
[Frontiers in Bioscience 13, 5847-5865, May 1, 2008] 
 

5847 

The tumor antigen epcam: tetraspanins and the tight junction protein claudin-7, new partners, new functions 
 
Francois Le Naour1,2, Margot Zoller3,4 

 
1INSERM U602,  F-94807 Villejuif, France,  2Universite Paris 11, Institut Andre Lwoff, F-94807 Villejuif, France,                           
3Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, 4Department 
of Applied Genetics, University of Karlsruhe, D-76128 Karlsruhe, Germany 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. EpCAM 

3.1. EpCAM: structure and function 
3.2. EpCAM and cancer 
3.3. EpCAM-specific monoclonal antibodies in cancer therapy 

4. Tetraspanins 
4.1. Tetraspanins: protein complexes and membrane microdomains 
4.2. Co-operate activity of tetraspanin complexes 
4.3. Tumor growth promoting and metastasis suppressing activity of tetraspanins 

5. Claudins 
5.1. Claudins and tight junctions 
5.2. Regulation of claudin expression 
5.3. Claudin-7 
5.4. Claudins in cancer progression 

6. EpCAM-tetraspanin-claudin-7 complexes 
6.1. EpCAM and tetraspanins 
6.2. EpCAM and claudin-7 

7. Perspective 
8. Acknowledgements 
9. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

The cell-cell adhesion molecule EpCAM / 
CD326 has been one of the first tumor-associated antigens 
and has soon received attention as an antibody target in 
cancer therapy. However, only recently, progress has been 
achieved in disclosing the array of functional activities of 
EpCAM and the underlying molecular mechanisms. This 
review will particularly focus on cooperative activity of 
EpCAM with two classes of transmembrane molecules, 
tetraspanins and claudins. EpCAM can associate with 
claudin-7 and the tetraspanins CD9 and CO-029. We 
propose that complex formation of EpCAM with 
tetraspanins and claudins does not only interfere with 
EpCAM-mediated homotypic cell-cell adhesion, but 
importantly, is also associated with a gain of function, like 
induction of apoptosis resistance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Already for more than 2 decades, the epithelial 
cell-cell adhesion molecule EpCAM serves as a target 
structure in cancer therapy (1). Its therapeutic use has been 
based on overexpression in many types of carcinoma, 
which as such is surprising, as one would expect tumor 
progression to be accompanied by downregulation of a cell-
cell adhesion molecule, as e.g. described for E-cadherin (2). 
Surprisingly, too, antibody therapy displayed few side 
effects on normal epithelium, that also differs for other 
rather ubiquitously expressed molecules with 
overexpression in tumor tissue (3). Recent progress in 
EpCAM-mediated signal transduction and its contribution 
to gene transcription unravelled its tumor growth 
promoting activities and provided hints towards an 
explanation for the discongruent activities in cell-cell 
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adhesion versus tumor progression and antibody 
susceptibility of tumor, but not normal epithelial cells (4). 

 
This review will focus on the association of 

EpCAM with additional transmembrane molecules, which 
we hypothesize to have major bearing on EpCAM’s 
functional activities. Tetraspanins, in particular CD9 and 
CO-029, and the tight junction protein claudin-7 have 
recently been described to associate with EpCAM (5-7). 
Tetraspanins are known as molecular facilitators that form 
a net between themselves and other transmembrane 
molecules in glycolipid-enriched membrane microdomains, 
which also harbour signal transducing and adaptor 
molecules, such that a multitude of signaling cascades can 
be initiated by the tetraspanin complexes (8,9). Claudins 
have originally been described as the major component of 
tight junctions that are important for cell polarity and 
paracellular transport. Only recently it has been observed 
that at least some members of the claudin family, including 
claudin-7 are also found basolaterally. The functions 
claudins exert outside of tight junctions are unknown. It is 
hypothesized that they may contribute to vesicle stability or 
vesicle transport (10-12). We propose that EpCAM-
tetraspanin-claudin-7 complex formation interferes with 
EpCAM-mediated homotypic cell-cell adhesion and 
supports apoptosis resistance. 

 
We will first introduce the EpCAM molecule 

inasmuch as its structural features are important for the 
association with other transmembrane molecules. After 
providing an overview on tetraspanins and claudins with 
special emphasis on their relation to tumor growth and 
progression, we will provide our working hypothesis on 
how EpCAM, tetraspanins and claudin-7 could promote 
tumor growth and progression in a concerted action. 
 
3. EPCAM 

 
3.1. EpCAM: structure and function 

The epithelial cell adhesion molecule EpCAM is 
a type I transmembrane molecule of 314 AA. It is a 
panepithelial marker, which is enriched at the basolateral 
membrane (13,13). Overexpression of EpCAM is 
frequently observed in various types of carcinomas. Despite 
its constitutive expression, a blockade of the molecules by 
EpCAM-specific antibodies can be of therapeutic benefit 
(15-17). Moreover, self tolerance towards EpCAM can be 
broken, so that the generation of EpCAM-specific T cells 
opens an additional therapeutic option (18,19). 

 
EpCAM is a Ca++-independent, homophilic cell-

cell adhesion molecule with an EGF-like domain, followed 
by a thyroglobin repeat domain (20,21), a cysteine poor 
region, a transmembrane domain and a short cytoplasmic 
tail (21-25). Both the EGF-like repeat and the thyroglobin 
domain form a globular structure and are required for the 
homophilic cell-cell adhesion of EpCAM. The EGF-like 
domain is required for the reciprocal cell-cell interaction 
and the thyroglobin-like domain for the lateral interaction 
of EpCAM molecules. Both domains are also required for 
the anchoring of actin microfilaments at the cell membrane 
via α-actinin, a process regulated by the cytoplasmic tail of 

EpCAM (26). EpCAM has a particular proteolytic cleavage 
site near the N-terminus, and cleavage has been suggested 
to be accompanied by conformational changes, which may 
have impact on the function of the molecule (27). Thy-
roglobin domains are known to inhibit cathepsins. Whether 
EpCAM, indeed, serves as a protease inhibitor, to protect 
the tumor cell from degradation, remains to be explored. 

 
Not much is known on the regulation of EpCAM 

expression. The EpCAM promoter has no TATA box, and 
does not contain CCAAT, Ker1 or E-pal  transcription 
factor recognition sequences. Yet, the 687bp proximal 
promoter region contains transcription factor recognition 
sequences for Sp-1, AP-1, AP-2, Etss, ESE-1 and E-pal-
like (28). It is also known that the EpCAM promoter 
becomes negatively regulated by NFκB, TNFα and IFNα 
(29). 

 
The cell adhesion molecule EpCAM might be 

expected rather to prevent than to support metastasis 
formation (30-32). However, it has been reported that 
EpCAM is involved in the abrogation of E-cadherin-
mediated cell-cell adhesion by disrupting the link between 
α-catenin and F-actin (13,33,34). In fact, EpCAM has been 
shown to be involved in signal transduction and to support 
cell motility (25,35-40). Overexpression of the EpCAM 
gene also induces upregulation of the proto-oncogene c-
myc and supports cell proliferation via upregulated 
synthesis of cyclin A and E (39,41,42) and regulates E-
FABP (epidermal fatty acid binding protein) expression 
(39). Finally, and likely to be most important for the tumor 
progression promoting activity of EpCAM, oligomerization 
of the molecule triggers signals that cleave an intracellular 
peptide of EpCAM, which requires cooperative activity of 
TACE (TNF converting enzyme) and PS2-NTF (persenilin 
2 N-terminal fragment). This peptide, termed EpIC, forms a 
complex with ß-catenin and Lef-1. The complex relocates 
to the nucleus and by binding to Lef consensus sites 
initiates transcription of c-myc (4, M. Munz and O. Gires, 
personal communication). EpCAM transgenic mice, where 
EpCAM is overexpressed in mammary glands, support a 
role of EpCAM in mitogenic signaling with high level Bcl-
2 and Ki67 expression (43). Also, there is evidence that 
EpCAM may be a stem cell marker in breast, pancreatic 
and colorectal cancer (44-47). 
 
3.2. EpCAM and cancer 

EpCAM is expressed on many epithelia (48). 
Few exceptions are epidermal keratinocytes, hepatocytes, 
thymic cortical epithelia, gastric parietal cells and 
myoepithelial cells (48). Non-epithelial cells, with the 
exception of plasma cells, lack EpCAM expression (49). 
According to the distribution in non-transformed tissue, 
nearly all carcinoma express EpCAM, including cervical, 
lung, breast, prostate, renal cell, colorectal and cutaneous 
squamous cell carcinoma, but also myeloma, the malignant 
counterpart to plasma cells (13,32,48-57). In carcinoma, 
EpCAM expression is mostly increased as compared to 
non-transformed tissue and EpCAM overexpression has 
been found to correlate with the grade and histological type 
(preferentially lobular) of breast cancer, decreased overall 
and poor disease free survival (32). In cervical cancer and 
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squamous cell carcinoma of the lung, EpCAM 
overexpression also correlates with grading and TNM 
staging, but not with survival (50,58). In colorectal cancer 
it appears to correlate with the disease-free survival, but not 
with grading and staging (59). 
 
3.3. EpCAM-specific monoclonal antibodies in cancer 
therapy 

The therapeutic potential of EpCAM-specific 
antibody has first been evaluated for colorectal cancer in 
nude mice (60,61). Several clinical studies have been 
performed with edrecolomab. Most studies report on 
benefits considering metastatic progression. With respect to 
the effect on the local tumor mass, results in different 
studies are divergent, that has been suggested to be due to 
the basolateral localization of the molecule, which could 
hamper access for the antibody in a solid tumor mass (rev. 
in 15). Yet, the preferential basolateral localization may not 
account for tumor cells, where EpCAM has been described 
to become redistributed over the plasma membrane (62). 
Irrespective of this matter, very few and mostly tolerable 
side effects have been reported, which is surprising taking 
the expression of EpCAM on non-transformed tissue (62-
64). A new generation of antibodies, either bispecific or 
coupled to chemotherapeutic drugs is under consideration 
(65-67). Thus, a trifunctional antibody (anti-EpCAM x 
anti-CD3) (catumaxomab), where the Fc part of the 
antibody is taken as the third functionally important 
domain, is suggested to kill tumor cells via induction of 
apoptosis, release of cytokines and perforin as well as by 
antibody-dependent cellular cytototxicity (68,69). The anti-
body has been efficient in the treatment of patients with 
malignant ascites of ovarian cancer and peritoneal 
carcinomatosis from various solid tumors (70). An anti-
EpCAM x anti-CD64 bispecific antibody (HEA125x197) 
has also been most efficient in the treatment of patients 
with ascites from ovarian cancer (71). EpCAM-specific 
antibodies also have been explored in non-small cell lung 
cancer patients, so far with promising results, that need to 
be further controlled (72). A fully human EpCAM-specific 
antibody, adecatumumab, is under investigation (73). The 
efficacy of an anti-erbB2 immunotoxin could also be 
increased by anti-EpCAM sFv (74). 

 
This list of therapeutically used EpCAM-specific 

antibodies is by no means complete, as we only wanted to 
demonstrate that a molecule expressed on non-transformed 
cells can be efficiently used as a therapeutic target  and 
without severe side effects. This is not only surprising, but 
makes it a demand to define the molecule’s function that 
could well allow for more directed interference. At present 
we are still at the stage of a hypothesis, but two lines 
appear most promising. One line of interest has already 
been pointed out, the possibility that the cytoplasmic tail of 
EpCAM (EpIC) functions as part of a transcriptional 
complex (4,41). The second line of interest has a bias 
towards the authors field of interest, the modulation of the 
functional activity of transmembrane molecules by the 
formation of complexes in membrane subdomains, 
particularly those generated by the so called tetraspanin 
web. As EpCAM crossed independently both authors’ way 
in being concerned about tetraspanins, we feel that EpCAM 

complex formation should receive intense consideration 
and may further help to elucidate the function of the 
molecule that already as a “black box” has proven its 
therapeutic relevance. We also speculate that the 
observation of EpCAM as part of a complex in glycolipid 
and tetraspanin enriched membrane microdomains and the 
discovery of its cytoplasmic domain to account for tumor 
growth promotion are possibly linked.  

 
To substantiate our hypothesis, we will start to 

introduce the tetraspanin net and outline the EpCAM 
complex as far as it is known at present. 
 
4. TETRASPANINS 
 
4.1. Tetraspanins: protein complexes and membrane 
microdomains 

Tetraspanins are a family of 34 proteins. The key 
feature of tetraspanins is their potential to associate with 
each other and with a multitude of molecules from other 
protein families (8,9,75-77). Tetraspanins span the 
membrane 4 times. The N- and the C-terminal domain and 
a short inner loop between the 2 extracellular loops of 
tetraspanins are located in the cytoplasm and are charac-
terized by palmitoylation sites. Polar amino acids in the 
transmembrane regions are supposed to stabilize the 
structure and the conformation of the second extracellular 
loop, also called the large extracellular domain, which is 
divided into 3 constant and 1 variable regions between the 
second and the third constant region. This variable region is 
critical for protein-protein interactions (78-80). 

 
Tetraspanins assemble a multitude of proteins 

into complexes attached to specific signal transducing 
molecules. The most prominent tetraspanin partners are 
integrins. Some integrins (αIIβ3, α3β1, α4β1 and α6β1) 
are found in tetraspanin complexes with high 
stoichiometry, whereas others (α2β1, α5β1, β2) are largely 
excluded (9,75,76,81-85). Many other molecules, besides 
integrins can associate with tetraspanins and various levels 
of interaction have been described. These levels of 
interaction mostly are defined by disruption of the 
interactions with detergents of increasing stringency. Type 
I interactions are direct protein-protein interactions, that 
take place early during biosynthesis, e.g. the association 
of CD151 with α3β1 and the homo-oligomerization of 
ROM-1 and peripherin/RDS. Type II interactions occur 
later during biosynthesis (Golgi or post-Golgi) and 
might be facilitated by palmitoylation of the 
tetraspanins. Accordingly, the removal of palmitoylation 
sites has no effect on primary interactions, but 
secondary interactions are impaired, that has 
consequences on cell signaling and cell morphology 
(86-89). The association of CD151 with other 
tetraspanins represent examples for this type of 
association. Type III associations comprise proteins that 
are only found in tetraspanin complexes when very mild 
detergents are used for membrane disruption. Signal 
transducing molecules like PKC or type II PI4K are only 
detected in tetraspanin complexes under such mild lysis 
conditions (9,79,88,90-92). 
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Mild detergent conditions also allow tetraspanin 
complexes to be recovered from lipid rich fractions of 
isopycnic sucrose gradients. This observation as well as 
data showing the association of the tetraspanin CD9 with 
ganglioside GM3 and the demonstration of covalent cross-
linking of tetraspanins with cholesterol, have suggested a 
linkage between tetraspanin complexes and lipid rafts. 
However, tetraspanin complexes are not located in classical 
rafts. Instead, tetraspanin complexes initiate their own type 
of microdomains, called TEMs (tetraspanin-enriched 
membrane microdomains). The location of tetraspanin 
complexes in these membrane microdomains enriched for 
long saturated acyl chains and cholesterol could well 
provide a signaling platform (86,88,90,93-95). 
 
4.2. Co-operate activity of tetraspanin complexes 

Tetraspanins have been described to be involved 
in a multitude of different functional activities, like B- and 
T-cell activation, platelet aggregation, migration, 
proliferation, morphogenesis and tumor cell progression. 
This divergency of functions can be explained by the 
organization of the tetraspanin web in lipid-rich membrane 
microdomains. However, the molecular mechanisms of 
most of the tetraspanin activities are not yet clarified. 

 
Modulation of cell motility has been the first 

functional activity ascribed to tetraspanins. Most important 
for this activity is the association of tetraspanins with 
integrins (96-98), where the association with tetraspanins is 
decisive for integrin-mediated cell motility. Thus, 
mutations in the primary interaction site of CD151 results 
in loss of α3 and α6 integrin associations, with the 
consequence that integrins contain their adhesive 
properties, but loose the capacity to promote spreading and 
cable-like growth on matrigel (78,84,87). Mutation of the 
C-terminal tail of CD151 also alters α6 integrin-dependent 
spreading, cable formation and the strength of adhesion. It 
is suggested that the C-terminal tetraspanin tail provides a 
link to an unidentified signaling element that contributes to 
integrin conformation. Also, the integrin domain associ-
ating with tetraspanins, is required for the recruitment of 
tetraspanin associated PI4K and PKCs. e.g. the α3 tail does 
not become phosphorylated unless the α chain has 
associated with the tetraspanin (99). Of special relevance 
for tumor progression is the finding that several tet-
raspanins are expressed at high level on endothelial cells 
and, accordingly, influence endothelial cell motility. 
Endothelial cell migration can be efficiently inhibited by 
anti-CD9 and anti-α3ß1. A CD81 - CD151 - α3ß1 complex 
also is of major importance for endothelial cell motility. 
Finally, heterotypic interaction between tumor cells and 
endothelial cells are critical during tumor cell 
dissemination. Endothelial cell CD9 strikingly localizes 
towards the contact points between endothelial cells and 
tumor cells and facilitates tumor cell transmigration 
(100,101). 

 
Integrin activation via associated tetraspanins is 

also important during blood coagulation. In resting platelets 
αIIbß3 is in an inactive conformation. It is converted to a 

high affinity state by inside-out signaling via G-protein-
coupled or tyrosine kinase linked pathways. Activated 
αIIbß3 binds fibrinogen and vWF. Subsequent outside-in 
signals lead to clustering and cytoskeletal reorganization, 
platelet activation, clot retraction and spreading (102). In 
CD151 knockout mice, CD151 being constitutively associ-
ated with αIIbß3, outside-in signaling of αIIbß3 is 
impaired, which has the consequence of defective platelet 
aggregation, impaired spreading on fibrinogen and delayed 
clot retraction (103). There is also evidence for a contri-
bution of endothelial cell derived tetraspanins in platelet 
activation. Stimulated endothelial cells may shed CD9 in 
small vesicles, which bind factors IXa and Xa (104). 

 
Tetraspanins also contribute to integrin inter-

nalization. Cell motility is accompanied by integrin redis-
tribution to filipodia and lamellipodia (105,106), which 
could be due to membrane traffic or endocytosis and 
recycling. Recent evidences point towards a major contri-
bution of integrin recycling, which is guided by associated 
tetraspanins (107). In this context it is important to mention 
that tetraspanins are also enriched in fused endocytic 
vesicles, called multivesicular bodies (108-110). Multive-
sicular bodies fuse with the plasma membrane and are 
released as 50-90nm particles, called exosomes (111). 
Exosomes are claimed to function as intercellular 
communication vesicles (112-115). It has been suggested 
that tetraspanin enriched microdomains may be particularly 
adapted to facilitate vesicular fusion and/or fission. 
However, the proteins that associate with tetraspanins in 
membrane fusion, exosome formation, shedding and uptake 
have not yet been identified. 

 
The integrin tetraspanin association also 

modulates the strength of adhesion. This is surprising in as 
far as tetraspanins have little effect on integrin-ligand 
binding (116). Nonetheless, tetraspanins strengthen 
integrin-mediated adhesion. To give a few examples, 
CD151 regulates post-ligand-binding events (84), including 
retraction of platelet clots (102) and CD81 enhanced α4β1 
adhesion under shear flow (117). The mechanistic that 
underlies the tetraspanin-mediated strengthening of integrin 
binding is poorly understood. There is evidence that CD9 
and CD82 can regulate actin organization (87) via PKC 
recruitment (99); Alternatively, recognition of typeIII or 
typeI PDZ domains by the 3 C-terminal residues of CD81 
and CD151 could support strengthening of tetraspanin-
associated integrin adhesion (118). 

 
Finally, via their association with integrins, 

tetraspanins are supposed to exert morphogenic features. 
CD82 might attenuate cellular morphogenesis through 
down-regulation of α6-mediated cell adhesion, likely by 
CD82-mediated integrin internalization. Furthermore, net-
work formation of NIH3T3, which is mediated by α6ß1 
essentially depends on CD151 (119,120). CO-029 (the rat 
synonym is D6.1A, for convenience we will use the term 
CO-029 throughout) overexpression also strongly supports 
network formation of carcinoma cells. However, different 
to CD151, cable like growth was inhibited by anti-α3β1, 
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but not by anti-α6β1 (121). The mechansims underlying 
these differences in morphogenic features of CD151 and 
CO-029 remain to be explored. It is, however, conceivable 
that differences in the cytoskeletal elements of the 
fibroblast-derived NIH cells versus the epithelial tumor 
cells are decisive. 

 
Tetraspanins are also invovled in hematopoiesis, 

leukocyte activation and apoptosis (rev in 76,77). This is 
mainly due to cooperations and associations with intracellular 
signaling molecules, like phosphatases, PKCs and type II PI4K 
(81), and cytoskeletal components. Thus, CD82 can act as a 
co-stimulator by tyrosine phosphorylation of the Rho GTPase 
guanosine exchange factor Vav1 and the adaptor protein 
SLP76 or phosphorylation of ZAP70 and LAT. Depending on 
the palmitoylation state, tetraspanins also regulate integrin 
signaling via PI3K. Tetraspanins also promote proliferation by 
stimulating MAP kinases and tyrosine phosphorylation of p46 
and p52 Shc. The phenomenon is linked to an increased 
association with a type II PI4K and is integrin-independent. 
CD81 and CD9 modulate apoptosis resistance by signal 
transduction via JNK and p38 MAPK (122-124). Furthermore, 
tetraspanins can associate with G-protein-coupled receptors 
(GPCR), which transmit signals to associated heterotrimeric G 
proteins. CD9, CD81 and CO-029 selectively associate with an 
orphan G-protein coupled receptor (GPCR) (GPR56) and 
Gαq, Gα11 and Gß, where the tetraspanins function as 
selective scaffolding proteins for GPCRs (87,99,125,126). 
Tetraspanins have also been shown to modulate growth factor 
signaling. CD9 associates with and modulates the function of 
pro-TGFα, pro-HB-EGF and pro-amphiregulin by increasing 
the potency of these ligands during juxtacrine signaling (127), 
that might involve prevention of ligand cleavage and/or 
concentration of the ligand in CD9 microdomains (128,129). 
Also the tyrosine kinase receptor c-kit forms a complex with 
CD9, CD63 and CD81 such that basal tyrosine 
phosphorylation is increased, but steel factor-stimulated 
tyrosine phosphorylation is decreased (130). 
 

To summarize the most essential features, 
tetraspanins associate with other tetraspanins, integrins and 
additional transmembrane molecules in membrane 
microdomains. They function as specific membrane docks 
that cluster their associated membrane proteins with intra-
cellular membrane-proximal signaling proteins. The 
clustering depends on the palmitoylation state of the 
interacting proteins. The reversibility of palmitoylation 
facilitates local and temporal rearrangements of the tetras-
panin web and the associated signaling molecules. This so 
called tetraspanin web allows a single class of molecules to 
play an important role in several fundamental biological 
processes, like activation, proliferation, apoptosis and 
migration, morphogenesis and cell and vesicular membrane 
fusion. The latter two features are less well defined. 
Nonetheless, they likely are of major relevance in tumor 
progression. 
 
4.3. Tumor growth promoting and metastasis 
suppressing activity of tetraspanins 

There is undoubtedly evidence that tetraspanins 
contribute to tumor progression (131-133). Yet, taking into 

account that tetraspanins function as molecular facilitators, 
it becomes most likely that the very same tetraspanin may 
exert opposing effects on tumor progression depending on 
the associating molecules. This, in fact. has been observed 
in several instances. Nonetheless, two tetraspanins, CD151 
and CO-029 are mostly associated with tumor progression, 
while CD82 has originally been described as the metastasis 
suppressor gene Kai1, where high expression is associated 
with a favourable prognosis. High CD9 expression has also 
mostly been associated with a favourable prognosis. The 
mechanisms accounting for tetraspanin-mediated metastasis 
promotion or suppression are not fully explored. However, 
there are some most interesting observations that deserve 
further exploration. 

 
The metastasis suppressor gene KAI1 / CD82 

(134-138) is expressed in many tissues and cells, but 
frequently is downregulated in tumors (139). Recent results 
enhance our understanding of how CD82 might inhibit 
invasiveness. Ectopic expression of CD82 leads to down-
regulation of p130Cas, thereby suppressing the p30Cas-
CRKII coupling, which triggers DOCK180, a guanine 
nucleotide exchange factor for Rac1, that is important for 
membrane ruffling and directional migration (140). 
Because the p130Cas-CRKII complex functions as the 
molecular switch for directional cell migration, it is 
suggested that the metastasis suppressor activity of CD82 
relies mainly on modulating this complex formation 
(140,141). Additional mechanisms are also discussed. 
EWI2, a member of a new subgroup of the Ig superfamily 
also suppresses ruffling and migration (80,142) and was 
found to associate with CD82 (143), that was, however not 
confirmed by another group (144). Finally, CD82 might 
attenuate signaling via the EGFR and/or ERBB2 inasmuch 
as its association with these recpetors diminishes ligand-in-
duced dimerization and endocytosis (129,131,145,146). It 
also has been described that kitenin, a metastasis-
supporting four transmembrane protein, that does not be-
long to the tetraspanin family, bind the C-terminal tail of 
CD82 whereby its metastasing promoting activity becomes 
inhibited (139,147). Finally, CD82 may regulate the prote-
olytic activity of the uPA/uPAR system such that in the 
presence of CD82 uPAR co-localizes with α5β1 in focal 
adhesions. By the stable association between uPAR and 
α5β1 binding of uPA to its receptor was prevented and the 
pericellular proteolysis was reduced by 50-fold (148). 

 
Two tetraspanins, CD151 and CO-029, have been 

associated with tumor progression. CD151 expression is 
upregulated in lung, prostate, pancreatic and colon cancer 
and high level expression has been found to correlate with 
poor prognosis (149-152). Also, transfection of tumor cells 
with CD151 cDNA promoted their motility and 
invasiveness (133,153). In vivo metastasis formation could 
be inhibited by a CD151 antibody blockade (150). 
Transfection of tumor cells with recombinant adenoviral 
vectors containing sense and anti-sense CD151 sig-
nificantly promoted, respectively, inhibited tumor cell mi-
gration (154). The following mechanisms are discussed: i. 
CD151 supports tumor cell migration (133). CD151 is 
closely associated with laminin receptors and overex-



EpCAM, tetraspanins and claudin-7 

5852 

pression enhances Rac and Cdc42 activation (155). By 
transfection of CD151 into focal adhesion (FAK) com-
petent and deficient cells and antibody inhibition, it could 
be demonstrated that CD151 contributes to integrin-
mediated tumor cell motility also via FAK activation (153); 
ii. MMP-7 associates with CD151. MMP7 becomes 
activated by this association and is captured at the cell 
membrane, thus allowing for pericellular lysis (156); iii. 
The association of CD151 with pro-growth factors (157) 
and growth factor receptors (145) may also contribute to its 
metastasis promoting activity; iv. The morphogenic fea-
tures of CD151 (120,143) as well as its involvement in 
platelet activation (102) have not yet been explored for 
their relevance with tumor progression. Nonetheless, those 
features could make a considerable contribution to tumor 
progression. 

 
CO-029 was originally described as tumor-

associated antigen expressed by several human carcinoma, 
including astrocytoma and colorectal cancer (158). High 
CO-029 expression is associated with a poor prognosis and 
pronounced tumor progression (140,159). Rat CO-029 has 
been suggested to be involved in cell proliferation and 
differentiation (160) and to support hematogenous spread, 
where an interaction with platelets and leukocytes may pro-
vide tumor cells with a survival advantage in the hostile 
environment encountered during metastatic spread 
(149,160-162). Alternatively, CO-029 could well support 
migration of metastatic tumor cells by its association with 
integrins and similar mechanisms as described for CD151. 
Though CO-029 is not constitutively associated with α6β4, 
it does so after stimulation and disassembly of 
hemidesmosomes (85), which is accompanied by transient 
internalisation of α6β4 – CD151 / CO-029 complexes, 
changes in cell shape towards a migratory phenotype and 
increased motility (151). Another possible mechanistic 
basis of pro-metastatic functions of CO-029 relies on its in-
volvement in cancer thrombosis. When rats received a CO-
029 overexpressing rat pancreatic carcinoma line, animals 
developed disseminated intravascular coagulation, which 
could be prevented by a CO-029-specific antibodies (132). 
First studies to unravel the underlying mechanism provided 
evidence that CO-029 is an utmost strong angiogenesis 
inducer that contributes to a systemic angiogenic switch by 
shedded CO-029 that is found abundantly in tumor-derived 
exosomes (121). 
 
5. CLAUDINS 
 
5.1. Claudins and tight junctions 

Tight junctions represent sites of close contact 
between the outer leaflets of plasma membranes of adjacent 
cells. At the so-called "kissing points" the intercellular 
space is completely obliterated (163-165). Tight junctions 
are found in epithelia and endothelia and provide a barrier 
to the paracellular diffusion of solutes. They also separate 
apical from basolateral membrane domains (166,167). The 
major components of tight junctions are transmembrane 
proteins such as occludin and tricellulin (168,169), claudins 
and the junctional adhesion molecule and cytoplasmic 
plaque proteins such as ZO-1, ZO-2, ZO-3, cingulin, 

symplekin and others (170,171). The family of claudins 
meanwhile comprises 24 members with molecular weights 
between 20 kDa to 33 kDa. They are integral membrane 
proteins with four hydrophobic transmembrane domains 
and two extracellular loops which appear to be involved in 
homophilic and/or heterophilic interactions implicated in 
tight junction formation (172). Claudins share these 
features with tetraspanins. However the 2 protein families 
are not related. The internal N-terminal sequence is very 
short. The first extracellular loop contains a set of highly 
conserved amino acids, W-GLW-C-C, where the 2 cysteins 
are supposed to form a loop. This loop is important for 
paracellular charge selectivity (173). The second 
extracellular loop is smaller and can be a receptor for 
bacterial toxins (174). The c-terminal tail is most diverse, 
varies in length from 21-63 AA, contains, with the 
exception of claudin-12, a PDZ motif (175-178) and has 
several potential phosphorylation sites (171,176,177). 

 
The tight junction proteins interact with cytosolic 

scaffold proteins, which creates a platform for the 
recruitment of signal transducing molecules and linkage to 
the cytoskeleton (179). Important partner molecules in 
these complexes are PA3, PAR6, aPKC and the PAT-
J/Pals-1/Crb-3 protein complex (180,181). Mutations in this 
complex, e.g. of aPKC does not affect localization of the 
complex in tight junctions, but disrupts the physical 
continuity (182). The sequential interaction of the proteins 
during the assembly of junctions is incompletely defined, 
but there is evidence that components of the barrier and 
polarity complexes are reciprocally regulated and 
interdependent (183-185). Tight junctions Proteins are also 
linked to the cytoskeleton, where direct interactions have 
been described for ZO-1 and ZO-3, but not for the claudins. 
ZO-1 and ZO-3 bind F-actin (186), ZO-3 also binds AF-6 
and p120 catenin. Intriguingly, claudins have conserved 
dicysteine palmitoylation motifs (187) similar to 
tetraspanins (9,77). Palmitoylated claudins, like 
palmitoylated tetraspanins, are partitioned into glycolipid-
enriched membrane microdomains, that harbour signal 
transducing molecules, facilitate complex formation and 
may contribute to the tight junction assembly (9,77,187-
191), although the roles of these microdomains in the 
supposed oligomerization of claudins (178,192) are not 
well understood. Another aspect of claudins / tight 
junctions is important to mention. Tight junctions are con-
stantly remodelled by endocytosis (193). One major 
pathway appears to be a cell-eat-cell model (194), where 
the intact tight junction complex is internalized by the 
adjacent cell. It is not yet known, whether clathrin-
mediated (195) or caveolar (196) endocytosis of claudins 
are independent pathways or are part of the cell-eat-cell 
internalization process. Internalized tight junction proteins 
enter early endosomes, but are not recovered from late and 
recycling endosomes or the Golgi. Thus, there seems to be 
a special storage compartment that colocalizes with syn-
taxin 4. It is supposed that a better understanding of the 
recycling of claudins will provide important insight into 
mechanisms of altered barriere function e.g. in 
inflammatory bowel disease (197). The internalization of 
claudins is of physiological importance, e.g. internalization 
becomes strengthened by IFNγ, which is accompanied by 
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increased permeability (198). Claudin endocytosis becomes 
enhanced by claudin phosphorylation (199) and claudins 
are direct targets for PKA, PKC and myosin light chain 
kinase (199). It also has been noted that claudin 
phosphorylation may negatively regulate claudin 
integration into the tight junctions (200). Finally, EphA2 
and ephrin-B1 bind to the first extracellular loop of claudin-7 
(201). The tyrosine kinase EphA2 phosphorylates a conserved 
C-terminal residue of claudin-4, which is accompanied by 
increased paracellular permeability. Because the Eph-ephrin 
axis is important in controlling the epithelial-mesenchymal 
transition (EMT) (202), it is tempting to speculate that EMT is 
accompanied and facilitated by downregulation of claudins 
(203,204). Yet, it also has been described that claudin-1 
regulates EMT by signaling through Wnt / ß-catenin (205). 

 
5.2. Regulation of claudin expression 

Not much is known on the regulation of claudin 
expression. For the transcriptional regulation, Snail, that 
triggers EMT, has been described to repress besides 
cadherin and occludin (203,204,206), also claudin-3, -4 and 
-7 expression (207). Snail may suppress claudin-1 ex-
pression also on the translational level (206). GATA-4 
together with HNF (hepatocyte nuclear factor)-1α 
promotes claudin-2 expression (207). HNF-4α provokes 
expression of tight junction proteins, including claudin-7, 
and modulates the subcellular distribution resulting in 
junction formation and supports claudin-6 and claudin-7 
transcription (208). Hormones and cytokines, like EGF, 
HGF, IL-1ß, IL-17, IFN, TNF and oncostatin have all been 
described to contribute to the regulation of claudin 
expression (209-216). However, the same signaling molecules 
may exert opposing effects, e.g. IL-1ß induces claudin-2 
expression via p38 and PI3K (214), while in Ras or Raf-1 
transfected cells claudin-2 become downregulated through the 
MAPK pathway (217,218), respectively becomes upregulated 
by downregulation of MAPK and Akt (219). 

 
5.3. Claudin-7 

Claudin-7 has first been described to form a 
paracellular barrier to Cl- and a paracellular channel to Na+ 
(220), whereby the first extracellular domain affects 
paracellular permeability (221). Notably, though it is 
meanwhile well established that claudins in general may 
not only be found in tight junctions, this has been become 
particularly obvious with claudin-7. While claudin-7 
together with claudin-1, -3, -4 and -14 is located in crypts 
of palatine tonsils, distinct to the other claudins, claudin-7 
does not become downregulated in tonsillitis, that was 
suggested to indicate that it may serve different functions 
(222). Also, claudin-7 and claudin-8 show different 
subcellular localization in Henle’s loop and collecting tubes 
of the kidney, where claudin-7 is localized in the cytosol 
and basolaterally and claudin-8 is found at the cell border 
and in tight junctions (223). In the mouse intestine, too, 
claudin-7 is located in tight junctions, as well as basolateral 
(224). Thus, claudin-7 serves additional function besides 
providing a paracellular barriere. 

 
5.4. Claudins in cancer progression 

Tumor cells frequently exhibit abnormal tight 
junction functions as well as decreased differentiation and 

loss of cell polarity (225,226). The loss of tight junctions 
may be important to allow diffusion of nutritients and other 
survival factors to promote tumor cells growth and survival 
(227). Decreased polarity may facilitate EMT (228). 

 
In fact several claudins have been found to be 

downregulated in cancer. Downregulation of claudin-1 has 
been observed in breast cancer (229,230), colon cancer 
(231), glioblastoma multiforme (224), and prostate cancer 
(225). Expression of claudin-7, too, is reduced in breast 
cancer (234,235). In primary breast cancer reduced E-
cadherin and claudin-7 expression correlate with poor 
prognosis. However, claudin-7 was found to be re-expresed 
in lymph node metastasis (236). Other studies describe loss 
of claudin-7 expression in ductal mammary carcinoma in 
situ, that remains stable in invasive breast cancer (234). In 
the mouse, it has been noted that claudin-7 is expressed in 
mammary epithelium as well as in mammary carcinoma, 
but in tumors it was found to be punctated in the 
cytoplasma and in the basolateral membranes and has been 
suggested to be involved in stabilizing cytoplasmic vesicles 
(237). Reduced claudin-7 expression has also been 
observed in head and neck cancer (238). In the oesophagus, 
claudin-7 expression is confined to membranes of 
differentiated keratinocytes, while in squamous cell 
carcinoma of the oesophagus claudin-7 expression was 
reduced or completely lost. Downregulation was accompanied 
by decreased E-cadherin expression, increased proliferation 
and enhanced invasiveness (239,240). However, in other 
studies, a gradual increase of claudin-1 and claudin-7 during 
progression of oesophageal cancer has been reported (241) and 
has been defined as an early event in carcinogenesis (242). In 
high grade prostate cancer claudin-7 expression was also 
described to be reduced (233). 

 
On the other hand, claudins may become 

upregulated in cancer. This accounts for claudin-3 and -4 in 
ovarian cancer (243-247), breast (248), prostate (233,249), 
pancreatic cancer (250-254) and squamous cell carcinoma 
of the oesophagus (242). Considering claudin-7 expression, 
we already mentioned that different expression profiles are 
reported for breast and oesophageal cancer. Upregulated 
claudin-7 expression has also been seen in chromophobe 
renal cell carcinoma and renal oncocytoma (255), giant cell 
tumors of the bone (256) and hepatocellular carcinoma 
(257). Claudin-7 expression also becomes upregulated 
early during gastric tumorigenesis and remains high in 
intestinal type gastric adenocarcinoma (258). Finally, 
claudin-7 regulates expression of the prostate-cancer 
specific antigen, but the pathway has not yet been clarified 
(259). 

 
Besides the expression level, also the 

phosphorylation state of claudins can be important for their 
functional activity in tumor progression. Several kinases 
have been described to be involved in the phosphorylation 
of claudins. Claudin-1 becomes phosphorylated by MAP 
kinases (260) and PKC (200), claudin-5 by cAMP-
dependent kinase (261,262) and claudin-3 by WNK4 (263). 
For claudin-3 and -4 it has been demonstrated in ovarian 
cancer that their phosphorylation is accompanied by 
disruption of tight junctions (264). 
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Taken together, there is evidence that tight 
junction-located claudins interfere with tumor progression 
and are downregulated in most cancer type. However and 
in line with supposed additional functional activities of 
claudins located outside of tight junctions, expression of 
claudins located in the cytoplasm or basolaterally is either 
not affected by oncogenic transformation and tumor 
progression or becomes strengthened. We hypothesize that 
claudins, particularly claudin-7, located outside of tight 
junctions form a complex with EpCAM, that becomes 
recruited into TEM. Within this membrane 
microenvironment, both EpCAM and claudin-7 likely 
fullfill different functions, that, however, have not yet been 
defined. 

 
6. EPCAM-TETRASPANIN-CLAUDIN-7 
COMPLEXES 

 
6.1. EpCAM and tetraspanins 

Tetraspanin complexes have been analyzed by 
Maldi-TOF and MS and LC-MS/MS in human, mouse and 
rat lymphoid and epithelial cells (5,89,265,266). Two of 
these analysis were particularly concerned about 
tetraspanin microdomains in tumors and metastases of the 
colorectum using two different models of tumor lines 
derived from primary colorectal cancer, liver metastasis 
and, in one instance, peritoneal metastasis (5,265). Both 
studies searched for CD9 associated proteins. Notably, in 
all 3 metastasis derived lines EpCAM was associated with 
CD9. It was also associated with CD9 in one of the primary 
tumor derived lines. CO-029 co-immunoprecipitated with 
EpCAM only in metastasis-derived lines from one of the 
tumors (8).  

The emergence of mass spectrometry in biology 
has opened new avenues for the characterization of 
tetraspanin complexes. Several studies combined immuno-
affinity purification using mAbs directed against 
tetraspanins (CD9 or CD81) or associated molecules with 
gel-based protein separation followed by MALDI-TOF 
mass spectrometry or LC-MS/MS. Studies were performed 
in different cell types including epithelial cells or T- or B-
lymphoid cells (5,89,265,266). Two of these analyses were 
devoted to the composition of tetraspanin microdomains in 
tumors and metastases (5,265). These reports were both 
focused on colon cancer using two different cellular 
models. The models were constituted of cell lines derived 
from primary colon tumors and metastases (liver, lymph 
node or peritoneal) from the same patients. These studies 
were based on the biochemical properties of the tetraspanin 
complexes. Therefore, cells were lysed with the mild 
detergent Brij97 followed by immunoprecipitation 
experiments of the CD9-containing complexes. The 
associated proteins were further eluted using the more 
stringent detergent Triton X-100, which dissociates 
tetraspanin-tetraspanin associations. Proteomics has 
revealed the presence of different categories of membrane 
proteins in tetraspanin complexes, including adhesion 
molecules, membrane proteases, receptors and signaling 
molecules and proteins involved in membrane fusion 
process as well as poorly characterized proteins. Among 
the newly identified proteins by mass spectrometry, 
EpCAM was observed associated with CD9 in all models. 

The interaction of EpCAM with CD9 can be visualized 
under conditions where tetraspanin to tetraspanin 
interactions are not observed or strongly diminished (using 
digitonin for cell lysis). In addition, the association was 
stabilized by chemical cross-linking. Therefore, it has been 
suggested that CD9/EpCAM constitutes a new primary 
complex in the tetraspanin web. To gain further 
information about the potential relevance of CD9/EpCAM 
complexes, the distributions of these molecules in normal 
and cancer colon were compared by confocal microscopy. 
There was a substantial colocalization of these two 
molecules in the normal colon and a lower level of 
colocalization in primary tumor and metastasis. 
Interestingly, immunoprecipitation experiments with CD9, 
CO-029 or EpCAM mAbs led to observe a 20 kDa protein 
that may correspond to a claudin family member.  

 
A study on a metastasizing rat pancreatic 

adenocarcinoma also revealed co-immunoprecipitation of 
EpCAM with CD9 and CO-029 (6,7). Overexpression of 
EpCAM in the non-mestasizing subline of the same tumor, 
that does not express CO-029, provided clear-cut evidence 
for a strong increased in homophilic cell-cell adhesion. 
Instead, overexpression of EpCAM by itself had only a 
minor impact on tumor progression (268). This finding 
suggested that the association of EpCAM with tetraspanins 
might be important for its tumor promoting activity. 
Indeed, an analysis of EpCAM ascribed activities in the 
metastasizing versus the EpCAM cDNA transfected non-
metastasizing subline revealed functional differences, 
which support our hypothesis. Thus, methyl-ß-cyclodextrin 
treatment, which destroys TEM, had a significant impact on 
apoptosis resistance of the metastasizing subline and a 
minor impact on the low apoptosis resistance of the 
EpCAM cDNA transfected non-metastasizing subline. 
Also, methyl-ß-cyclodextrin treatment strongly interfered 
with cell-cell adhesion of the metastasizing subline, but 
rather strengthened cell-cell adhesion and agglomeration of 
the EpCAM cDNA transfected non-metastasizing subline 
(6). Finally, the TEM located EpCAM-CO-029 complex 
contained an additional, phosphorylated 20kDa protein that 
was identified as claudin-7 (6,7). Methyl-ß-cyclodextrin 
treatment did not destroy the CO-029-EpCAM-claudin-7 
complex, but prevented claudin-7 phosphorylation (6,7). 
Because methyl-ß-cyclodextrin treatment of the 
metastasizing subline was accompanied by loss of cell-cell 
adhesion and apoptosis resistance, it became tempting to 
speculate that the metastasis promoting activities of 
EpCAM do not only rely on the association between CO-
029, EpCAM and claudin-7, but also on the location of this 
complex in TEM. 

 
6.2. EpCAM and claudin-7 

To support our assumption that a TEM located 
CO-029-EpCAM-claudin-7 complex is promoting tumor 
progression, we performed a screening of primary 
colorectal cancer tissue and liver metastasis derived 
thereof. This study confirmed co-expression of CO-029, 
EpCAM and claudin-7 as well as of CD44 variant isoforms 
in a high percentage the primary tumors and liver 
metastasis. Adjacent normal liver tissue does neither 
express CO-029 nor EpCAM. In the colonic mucosa 
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EpCAM and claudin-7 expression was low and distinct 
CO-029 expression was only seen in 3%. Co-
immunoprecipitation of EpCAM and CO-029 in selected 
tissue samples has been noted in all instances, provided the 
cells expressed, in addition, claudin-7 (59). The EpCAM – 
claudin-7 association is not restriced to tumor tissue, but is 
also observed in normal epithelium of the gastointestinal 
tract, albeit in the non-transformed tissue comparably few 
EpCAM molecules are associated with claudin-7. Notably, 
too, even in the polarized normal mucosa, co-localization 
of EpCAM with claudin-7 is found in the basolateral region 
(7), which is in line with several reports on the localization 
of claudin-7 outside of tigh junctions (222-224). With 
respect to the CO-029-EpCAM-claudin-7 association in 
primary cancer and metastatic tissue it is important to note 
that neither CO-029, nor EpCAM nor claudin-7 expression 
by itself appeared to be of prognostic relevance. However, 
co-expression and complex formation of the molecules was 
accompanied by a significantly decreased disease free 
survival (59). Thus, at least, in colorectal carcinoma, 
EpCAM and claudin-7 are found in association with the 
tetraspanins CD9 and/or CO-029 in TEM and promote 
tumor progression (8,59). 

 
What is the contribution of claudin-7 to the 

formation of the complex and the functional activity of 
EpCAM within the complex? These questions are not yet 
answered. However, ongoing studies in the above 
mentioned metastasizing rat pancreatic adenocarcinoma 
line revealed the following: i. Claudin-7 is essentially 
required for the TEM localization and the tetraspanin-
association of EpCAM. In cell lines overexpressing 
EpCAM and CO-029, but missing claudin-7 expression, 
EpCAM does not associated with CO-029 and is not 
located in TEM, while claudin-7 associates with CO-029 
even in the absence of EpCAM and is, by not yet defined 
mechanisms, recruited into TEM (59). Thus, it is the 
claudin-7 that is essentially required for complex formation 
and TEM localization. ii. TEM-associated claudin-7 is 
serine phosphorylated, that is not the case for claudin-7 
located outside of TEM (6,7). 

 
The finding that EpCAM associates with a tight 

junction protein and that the complex of these molecules is 
recruited into TEM was unexpected, but suggested that the 
EpCAM-claudin-7 complex might exert different functions 
besides cell-cell adhesion. In fact, there is evidence that the 
association of claudin-7 with EpCAM prevents EpCAM 
oligomerization. By transfection of stably EpCAM 
expressing HEK293 cells with increasing amounts of 
claudin-7 cDNA, decreasing amounts of EpCAM 
oligomers were detected and at about a 1:1 ratio of claudin-
7 to EpCAM, only monomeric EpCAM was detected by 
Western blot (unpublished finding). Thus, one could 
speculate that complex formation of EpCAM with claudin-
7 promotes tumor progression by hindering EpCAM 
oligomerization, that is essentially required for EpCAM-
mediated cell-cell adhesion. However, this loss of function 
may also be accompanied by a gain of function(s). 

 
The supposed gain of function by the association 

between EpCAM and claudin-7 essentially depends on the 

co-localization of the EpCAM-claudin-7 complex with 
tetraspanins in TEM and the claudin-7 phosphorylation, 
which is only observed in the TEM localized complex 
(6,7). This assumption is supported by the above outlined 
findings that destruction of TEM by partial cholesterol 
depletion with methyl-ß-cyclodextrin suffices for strongly 
decreased cell-cell and cell matrix adhesion and a striking 
loss in apoptosis resistance (6). The latter observation also 
accounts for human colorectal cancer lines. Irrespective of 
whether either EpCAM or claudin-7 expression was 
significantly downregulated by transient siRNA 
transfection, resistance towards cisplation and γ-irradiation 
becomes strongly decreased (59). 

 
7. PERSPECTIVE 

 
Three lines of evidence suggest that the basic 

feature of EpCAM as a homophilic cell-cell adhesion 
molecule on most epithelial cells may not be of relevance 
for its tumor growth promoting activity. First, antibody-
mediated EpCAM cross-linking triggers proteolytic 
enzymes, such that not only the extracellular part of 
EpCAM becomes cleaved, but concomitantly part of the 
cytoplasmic tail. This is important, because the deliberated 
cytoplasmic tail of EpCAM, EpIC, associates with 
additional transcription factors, which move to the nucleus, 
where the complex promotes upregulation of c-myc as well 
as cyclin A and E (4, M. Munz and O. Gires, personal 
communication). Second, EpCAM has a strong association 
for claudin-7, with which it forms a direct protein-protein 
complex (7). Claudin-7-associated EpCAM can no longer 
form tetramers (unpublished finding). Thus, the cell-cell 
adhesion activity of the molecule is ablated. Third, via its 
association with claudin-7, EpCAM becomes recruited into 
specialized membrane microdomains, which are rich in 
tetraspanins (6,7) and, accordingly, are termed TEM (9). 
TEM, similar to rafts, are rich in glycolipids and long un-
satturated fatty acids and serve as a scaffold for signal 
transducing molecules, which mostly attach to the inner 
side of the membrane via palmitoylation and or 
myristoylation (8,80). The tetraspanins themselves harbour 
additional transmembrane molecules, mostly integrins 
(9,75,76,81), but also G-protein coupled receptors (128) 
and peptidases, like CD13 (C.Claas, personal communica-
tion) and CD26, TADG-15/matriptase and ADAM10 (265), 
that could well contribute to the digestion of EpCAM after 
it has been recruited via claudin-7. It will be of special 
interest to determine whether EpCAM could be a substrate 
of any of these membrane proteases and whether 
tetraspanins could regulate such a cleavage thus yielding 
EpICS. 

 
Thus, the homophilic cell-cell adhesion molecule 

EpCAM has found new partners within the membrane and 
on its way from the membrane into the nucleus, which 
convert the cell-cell adhesion molecule towards a signal 
transducing and transcription initiating unit. We propose 
that the relocation of claudin-7 from tigh junctions to the 
basolateral region may be one of the very early events, that 
accounts for loss of cell-cell adhesion. The EpCAM–
claudin-7 complex may then become recruited towards 
TEM, where tetraspanin-associated peptidases arrange the 
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release of EpIC. Concomitantly, claudin-7 may become 
phosphorylated by tetraspanin-associated PKC that could 
be involved in activation of the PI3K/Akt survival pathway. 
The initiating trigger for the EpCAM-claudin-7 complex 
formation remain to be explored. This also accounts for the 
recruitment of the complex into TEM and the particular 
scaffolding activities that are responsible for the generation 
of EpIC and the activation of anti-apoptotic proteins. 

 
Though knowledge on functional activity of 

EpCAM was scarce for a long time, it still served as a 
valuable target in cancer therapy for the last two decades. 
Recent insights into its involvement in gene transcription as 
well as on its embedding in microdomains, that promote 
signal transduction, will greatly facilitate to elucidate the 
underlying mechanisms. Beyond this, unraveling in a 
comprehensive manner the initiating signals as well as their 
targets, most likely will lay a solid ground for new, highly 
efficient therapeutic concepts. Last, not least, EpCAM has 
been defined as a cancer stem cell marker (44-47) and it is 
well accepted that targeting cancer stem cells provides a 
most  promising therapeutic option. 
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