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1. ABSTRACT

The abundance of simple but functional RNA
sites in random-sequence pools is critical for understanding
emergence of RNA functions in nature and in the laboratory
today. The complexity of a site is typically measured in
terms of information, i.e. the Shannon entropy of the
positions in a multiple sequence alignment. However, this
calculation can be incorrect by many orders of magnitude.
Here we compare several methods for estimating the
abundance of RNA active-site patterns in the context of in
vitro selection (SELEX), highlighting the strengths and
weaknesses of each. We include in these methods a new
approach that yields confidence bounds for the exact
probability of finding specific kinds of RNA active sites.
We show that all of the methods that take modularity into
account provide far more accurate estimates of this
probability than the informational methods, and that fast
approximate methods are suitable for a wide range of RNA
motifs.

2. INTRODUCTION

Our understanding of the evolution of functions
in DNA, RNA and protein sequences rests critically on the
probability of finding sequences with specific functions by
chance in collections of random sequences. Of particular
importance is the probability of calculating the abundance
of RNA active sites in short sequences, as longer sequences
become increasingly improbable in primitive conditions.
Although we have very good models for understanding
evolution of a set of related, or homologous, sequences
from a common ancestor according to Markov models of
evolution (1), our understanding of the probability of
sequences arising independently in different groups of
organisms is far more limited. In order to fully understand
the evolutionary processes leading to a set of functional
sequences, whether produced by natural selection over
billions of years, or by artificial selection in a few weeks in
the laboratory, we must develop methods for assessing
whether it is more probable that a given collection of
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sequences arose once (and it was passed on with
modifications through successive generations), or arose
many times. This problem is especially important in RNA,
which is a model for molecular evolution in the laboratory
and which may have preceded both DNA and protein in an
‘RNA World’ stage of evolution, in which RNA acted both
as catalyst and genetic material (2).

The last 25 years have brought a revolution in
RNA biology, with the recognition that RNA can play
important catalytic and regulatory roles in the cell rather
than just being a passive messenger. Of particular
importance is a laboratory technique called SELEX, or in
vitro selection, in which random-sequence RNA libraries
are synthesized and screened for various properties (3-5).
SELEX has produced RNAs that can perform many
functions relevant to the origin of modern metabolism: there
are dozens of examples, including amino acid binding
(6-12), nucleotide synthesis (13), and self-aminoacylation
(14, 15). Artificially selected RNAs can also bear striking
resemblance to natural systems. For example, an RNA
selected to bind a transition state analog of the peptidyl
transfer reaction contains a conserved 8-base sequence that
is identical to a conserved 8-base sequence in the ribosome
at the site that naturally performs this reaction in all cells
during translation (16, 17), and artificially selected RNAs
that bind amino acids recapture properties of the canonical
genetic code (18-20).

One striking feature of both naturally and
artificially selected RNAs is that they are highly modular
(21, 22). In other words, they tend to consist of short
conserved pieces of the active site (the ‘modules’) that are
separated by essentially random regions of sequence (the
‘spacer’). Modular RNAs consist of specific sequence
motifs in the context of specific secondary structure
elements. For example, the minimal tryptophan-binding site
consists of a CYA opposite a GAC in an internal loop
flanked by helices (12), i.e. two modules each consisting of
three conserved bases and flanked by several base pairs on
either side. However, essentially any sequence can occur
between the two halves of the helices. This modularity is
important because both natural and artificial selection
(SELEX) recover motifs of this form: modular motifs have
a combinatorial advantage over single-module motifs, so
should be isolated more often if they are stable. Another
important feature of RNA motifs is that they are held
together by base pairing, leading to correlations in the
sequence (e.g. in a base-paired region, if we have a C at one
location, we must have a G at the location that pairs with it).

It is important to calculate the probability of
finding a given RNA in a random-sequence background for
several reasons. First, we can estimate how likely a
particular sequence would be observed in a SELEX
experiment, and perhaps tune random-sequence pools to
maximize the probability of occurrence of interesting motifs
(23-25). Second, we have very good methods for estimating
the probability of obtaining a set of sequences given an
evolutionary model (26-29), but the probability of obtaining
the sequences through multiple origins (30) is not well
understood. For example, we know for certain that the

hammerhead ribozyme has evolved at least three times: at
least once in nature, and at least twice in artificial
selections in the Breaker and Szostak lab (31, 32).
Improving our estimates of the probabilities of modular
RNA sites can help us understand whether different RNAs
that contain the same motif most likely had a common
ancestor or evolved independently. Third, genomewide
searches for motifs, such as those performed by the Infernal
package (33) and used in the Rfam database (34) return
many matches, and we thus need to calculate the statistical
significance of a given motif to rule out the null hypothesis
that it evolved by chance. Fourth, understanding the regions
of nucleotide composition that make RNA functions most
likely may provide clues about which genomes are most
likely to evolve which functions, and about the chemical
conditions under which the RNA world might have
emerged (35). For example, we might be able to address
unsolved problems such as why some bacteria use RNA for
regulation where others use proteins. Perhaps genome
composition, which varies over a huge range, favors
formation of riboswitches in species that have the right
composition. Similar considerations might apply to the use
of the hairpin, hammerhead, and HDV self-cleaving motifs,
which, along with many other self-cleaving RNAs, perform
similar functions (32).

Several methods have been proposed for
calculating the probability of finding a correlated modular
motif (referred to as ‘the motif’ in the text below). We note
that these methods cover only the first step in calculating
the probability of obtaining an active molecule: the second
step is to calculate the probability of correct folding given
that the sequence elements required for a motif are present,
as in (25), and the final step is to calculate the probability
that the molecule is functional given that it contains the
sequence elements required for activity and is predicted to
fold correctly, which can be achieved by laboratory
experiments. However, because these probabilities are
multiplied together to get the overall probability of
function, errors in the first step are propagated throughout
the calculation. These methods for calculating the first step,
the probability of obtaining the correct sequence elements,
are:

1. Information content, as used in e.g. (36, 37): in
this method, a multiple sequence alignment is constructed,
and examined for conserved positions, which contain
the same nucleotides at corresponding sites in
different sequences. The information content in bits is
given by Shannon’s formula (38): HI  , where

ii ppH 2log , summed across the nucleotides in the

sequence. The intuition here is that in a random RNA
sequence, there are 4 possible states at each position, so if
the bases are equiprobable there is a reduction of 2 bits of
uncertainty if only one of the four choices is acceptable
(Hbefore = −4 0.25 log2 0.25 = −40.25 −2 = 2, Hafter
= 0, so the difference is 2 bits). Thus we have 2 bits of
information per conserved nucleotide, and 2 bits of
information per conserved base pair (or 1.47 bits of
information if wobble pairing is allowed, because then the
final uncertainty is 6/16 rather then 4/16 to account for the
G-U and U-G pairs: the standard Watson-Crick pairs are A-
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U, U-A, C-G, and G-C). Although the simplicity of this
method is appealing, it assumes that all of the sequences are
drawn from a single starting sequence, with the conserved
sites appearing at specific positions within this reference
frame. Converting bits to probabilities, this model implies
that each conserved nucleotide or Watson-Crick base pair
multiplies the probability of occurrence by 1/4 (for Watson-
Crick pairs, 4/16 = 0.25 of the possible choices of two
nucleotides are valid pairs), and that each conserved
wobble pair multiplies the probability of occurrence of
the motif by 6/16. The appeal of the Shannon formula
arises from its simplici ty, and from the fact that the
information content of a motif is independent of the
number of modules that it is broken into and of the
length of the sequence in which it is embedded.
However, as we shal l see, these simplifying assu mptions
lead to substantial inaccuracies in calculation as indeed
they are independent of the number of spacers. This
method also assumes that the four bases are
equiprobable, which is often reasonable in SELEX
because the incorporat ion rates can be contro lled during
chemical synthesis, but is not reasonable in genomes
where we know the background base frequencies vary
widely. This method also assumes that there are no
correlations among successive positions in the sequence,
i.e. that the base at each posit ion does not affect the
frequencies of the bases that follow.

2. Poisson approximation across sites (22) : in
this method, we calculate the probability of observing
the motif in a single trial (i.e. of finding it in a single
random sequence of the precise length of the motif). We
then calculate the number of ways to place the modules
of the motif within the longer sequence, and use the
Poisson formula to calculate the probability of zero
occurrences in the number of ‘trials’ corresponding to
the sequence. The complement of the probability of the
zero class is the probability that the motif occurred at
least once. This method assumes that each possible
match location is independent, and that a match is
extremely unlikely, and essentially calculates the
probability of a match anywhere in the sequence.
Although the assumption of independence may lead to
reasonable approximations in relatively long sequences
(as compared to the original motif), modulari ty makes
matches much more likely, thus violating one of the key
assumptions justifying the Poisson approximation (39).
Indeed, we shal l see that highly modular motifs can lead
to less accurate estimates on the probability of finding
the motif when the probability of occurrence of the
individuals are large. Like the information method, this
method assumes that there are no correlations among
successive positions in the sequence.

3. State machine/transition matrix (40): unlike the
Poisson approximation, this method provides an exact way
of calculating the probability of occurrence of a modular
motif, although it is very expensive computationally. In this
method, we embed the random sequences into a
deterministic finite automaton (finite state machine) that
detects matches with each possible pattern that could lead to
the occurrence of the motif in the sequence (see Methods

below for additional details). When we embed an i.i.d.
(independent and identically distributed) random sequence
of RNA bases into the automaton, the resulting stochastic
process is a first-order homogeneous Markov chain on the
states of the automaton. The probability that the motif is
present in the random-sequence is then equivalent to the
probability that the Markov chain is absorbed into a state
indicative of a match with the motif. This probability can
be calculated in two ways. First, the probability transition
matrix of the chain, which gives the probability of moving
from each state to each other state, may be exponentiated to
the length of the sequence, and the entries associated with
matches with the motif may be summed up to determine the
probability of a match. Second, a network flow approach,
in which we simulate each additional character by visiting
each state that can be reached in a given number of
characters, multiplying the probability of that state by the
probability of each of the possible characters, and adding
the result to the probability of the state that is reached by
adding a character. In practice, both methods give very
similar results when both can be implemented, but differ
substantial ly in run time and computer memory usage.
As we shall see, the automata-based approach becomes
computationally infeasible in both memory and CPU
time with very small numbers of correlations (i.e. base
pairs). The most complex case is when correl ations
occur between modules (i.e. the modules are base paired
to one another), which forces us to consider the product
of the automata associated with each of the unique and
simpler patterns that build up the motif (in our case, a
concatenation of Aho-Cor asick automata (41)). We omit
results from the network flow approach in what follows
because the method is more heurist ic than mathematical,
and does not provide substantially different results from the
inclusion-exclusion approach below (on which we can
place more precise bounds).

4. Inclusion-exclusion approach: this method
can be used both for exact calculat ions of the probability
of occurrence of a modular motif (for small cases), or to
give bounds for this probability (for larger cases). In this
method, we also use product automata as above.
However, we aim for bounds of the same order of
magnitude rather than an exact calculation of the
probability of observing the motif. Using the inclusion -
exclusion formula (42), we can calculate the probability
of occurrence of the motif in a random-sequence by
determining the probability of match -ing individual,
pairwise, three-way, etc. combinat ions of the unique
patterns that build up the motif. Combining this
probability as P(individual)−P(pairwise)+P(three-way)-...
we can recover the exact probability of matching the motif.
However, according to Bonferroni’s inequality (42), this
exact probability is bounded by any two successive partial
sums occurring in the inclusion-exclusion formula. In
particular, if for a small k, the first k terms in the inclusion-
exclusion formula provide a tight estimate of the
probability, the associated bounds in the Bonferroni’s
inequality will be of the same order, and we only need
to consider the product of at most k automata to obtain a
tight approximation for the probability of matching the
motif. When there are too many combinat ions of the k
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Figure 1. Auxiliary deterministic finite automata needed for detecting at least one match with the correlated modular motif
(NA 1CN) in a sequence of RNA nucleotides. Top-left, Aho-Corasick automaton that recognizes any match with the keyword
GA in an RNA sequence. State 0: is the initial state. Visits to state 2:GA correspond to matches with the keyword GA within the
RNA sequence. Top-right, automaton that recognizes the motif GA 1CC i.e. the motif (NA 1CN) when the correlation is
replaced with the pair GC. State 0: is again the initial state. Up to minor modifications states 0:, 1:G and 2:A correspond the the
automaton on the left, whereas states 3:, 4:C and 5:CC correspond to the states of the Aho-Corasick automaton that detects
matches with the keyword CC. State 2:A is visited for the first time when GA is first encountered in the RNA sequence.
Transitions from state 2:A to state 3: represent the unconstrained region of at least one nucleotide in the motif GA 1CC. State
5:CC may only be visited from state 4:C once the keyword CC is detected. Absorption into this state guarantees a match with the
uncorrelated motif GA 1CC. Bottom, product automaton for detecting at least one match with the correlated modular motif

(NA 1CN) when the correlation N is restricted to the value A or C. States are ordered pairs of the form (v1,v2), with 1v a state in

the automaton that detects at least one match with the motif AA 1CU, and 2v a state in the automaton that detects at least one

match with the motif CA 1CG. States labeled with the prefixes 15:, 20:, 21:, 24: and 25: guarantee a match with AA 1CU

without a match with CA 1CG. States labeled with the prefixes 18:, 19:, 22:, 23: and 27: guarantee a match with CA 1CG but

without a match with AA 1CU. The state labeled with the prefix 26: guarantees a match with both AA 1CU and CA 1CG. The

automaton that detects at least one match with the motif (NA 1CN) would require the product of four automata and it is not
displayed in here due to limitations of space. All the plots were obtained using the software Graphviz, available at graphviz.org.

unique patterns that build up the motif, we can obtain
asymptotic confidence intervals for the terms appearing in
Bonferroni’s inequality via Monte Carlo simulation. As we
shall see, this new method provides accurate estimates even
for highly modular motifs for which the use of the Poisson

approximation is badly justified and for which the state
machine/transition matrix approach is completely
impractical. One important feature of this approach is that it
can be extended to sequences with memory (i.e.
correlations among successive positions). These correlat-
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ions have been observed in genomes, and are widely used
for gene-finding (43) .

In this paper, we test the accuracy of these
different methods on motifs of different length and
composition in different random-sequence backgrounds.

3. METHODS

We used an exact and a stochastic version of the
inclusion-exclusion method to either estimate, or to find a
100(1−)% asymptotic confidence interval for the
probability p of observing a given motif in a random
sequence of l RNA bases (nucleotides) produced in a
SELEX experiment. We typically consider =0.01, or
=0.05.

The range of motifs considered here cover many
of the small motifs routinely found in SELEX. The motifs
are correlated (i.e. they contain base pairs), are composed of
either one, two or three modules, and have constant regions
of various lengths. For example, the motif
(N(NACGUACGUAC 1GU 1AN)N) consists of three

modules, two correlations (base pairs), and a constant
region totaling thirteen nucleotides. Modules are separated
by unconstrained regions. The notation 1 refers to an
unconstrained region of at least one nucleotide. The
modules of this motif are (N(NACGUACGUAC, GU and
AN)N), where the N’s represent bases that may be any of
the four nucleotides. The two bases directly within a pair of
parentheses are correlated and must pair with each other.

When the motif consists of n correlations, the
probability p corresponds to the probability that either of

nm 4 simpler motifs (i.e. uncorrelated motifs) is present
in the random sequence. In the example discussed above,
n=2, m=16 and one of the uncorrelated motifs is
CAACGUACGUAC 1GU 1AUG, in which the outer
correlation was replaced by the pair of bases CG and the
inner by AU.

Each of the uncorrelated motifs may be identified
in a non-random sequence of nucleotides using a
deterministic finite automaton (44). We construct such an
automaton by concatenating the Aho-Corasick automata
(41) associated with each of the constant regions. Except
for the automaton associated with the last constant region,
all transitions from the terminal state of an Aho-Corasick
automaton are redefined so as to lead to the initial state of
the next. The terminal state of the Aho-Corasick automaton
associated with the last constant region is, however, reset to
be an absorbent state (an absorbent state is a state that
always returns to itself when additional characters are fed
into the automaton). The resulting automaton will have as
many as #(nucleotides in the constant region)+#(modules)
number of states. (See Figure 1 for a more detailed
explanation of these constructions for a motif consisting of
two modules, one correlation and a constant region of two
nucleotides.)

When m is of a manageable size we may consider the
product of the automata associated with each of the
uncorrelated motifs to determine p directly. The states of
this automaton are ordered m-tuples of the form

),,( 1 mvv  , where iv is always a state in the automaton
associated with the i-th uncorrelated motif. (In principle this
automaton may have at most {#(nucleotides in the constant
region)+#(modules) m} states. In many situations of
interest, this upper-bound is exaggerated because not all
states of the form ),,( 1 mvv  may be reached from the
initial state of the product automaton i.e. the state

),,( 1 mqq  , with iq the initial state of the automaton

associated with the i-th uncorrelated motif.) By embedding
a random sequence of i.i.d. nucleotides into this product
automaton we are guaranteed to obtain a first-order
homogeneous Markov chain (40). Indeed if p denotes the

proportion of base },,,{ UGCA used in the SELEX
experiment then the probability transition from a state 1s

into a state 2s is  p , where an index is accounted

for in this summation if and only if there is a transition from
state 1s into state 2s labeled with the character . If P
denotes the probability transition matrix of the resulting
Markov chain and ),( 21 ssP l denotes the entry associated

with row 1s and column 2s of the power matrix lP then

),( sqPp
s

l ,

where q is the initial state of the product automaton, and the
indices s are restricted to be those states of the form

),,( 1 mvv  where at least one of the entries iv is a terminal
state.

Unfortunately, in most situations of interest, the
product automata described above do not scale well. It is
for these cases that an estimate of p rather than an exact
formula may be more suitable. If we denote by iE the

event that the i-th of the uncorrelated motifs is present in a
random sequence of length l, it follows from the inclusion-
exclusion formula (42) that

mSSSp  21 , (1)
where

);(Prob);(Prob 21 ji
ji

i
i

EESES 




.);(Prob3 etcEEES kji
kji






In general, if |I| denotes the number of indices in
the set I we have that










  i
Ii

k
k ES 

 k|I:|m},{1,I

1 Prob)1( .

To obtain mS we need to compute the probability
that all the uncorrelated motifs are present in the random
sequence of nucleotides. To the best of our knowledge this
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can only be attempted by means of the product automaton
described in the above paragraph. In particular, when this
automaton does not scale properly, the use of formula (1) is
also impractical.

Observe that the summation 1S consists of m

terms, 2S of m(m−1)/2 terms, and 3S of m(m−1)(m−2)/6

terms. In general kS will consist of about !/ kmk terms
when m is large. Furthermore, if the first 2D sums in (1)
may be computed exactly, we may use Bonferroni’s
inequality (42) to obtain that







12

1

2

1

D

k
k

D

k
k SpS .

We will refer to the above as the Bonferroni’s
inequality of depth D. The above inequality is useful when
the lower- and the upper-bound are of the same order.
Unfortunately, it is not in general true that the larger D, the
tighter are the two bounds above. Because of this, the
inequality











12

1
,,1

2

1
,,1

minmax
d

k
k

Dd

d

k
k

Dd
SpS


(2)

provides the best bounds for p when all the sums involved
in the Bonferroni’s inequality up to depth D may be
computed exactly.

To compute the sum kS we need, for each poss-
ible combination of k uncorrelated motifs of the m motifs,
to compute the probability that all the k uncorrelated motifs
are present in the random sequence of l nucleotides. This
can be performed similarly to the method discussed earlier,
but considering only the product of the automata associated
with the k uncorrelated motifs. The resulting automaton will
have a single absorbing state. Furthermore, the embedding
of the random sequence into this automaton is again
guaranteed to be a first-order homogeneous Markov chain
(40). The probability that all the k uncorrelated motifs are
present in a random sequence of length l is equal to the
probability that the Markov chain is absorbed within the
first l steps, when started at the initial state. This probability
can be computed as ),( tqP l , where q is the initial state of
the product automaton and t its unique absorbent state.

For relatively small values of k each of the
probabilities appearing in kS may be computed exactly
using the method described above. This is because the
automata associated with the uncorrelated motifs scales
linearly with the total length of the constrained regions and
the number of modules (which are quantities independent of
the number of correlations!). The only issue here is that
when m is large it may take an infeasible amount of time to
determine exactly all of the probabilities appearing in Sk. In
this situation it is advisable to use Monte Carlo simulation

to find an estimate kŜ of kS for the first few values of k.

Because, after the proper re-scaling, )ˆ( kk SS  is

approximately a standard Gaussian distribution, we may
obtain asymptotic confidence intervals and/or asymptotic
upper- or lower-confidence bounds for Sk. For example, by
considering the Bonferroni inequalities up to depth one and
two it follows from (2) that

},min{)( 321121 SSSSpSS  (3)

We can find a 100(1−)% asymptotic confidence
interval for p using the following procedure:

(a) Independently determine a 4 1 
asymptotic lower-confidence bound 1L for 1S , and also a
4 1  asymptotic lower-confidence bound 2L for 2S .

Then )( 21 LL  is at least a 2 1  asymptotic lower-

confidence bound for )( 21 SS  , i.e., the event

)()( 2121 SSLL  has approximately a probability of at

least 2 1  .

(b) Independently, and following the same logic

as above, determine a 4 1  asymptotic upper-confidence

bound 1U for 1S , and also a 4 1  asymptotic upper-

confidence bound 3U for )( 321 SSS  . Then

},min{ 31 UU is a 2 1  asymptotic upper-confidence

bound for the },min{ 3211 SSSS  , i.e., the event

},min{},min{ 313211 UUSSSS  has approximately a

probability of at least 2 1  .

(c) Due to (3), it follows from (a) and (b) that the
event },min{)( 3121 UUpLL  will occur with a
probability of approximately 1−.

A similar approach can be implemented using the more
robust inequality

},min{},max{ 3211432121 SSSSpSSSSSS  (4)

One key consideration for using Monte Carlo
simulation to estimate the bounds in (3) or (4) is that only a
few of the probabilities appearing in kS may be needed to
obtain good estimates. For relatively small values of k this
is time efficient because the computation of each of the
probabilities appearing in kS requires low time and low
memory complexity. Instead if we were to consider all of
the about !/ kmk probabilities appearing in kS then we

would obtain an exact estimate for kS at the expense of

extensive computation.

All methods described here, as well as the
previously published methods outlined in the introduction,
were implemented in Python.
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4. RESULTS

In almost all cases, the automata-based
methods agreed very well with one ano ther and with
the Poisson approximation, and disagreed greatly
from the information-based method. These
discrepancies increased as the mod-ulari ty of the
sequences increased. Figure 2 shows results for the
single-module case on the 2-let ter alphabet. All three
methods that take modulari ty into account agree
almost exact ly (the lines are super imposed) , but the
information-based method (blue line) is differen t by
about an order of magnitude. As expected, the
information method does not vary with the length of
the spacer, whereas all other methods produce
probabi lit ies that increase rap idly as the amount of
spacer increases. The run-time performances of the
Poisson and information con ten t methods were
comparable and were much faster than the automata-
based methods, ranging from 2 to 9 orders of
magnitude faster in the range covered by the
experiments shown here. (The computat ion time for
the Poisson and information methods is essent ial ly
constant at less than a thousandth of a second for this
range of sizes, whereas the computat ion time for the
automata-based methods rap idly increased to several
ten ths of a second (for variat ion in the constant
region or spacer, with two base pai rs) or severa l
minutes (for increasing the cor relations) as the
problem sizes increased. Note that the approximate
inclusion-exclusion approach levels off because only
a fixed number of samples is evaluated each time, no
matter how many possible combinat ions there are .)
Confidence intervals are not shown on these plots
because they are so tight as to be undetectable: the
average error was much less than 1% of the est imated
value, and the maximum error we observed in these
calculations was 3.5%. In cases where there were
fewer than 16 possibilit ies (4 cor relations for the 2-
character alphabet, 2 cor relations for the 4-character
alphabet) , the confidence intervals were less than the
machine precision.

When the results are extended to more modular
sequences, the information content method continues to
differ greatly from all other methods, and the
discrepancy increases as the number of modules
increases from 1 to 3. Figure 3 shows probability
estimates for 2 and 3 modules (parameter sett ings
otherwise the same as in Figure 2). Run- time
performance was comparable to the 1-module case (data
not shown). The Poisson approximation tends to
overestimate the probability by about a factor of 2 in
cases where the probability is high or the number of
correlat ions is large, consistent with the violation of the
independence of tria ls assumption and rari ty of matches
that the approximation makes (recall that the transition
matrix method produces probabilities that are exact to
within machine precision).

For the 4 -character alphabet (simulating
RNA directly), even two cor relations increase the
dimensional ity of the problem so much that it is
impossib le to calculate the probabi lit ies using the
exact method on machines with 2−8 GB of memory.
Figure 4 shows results for the other methods
considering a single module. In these cases, the
Poisson and approximate inclusion -exclusion method
agree very well with one ano ther. In al l cases where
the probabi lity of each module within the motif is
below 0.01 in a single trial, the Poisson gives
essent ial ly quant ita tive agreement with the inclusion -

exclusion approach ( 9999.02 r over 13 orders of
magnitude, for both equal nucleot ide frequenc ies as
shown in the plot and for unequal nucleotide
frequenc ies).

5. DISCUSSION

The automata -based approaches in princip le
provide an exact method of calculating the probabi lity
of observing a given modular pat tern in a longer
sequence, and hence the probabi lity of observing a
given RNA motif in random-sequence pools. Because
the exact calculations scale poorly from a 2- let ter
alphabet to the 4- let ter RNA alphabet, however, we
must use approximate techniques . The approach to
calculating confidence intervals that we describe
here, which to our knowledge has not previously been
app lied to nucle ic acid pat terns, allows us to calculate
for the first time the precise amount of error we
expect these approximate calculations to introduce.
The results demonstrate that in most cases, except
when the probabi lity of individual modules is large,
the Poisson approximation provides almost
quant ita tive agreement with the true probabi lity. In
con trast, the information approach provides est imates
that ar e many orders of magnitude differen t from the
true probabi lit ies .

These results demonstrate that the Poisson
approximation should always be used in cases where the
individual modules are rare, as it is at least as fast to
calculate as the information-based method and provides
much more accurate results. However, in cases where
there are many modules, and where some of those
modules are extremely short or degenerate, the
approximate automata-based approach described here
can be used to calculate the probabilities almost exactly
and to place confidence intervals that set bounds on the
region within which the probabilities must lie as
described above. These calculations depend solely on a
precise definition of the degeneracy of the motif such as
could be obtained with a few dozen to a few hundred
unique sequences (a number typically collected in
laboratory experiments), although practical
considerat ions such as amplification bias may limit the
agreement of these calculations with experimental
results.



Abundance of the simplest RNA active sites

6067

Figure 2. Effects of varying the length of the constant region, amount of spacer, and number of correlations using the 2-letter
alphabet in the case of a single module. (a) Probability of motif against length of constant region. (b) Run time against length of
constant region. (c) Probability of motif against amount of spacer. (d) Run time against amount of spacer. (e) Probability against
number of correlations. (f) Run time against number of correlations (note that exact inclusion-exclusion could not be calculated
for >3 correlations due to time constraints). Standard settings were 1 correlation, 1 base per module, and 20 bases of spacer.
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Figure 3. Effects of varying the length of the constant region, amount of spacer, and number of correlations using the 2-letter
alphabet on the probability of finding a two-module or a three-module motif. (a) Two modules, varying length of constant region.
(b) Three modules, varying length of constant region. (c) Two modules, varying length of spacers. (d) Three modules, varying
length of spacers. (e) Two modules, varying number of correlations. (f) Three modules, varying number of correlations. Standard
settings were 1 correlation, 1 base per module, and 20 bases of spacer. Note that the black and green lines for the two inclusion-
exclusion methods are in identical locations on most plots, and are superimposed.
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Figure 4. Effects of varying the length of the constant region, amount of spacer, and number of correlations using the 4-letter
alphabet in the case of a single module. (a) Probability of motif against length of constant region. (b) Run time against length of
constant region. (c) Probability of motif against amount of spacer. (d) Run time against amount of spacer. (e) Probability against
number of correlations. (f) Run time against number of correlations. Standard settings were 1 correlation, 1 base per module, and
20 bases of spacer.



[Frontiers in Bioscience 13, 6060-6071, May 1, 2008]

6070

These calculations have direct pragmatic
implications for studies of RNA act ive sites. In
previous work (21, 22, 25), we demonstrated that the
modulari ty of motifs was extremely importan t for
determining their frequency of occurrence (using the
Poisson and related approaches) . In later work, we
demonstrated that the differen t modulari ty of two
RNA act ive sites for binding iso leucine switched
orders depend ing on the length of the random region,
in accordance with the Poisson calculations (45) . The
present work demonstrates that these conclusions
based on the Poisson approximation are almost cer tain
to be within a few percent of the true probabi lit ies ,
and that the methodology can be app lied with
confidence to compute the probabi lit ies of a wide
range of RNA act ive sit es in differen t random-
sequence pools.

The information approach to determining the
complexity of RNA active sites should be discouraged, as
the alignment assumption introduces a subtle but profound
bias that results in estimates of the probability that are
incorrect by orders of magnitude. Worse, the failure of the
information-based approach to account for the number of
modules into which the motif is divided can result in
inversion of the relative probabilities of two motifs, and
therefore incorrectly lead us to suspect that selection for or
against one of the motifs is at work when the observed
abundances are consistent with the true probabilities but not
with the information calculations. Even in cases in which
the Poisson approximation was inaccurate, we found that
the only case where the information method outperformed
the Poisson approximation was when the probability of
finding the motif was very high and there was only one
position for it in the longer sequence.

As our previous work (21, 22) showed, simple
RNA motifs are extremely abundant, especially in longer
sequences, although the probability of occurrence decreases
rapidly as the length of the constant region and the number
of base pairs increases. Including the paired regions is
essential for estimating the abundance accurately, as per the
cautionary note in (21), so the calculations given in (25) are
to be preferred.

The implications of these results for
understanding RNA motifs are profound. RNA motifs
cannot be assigned intrinsic complexity because the
probability of occurrence of the motif depends on the length
and composition of the sequence in which it is embedded.
Thus, a more modular motif may have a lower probability
of occurrence than a less modular motif in a SELEX
experiment performed with a short random region, but a
higher probabi lity of occurrence when the same
SELEX experiment is repeated with a longer random
region. However, the abi lity to calculate motif
probabi lit ies accurate ly greatly improves our abi lity
to interpret the results of these experiments, and may
pave the way for understanding how many times
par ticular kinds of RNA sites evolved in natu re, and
what RNA abundance complex motifs would first
appear .
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