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1. ABSTRACT  
 

The constant increase in atopic allergy and other 
hypersensitivity reactions has intensified The constant 
increase in atopic allergy and other hypersensitivity 
reactions has intensified the need for successful therapeutic 
approaches. Existing bioinformatic tools for predicting 
allergenic potential are primarily based on sequence 
similarity searches along the entire protein sequence and do 
not address the dual issues of conformational and 
overlapping B-cell epitope recognition sites. In this study, 
we report AllerPred, a computational system that is capable 
of capturing multiple overlapping continuous and 
discontinuous B-cell epitope binding patterns in allergenic 
proteins using SVM as its prediction engine. A novel 
representation of local protein sequence descriptors enables 
the system to model multiple overlapping continuous and 
discontinuous B-cell epitope binding patterns within a 
protein sequence. The model was rigorously trained and 
tested using 669 IUIS allergens and 1237 non-allergens. 
Testing results showed that the area under the receiver 
operating curve (AROC) of SVM models is 0.81 with 76% 
sensitivity at specificity of 76%. This approach consistently 
outperforms existing allergenicity prediction systems using 
a standardized testing dataset of experimentally validated 
allergens and non-allergen sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION  

 
Atopic allergy and other hypersensitivity 

reactions are a major cause of chronic ill health in effluent 
industrial nations, affecting up to 25% of the general 
population (1-3). Allergy is caused by adverse 
immunologic reaction to causative agents known as 
allergens that are otherwise innocuous in nature. The acute 
symptoms of allergy are usually due to the release of 
inflammatory mediators when an allergen cross-links 
immunoglobulin E (IgE) antibodies on mast cells or 
basophils (4). This may be followed by a late-phase 
reaction characterized by the influx of T-cells, eosinophils 
and monocytes (5). Atopic individuals may have one or 
more manifestations of the disease including asthma, 
conjunctivitis, dermatitis (eczema), rhinitis (hay fever) and 
the severe anaphylaxis.  

 
Assessment of potential allergenicity is an 

essential issue whenever new proteins are brought into 
contact with humans, either through food, or other modes 
of exposure. The current joint recommendation by the 
World Health Organization (WHO) and Food and 
Agriculture Organization (FAO) is a scheme based on a 
decision tree which compares local sequence similarity of a 
query protein against known allergenic proteins (6). Two
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Table 1. Groupings of amino acid residues according to assigned features 

Properties Range Amino Acids References 

Charge 
 1.00 
 0.00 
-1.00 

KRH 
ED 
STAGPQNMCLIVFWY 

35 

Hydrophobicity 
 1.80 - 4.50 
-1.60 - 0.40 
-4.00 - 3.20 

CVLIMFA 
GSTWYP  
HQNEDKR 

36 

Polarity 
 0.00 – 0.35 
 1.43 – 3.53 
49.50 – 52.00 

AGILFV 
CMPSTYNQW 
RDHEK 

37 

Polarizability 
 0.00 – 0.14 
 0.15 – 0.23 
 0.22 – 0.41 

GASNDCPTV 
EQILHKM 
FRYW 

38 

Bulkiness 
 3.40 – 9.47 
11.50 – 13.69 
14.28 – 21.67 

GS 
ADNCEH 
RQKTMPYFILVW 

37 

Relative mutability 
18.00 – 20.00 
40.00 – 74.00 
93.00 – 134.00 

WC 
LFYGKPRHV 
QMITAEDSN 

39 

Solvent accessibility 
 0.32 – 0.51 
 0.66 – 0.71 
 0.78 – 0.93 

WAMFLVIC 
TSYHG 
PDEQNKR 

40 

Normalized van der Waals volume 
 0.00 – 2.43 
 2.78 – 4.43 
 4.43 – 8.08 

GASC 
PTDNVEQILM 
HKFRYW 

35 

 
decision criteria have been proposed for assessment of 
allergenic potential: identity of six or more contiguous 
amino acids, or minimum 35% sequence similarity over a 
window of 80 amino acids. Numerous research groups, 
including Fiers et al., Gendel et al., and Stadler and Stadler, 
developed computational tools that scan sequences that 
satisfy these criteria (7-10). While useful in some cases, the 
precision is low for methods solely relying on the six amino 
acid rule (11, 12).  

 
More sophisticated bioinformatic tools for 

detecting motifs among allergenic sequences have been 
recently described. Zorzet and coworkers combined FASTA3 
algorithm with k-Nearest-Neighbour (kNN) classifier to 
assess potential food protein allergenicity (13). Soeria-
Atmadja and colleagues extended the study on a larger set 
of allergens using a combination of kNN classifier, 
Bayesian linear Gaussian classifier and Bayesian quadratic 
Gaussian classifier (2). Li et al. demonstrated the use of 
wavelet transform to predict potential allergens (14). 
Björklund et al. introduced the use of allergen-
representative peptides (ARPs) for detection of potentially 
allergenic proteins (15). Saha and Raghava developed 
hybrid techniques combining probability matrices, IgE 
sequence comparison, ARPs and SVM for screening 
allergenic proteins (16). Although these are excellent 
attempts for assessing the potential allergenicity of protein 
sequences, an effective model to address the dual issues of 
conformational and overlapping B-cell epitope recognition 
sites is still currently lacking (17, 18). 

 
In the present study, we report AllerPred, a 

prediction system for assessment of potential allergenicity 
of protein sequences. A novel data encoding scheme 
enables AllerPred to model multiple overlapping 
continuous and discontinuous B-cell epitope binding 
patterns within a protein sequence. The system is trained 
using official allergens approved by the International Union 
of Immunological Societies (IUIS) Allergen Nomenclature

 
Sub-Committee plus non-allergens commonly found in 
consumed food with no records in existing allergen 
databases, and tested on experimentally validated allergens 
and non-allergen sequences. The effectiveness of the new 
encoding scheme in the representation of B-cell 
immunogenic regions is evaluated. The performance of 
AllerPred in the prediction of allergens from distantly 
related protein families is also assessed. 

 
3. SYSTEM AND METHODS 
 
3.1. Data 

The dataset comprises 1906 (669 allergens and 
1237 non-allergens) sequences. The available dataset is 
divided into training and testing datasets.  

 
The training dataset consists of 631 IUIS 

approved allergens from the ALLERDB database 
(http://research.i2r.a-star.edu.sg/ Templar/DB/Allergen/) 
and 1219 non-allergens derived from 
http://www.slv.se/templates/SLV_Page.aspx?id=9343 
using a debiasing strategy based on sequence similarity 
of protein sequences commonly found in consumed food 
with no records in existing allergen databases (16). The 
percentage of allergens represents ~34% of the testing 
dataset, while non-allergens represent the remaining 66%. 

 
The testing dataset includes 38 IUIS allergens 

and 18 experimentally validated non-allergens extracted 
from the literature (19-29). 

 
3.2. Model 

The support vector machine (SVM) algorithm 
was used as implemented in SVMlight software (30). A 
comprehensive coverage of SVM has been covered in the 
literature (31, 32). In brief, SVMs belong to a class of 
statistical learning methods based on the structural risk 
minimization principle. The inputs to the SVM are binary 
strings or feature vectors representing encoded 
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Figure 1. Schematic diagram of example local patterns currently modeled by AllerPred. Each protein sequence is divided into 10 
subsequences (regions A – J) of varying length or composition to represent multiple overlapping continuous and discontinuous 
epitopes. For example, epitope 1 is represented by region E, epitope 2 is encapsulated by region I, and epitope 3 is effectively 
represented by region B. The feature vector for SVM training is derived by combining all descriptors from all local regions.  

 
representations of amino acid attributes previously reported 
as significant for characterization of protein families. These 
include charge, hydrophobicity, polarity, polarizability, 
bulkiness, relative mutability, solvent accessibility and 
normalized van der Waals volume (Table 1). For each 
property, amino acids were divided into three classes 
according to their physico-chemical properties (33, 34). 
Parameters are trained by mapping input vectors into a high 
dimensional feature space and constructing an optimal 
separating hyperplane in the new feature space. The 
optimal separating hyperplane maximizes the margin 
between the positive and negative datasets and uniquely 
classifies the data into positive and negative examples. The 
trade-off parameter was set to 1000, to allow for imperfect 
separators with margins (30). Different kernel functions 
(linear, polynomial, radial, and sigmoid) were explored to 
optimize the prediction accuracy of the SVM models. 

 
A novel representation of local protein 

descriptors is used to describe the physico-chemical 
properties of proteins. Each protein sequence is divided 
into 10 local regions of varying length and composition to 
describe both continuous and discontinuous epitopes 
(Figure 1). Three descriptors, composition (C), transition 
(T) and distribution (D), are used to represent the 
characteristics of each local region (Figure 2). C represents 
the composition of a given amino acid property by 
measuring the percentage of residues containing a 
particular property along a specified region. T stands for the 
percentage frequency with which a particular property 
changes along the entire region. D characterizes the 
distribution pattern of a particular property along the entire 
region by measuring the location of the first, 25, 50, 75 and 
100% of residues with the property (32, 34). The 
descriptors for all local regions were combined to represent 
the general characteristics of the protein sequence and used 
as a feature vector for input into SVM. 

 
For example, consider a hypothetical protein 

sequence “GGYGYYGGGYYYGG” containing 8 glycines 
and 6 tyrosines (Figure 1). Let region E be a subsequence 

denoting “GGYGYYG”. Let n1 be the number of small 
amino acid residues and n2 be the number of large amino 
acid residues within a specific region. The compositions for 
small residues (G; n1 = 4) and large residues (Y; n2 = 3) in 
region E are n1 / (n1 + n2) × 100.00 = 57.14 and n2 / (n1 + 
n2) × 100.00 = 42.85, respectively. The compositions in the 
other regions can be calculated in a similar manner. The T 
descriptor measures the percent frequency with which there 
is a transition from small to large residues or from large to 
small residues in each region. In region E, there are 4 
transitions between small and large residues with a percent 
frequency (4/6) × 100.00 = 66.67. The transitions for all 
other regions can be calculated in the same way. The 1st, 
25, 50, 75 and 100% of small residues within region E are 
located within the first 1, 1, 2, 4 and 7 residues, 
respectively. The D descriptor for small residues is thus 1/7 
× 100.00 = 14.29, 1/7 x 100.00 = 14.29, 2/7 × 100.00 = 
28.57, 4/7 × 100.00 = 57.14, 7/7 × 100.00 = 100.00. The 
corresponding D descriptor for large residues can be 
calculated similarly. All three descriptors (C, T and D) 
from all local regions (A – J) were calculated, combined, 
and used as feature vector for SVM training. In AllerPred, 
amino acids were divided into three classes for each 
property, and a total of 21 descriptors are used to describe 
each attribute: 3 for C, 3 for T and 15 (3×5) for D (33). 

 
3.3.  Model evaluation 

For each kernel function, 10-fold internal cross-
validation was performed to assess to quality of the model 
(41). In k-fold cross-validation, k random, (approximately) 
equal-sized, disjoint partitions of the sample data are 
constructed, and a given model is trained on (k-1) partitions 
and tested on the excluded partition. The results are 
averaged after k such experiments, and the observed error 
rate may be taken as an estimate of the error rate expected 
upon generalization to new data.  

 
The predictive performance of each model was 

assessed using sensitivity (SE), specificity (SP) and 
receiver operating characteristic (ROC) analysis as 
described previously (41). SE=TP/(TP+FN)  and  
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Figure 2. General scheme for representation of amino acid attributes in each local region. Three descriptors (C, D, T; squares) are 
used to represent each amino acid property (rectangles). All descriptors are combined and used to represent the feature vector of a 
local region.   

 
SP=TN/(TN+FP),  represent percentages of correctly 
predicted allergens and non-allergens, respectively. TP 
(true positives) stands for allergens correctly predicted as 
allergens and TN (true negatives) for non-allergens 
correctly predicted as non-allergens.  FN (false negatives) 
refers to allergens predicted as non-allergens and FP (false 
positives) represents non-allergens predicted as allergens. 
The accuracy of our predictions was assessed by ROC 
analysis where the ROC curve is generated by plotting SE 
as a function of (1-SP) for various classification thresholds. 
The area under the ROC curve (AROC) provides a measure 
of overall prediction accuracy, AROC<70% for poor, 
AROC>80% for good and AROC>90% for excellent 
predictions.  

 
4. RESULTS 

 
The predictive performances of different kernel 

functions (linear, polynomial, radial, and sigmoid) were 
compared. AllerPred is based on the third degree 
polynomial kernel function encoded using descriptors 
derived from amino acid composition. The AROC value is 
0.81. Using amino acid composition as input for training 
and testing, the system can predict allergenic proteins with 
SE of 76.00% and SP of 76.00%.  

 
Although several allergenicity prediction systems 

have been described in the literature, only a limited number 
are available to the public (16). To benchmark our system, 
a standardized testing dataset comprising of 38 IUIS 
allergens and 18 experimentally validated non-allergens 
were used to evaluate three available techniques – wavelet 
transform models (14), SVM models based on global 
descriptors (33, 34) and sequence similarity search based 

on  FAO/WHO Codex alimentarius guidelines (7). Our 
results indicate that, AllerPred, which utilizes local 
sequence descriptors for training SVM models 
(AROC=0.81), consistently outperforms SVM models based 
on global sequence descriptors (AROC=0.71), wavelet 
analysis (AROC=0.69) and FAO/WHO sequence similarity 
search (AROC=0.58) (7). 

 
Collectively, our experiments indicate that we 

have developed a model that can make accurate predictions 
for potential allergenicity of proteins that has been 
validated using IUIS allergens and experimentally validated 
non-allergen sequences. 

 
5. DISCUSSION 

 
It has been well established that ~90% of B-cell 

epitopes are conformational in nature, where distant 
residues are brought into spatial proximity by protein 
folding (17, 42). In addition, the presence of overlapping 
epitopes on the surface of antigens has also been reported 
(18). However, this phenomenon has not been taken into 
account in current allergenicity prediction systems. 
Existing sequence similarity searching approaches have 
average predictivity (AROC≈0.70) when tested on 
experimentally validated allergens and non-allergens (33, 
34). Low predictivity (AROC=0.58) is also observed for 
the FAO approach, consistent with previous assessment by 
other groups (10). It has also been reported that simplified 
profiles based on standard amino acid physico-chemical 
properties are not always able to describe with enough 
precision the protein sequence that needs to be modeled 
(43). This indicates that existing methodologies may not be 
effective in identifying B-cell epitope binding patterns. For 
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practical applications of computational modeling 
techniques, it is essential to model every aspect of the 
immune responses (44). 

 
Our strategy for prediction of protein 

allergenicity is to identify both continuous and 
discontinuous (possibly overlapping) immunodominant 
regions within an allergen. As illustrated in Figure 1, 
numerous epitopes may overlap along a protein sequence. 
Such phenomenon cannot be effectively modeled by 
existing computational strategies and sequence-based 
encoding schemes which focus on non-overlapping 
sequence similarity searches. Given the conformational 
nature of B-cell epitopes, the proposed scheme amplifies 
regional weights through the use of a series of local 
descriptors instead of a universal weighting scheme 
employed by existing techniques. In the current study, 10 
local descriptors of varying length and composition were 
selected to capture the local characteristics of allergenic 
proteins. The SVM-based predictive technique based on 
this encoding scheme consistently outperforms current 
state-of-the-art. Future work will focus on optimizing the 
distribution of local descriptors in accordance with the 
experimentally validated binding patterns of B-cell 
epitopes. Given the complex nature of B-cell epitopes, the 
methodology proposed herein may be a possible solution 
towards effective modeling of continuous and 
discontinuous B-cell immunological regions.  
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