in free creatine (76).  Studies in other 
cell types support the hypothesis that AMPK is activated by 
oxidative stress as H2O2 exposure of both NIH-3T3 and 
smooth muscle cells is associated with increased α1-AMPK 
activity, and that this increase in the NIH-3T3 cells was 
tightly coupled with an increase in the (AMP)/(ATP) ratio 
(21). This notion is indirectly supported by the finding that 
transfection of CCL13 cells with LKB1 enhances H2O2-
induced AMPK activation, and conversely that expression 
of dominant-negative LKB1 blunts the response, implying 
an essential role of LKB1 and thus probably reliance on 
changes in adenine nucleotides (156). On the other hand, 
studies of rat myotubes have shown that H2O2 in the lower 
µM range increase intracellular Ca2+ paralleled by increased 
CREB phosphorylation, suggesting that oxidative stress in 
muscle activates AMPK by a Ca2+ dependent mechanism 
(30).  In addition, recent findings have shown that 
inhibition of CaMKK with STO-609 impairs ROS-induced 
AMPK activation in a LKB1 deficient cell line (115). 
Collectively, these observations show that treatment of 
rodent muscle with H2O2 leads to modest changes of the 
energy state and cell studies show that H2O2 exposure leads 
to increase Ca2+ signaling which apparently is translated to 
AMPK activation by a CaMKK dependent mechanism. 
 
Since skeletal muscle continuously produces ROS, and 
since the production is increased by muscular work both ex 
vivo and in vivo (35, 86, 140) and during electrical 
stimulation of cultured rodent cells (30, 123), it seems 
evident to hypothesize some reliance on ROS formation in 
activating AMPK during exercise (117). A recent study by 
Sandström and colleagues addressed this topic and showed 
that the presence of the antioxidants NAC and ebselen 
almost completely prevented increases in ROS, and 
reduced AMPK phosphorylation by ~50% in response to 
electrically-stimulated contraction (117). These results 
suggest that activation of AMPK during ex vivo muscle 
contraction is partially dependent on ROS production. The 
mechanism by which ROS formation attenuates AMPK 
activation during muscle contractions is not clear. If the 
mechanism entirely relies on altered adenine nucleotide 
signaling, then treatment of contracting muscle with 
antioxidants should be expected to reduce ATP and 
phospho-creatine depletion. Nevertheless, treatment of 
isolated rat diaphragm muscle with antioxidants during 
repeated contraction had no effect on the depletion of these 
two measures (159). This may suggest that the partial role 
of ROS in activating AMPK during ex vivo muscle 
contracting, as reported by Sandström and colleagues 
(117), is not regulated by an adenine nucleotide 
independent mechanism as suggest by the authors. Using 
an ex vivo system where muscle oxygenation depends on 
simple diffusion rather than capillary delivery, may cause a 
relatively high build-up of ROS compared with in vivo 
conditions. An obvious question is therefore if ROS plays a 
significant role in activating AMPK during more 
physiological exercise regimes. It is well known that ROS 
are produced in skeletal muscle during in vivo exercise but 
due to methodological issues it is difficult to obtain 
quantitative measures of ROS production or the individual 
ROS species produced, and hence difficult to compare ex 
vivo and in vivo conditions (68). Although speculative, as 
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increased respiration is believed to correlate with increased 
ROS production, the contribution of ROS in AMPK 
activation during contraction would be expected to be 
greater during intensive ex vivo electrically stimulated 
contractions than during in vivo exercise. 
 
9. TAK1 - A CYTOKINE DEPENDENT AMPK 
REGULATOR?  
 

The TAK1 protein kinase has recently been 
reported to be an upstream AMPK kinase. TAK1 was 
identified as a mediator of TGF-β signaling and is also 
shown to convey signaling of several pro-inflamatory 
cytokines such as TNF-α, IL-1 and bacterial LPS (25, 161). 
A recent study showed that TAK1 activates AMPK in 
response to metabolic stress in cultured heart cells and 
embryonic mouse fibroblasts via an LKB1 dependent 
mechanism (160). Even though current findings in general 
suggest that LKB1 activity is neither regulated covalently 
nor allosterically, this study addresses the possibility that 
TAK1, in addition to LKB1, is directly involved in 
activation of AMPK in response to metabolic stress. 
However, it remains to be established whether TAK1 has a 
role in activating AMPK in skeletal muscle and if skeletal 
muscle TAK1 signaling is sensitive to exercise and 
contraction.  
 
10. CONCLUDING REMARKS 
 

Our understanding of the mechanisms regulating 
AMPK activity acutely in working muscle has increased 
over the years, but recent studies have also (re)introduced 
new potential players such as CaMKK, PP2C and perhaps 
also TAK1 into the field. Both human and rodent studies 
agree on that α2-AMPK is activated in a time and intensity 
dependent manner during both physiological in vivo 
exercise and in response to electrical stimulation. Human 
studies in addition suggest that it is mainly α2β2-containing 
AMPK complexes which are activated by exercise. 
Regulation of α1-AMPK is still intricate to address as α1-
AMPK in some studies is reported to be activated by 
electrical stimulation of rodent muscle and physiological in 
vivo exercise of human and rodent (1, 19, 33, 44, 64-66, 72, 
79, 154) and other studies do not report activation 
regardless of type of stimuli (9, 32, 87, 88, 100, 111, 112, 
126, 152). Interestingly, although several hormones can 
activate AMPK in muscle recent findings suggests that 
activation of AMPK during exercise mainly relies on local 
factors within the muscle. 
 

While initial studies depicted regulation of 
muscle AMPK as mainly being dictated by the 
(AMPfree)/(ATP) ratio via LKB1 and PP2C, more recent 
observations have linked Ca2+ signaling via CaMKK to 
AMPK activation. Studies of rodent muscles support that 
LKB1 is a crucial factor in activating AMPK in response to 
both metabolic stress and intensive ex vivo electrically-
induced contraction via an adenine nucleotide dependent 
mechanism and may also suggest that CaMKK signaling 
have a role in regulating AMPK during more moderate ex 
vivo contraction intensities. Even though it is tempting to 
attribute a significant role of PP2C in adenine nucleotide 

dependent AMPK activation during exercise/contraction 
there exists at present no direct data proving such a 
connection but this is clearly an area for further research. 
Descriptive studies of humans using more physiological in 
vivo exercise models supports that changes in adenine 
nucleotide are important in activating muscle AMPK but 
does so far not supported that CaMKK signaling has an 
important function.  

 
It has been understood for several years that 

muscle glycogen content correlates negatively with α2-
AMPK activation (but not α1) during exercise/contraction 
and that this relationship is apparent in both human and rat 
muscle. The mechanism is still far from clear but may in 
part be related to AMPK binding to glycogen targeted by 
the β-subunit GBD, and in part related to a greater level of 
energy stress in glycogen-depleted muscle during 
contraction. Finally, it is important to take into 
consideration that even though many animal models are 
superior in revealing potential molecular interactions 
compared with more descriptive human studies, they are 
still recognized by some limitations and direct 
extrapolation of results based on e.g. ex vivo incubated 
muscles and transgenic manipulations to human should be 
done with caution.   
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