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1. ABSTRACT 
 
 Diabetes mellitus results from inadequate mass of 
insulin-producing pancreatic beta cells. Type 1 diabetes is 
characterized by absolute loss of beta cells due to 
autoimmune-mediated destruction. Type 2 diabetes is 
characterized by relative deficiency of beta cells due to lack 
of compensation for insulin resistance. Restoration of 
deficient beta cell mass by transplantation from exogenous 
sources or by endogenous regeneration of insulin-
producing cells would be therapeutic options. Mature beta 
cells have an ability to proliferate; however, it has been 
shown to be difficult to expand adult beta cells in vitro. 
Alternatively, regeneration of beta cells from embryonic 
and adult stem cells and pancreatic progenitor cells is an 
attractive method to restore islet cell mass. With 
information obtained from the biology of pancreatic 
development, direct differentiation of stem and progenitor 
cells toward a pancreatic beta cell phenotype has been tried 
using various strategies, including forced expression of beta 
cell-specific transcription factors. Further research is 
required to understand how endogenous beta cells 
differentiate and to develop methods to regenerate beta 
cells for clinically applicable therapies for diabetes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Blood glucose concentration is normally 
controlled by hormones produced in the islets of 
Langerhans in the pancreas. Insulin, produced by 
pancreatic beta cells, is released when the concentration of 
glucose in the blood rises and induces glucose uptake from 
the blood to muscle and fat tissues, restoring normal blood 
concentrations. Diabetes mellitus is a devastating disease 
characterized by uncontrolled hyperglycemia, which causes 
serious clinical problems including blindness, kidney 
failure, stroke, heart disease, and vascular disease. It is 
expected that the number of people with diabetes will 
increase to 300 million by 2025.  
 
 There are two major forms of diabetes: type 1 
and type 2. In type 1 diabetes, beta cells are lost by 
autoimmune-mediated destruction (1, 2), resulting in 
absolute deficiency of insulin. In type 2 diabetes, both 
insulin resistance and reduction of the beta cell mass occur 
(3, 4) (Figure 1). Therefore, beta cell replacement by 
transplantation from exogenous sources or pancreatic islet 
regeneration is an attractive strategy for diabetes therapy. 
Exercise, diet, and treatment with anti-diabetic drugs that 
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Figure 1. Inadequate beta cell mass causes type 1 and type 2 diabetes. In the normal situation, insulin is secreted in response to 
blood glucose levels and promotes glucose uptake, resulting in normoglycemia. In type 1 diabetes, beta cells are destroyed by 
autoimmune processes, leading to insulin deficiency and hyperglycemia. In type 2 diabetes, insulin resistance leads to adaptive 
expansion of the beta cell mass, resulting in hyperinsulinemia and normoglycemia. If the adaptive expansion fails, then 
hypoinsulinemia and hyperglycemia result.  
 
either increase insulin secretion, improve insulin sensitivity, 
or reduce hepatic glucose production are the first choice for 
treatment of type 2 diabetes, but exogenous insulin is 
eventually required for about half of type 2 diabetic 
patients.  
 
 Intensive exogenous insulin therapy is used for 
treatment of type 1 diabetes, but the tight regulation of 
insulin in response to physiological change is not possible, 
resulting in episodes of hyperglycemia and hypoglycemia. 
Recent clinical advances have made it possible to safely 
graft allogenic human islets into diabetic patients using a 
minimal, non-steroidal immunosuppressive drug regime (5). 
In conjunction with improvements in islet isolation 
techniques, this has increased the success rate for 
independence from exogenous insulin for type 1 diabetic 
patients (6, 7). However, a serious limitation is lack of 
sufficient islets to meet the patient demand. Various 
methods are being investigated to provide an alternative 
source of insulin-producing cells. In this review, we will 
discuss different approaches to produce and generate 
insulin-producing cells from existing beta cells, embryonic 
stem cells, and adult stem cells (Figure 2). 
 
3. TRANSCRIPTION FACTORS INVOLVED IN 
DEVELOPMENT OF PANCREATIC BETA CELLS 
 
 Understanding the molecular mechanisms for 
pancreatic development can be important in developing a 
method for efficient differentiation of pancreatic beta cells. 

So far, many transcription factors and transcriptional 
regulators involved in pancreatic development have been 
studied (8-10).  
 
 During vertebrate development, gastrulation 
results in three principal germ layers: ectoderm, mesoderm, 
and endoderm. The endoderm germ layer forms the foregut, 
which then gives rise to the thyroid, lungs, liver, stomach, 
and pancreas. Foregut formation depends on the proper 
anterior-posterior patterning of the endoderm (11), and 
transforming growth factor, fibroblast growth factor (FGF) 
and wingless-type MMTV integration site family (Wnt) 
signaling pathways are important for posterior endoderm 
development (12, 13). FGF, retinoic acid, and hedgehog 
signaling pathways are required for establishing the 
pancreatic organ within the developing gut tube, and 
transcription factors such as SRY (sex determining region 
Y)-box (Sox)17, homeobox gene HB9 (Hlxb9), hepatocyte 
nuclear factor (HNF)-6, HNF-3beta (also known as foxhead 
box A2, Foxa2), and pancreatic and duodenal homeobox 1 
(Pdx-1) are required for proper pancreatic development (9, 
14). Sox17, expressed throughout the endoderm after 
gastrulation, is the earliest specific marker of definitive 
endoderm (15) and is required for pancreas formation. 
Hlxb9 is a critical factor for pancreatic endoderm 
development, as Hlxb9-deficient mice show impairment of 
dorsal pancreas development, and the expression of Pdx-1, 
which is a key transcription factor for pancreatic endocrine 
development and growth, was not detected in these mice 
(16). Pancreas-specific transcription factor-1a (Ptf-1a) is 
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Figure 2. Potential sources for generation of new beta cells. In principle, beta cells can be generated by the proliferation of 
existing beta cells; differentiation from embryonic stem cells; differentiation from adult stem cells found in various tissues such 
as the bone marrow, splenocytes, liver, pancreas, and intestine; transdifferentiation of pancreatic alpha, delta, or acinar cells; or 
dedifferentiation of beta cells followed by proliferation and subsequent differentiation. 
 
known to be responsible for ventral pancreas specification 
(17).  
 
 Following pancreas specification and budding, 
the fate for proliferation or differentiation of progenitor 
cells, including endocrine and exocrine lineages, is 
determined. All pancreatic progenitor cells express Pdx-1, 
and inactivation of Pdx-1 after bud formation prevents both 
islet and acinar cell differentiation (18). The expansion and 
differentiation of pancreatic progenitor cells appear to be 
regulated by Notch signaling (19, 20). FGF-10 is the 
mesenchymal signal and is important for expansion of Pdx-
1-positive pancreatic progenitor cells (21). Notch signaling 
regulates the expression of neurogenin-3 (Ngn-3), which is 
a key regulator of endocrine development and is expressed 
exclusively in endocrine precursor cells (22, 23). Inhibition 
of Notch signaling upregulates Ngn-3 and increases 
endocrine formation (14, 24), and activation of Notch1 
prevents endocrine differentiation (19, 20). Recently, it was 
reported that Sox9 maintains the pancreatic progenitor 
population, and its proliferation by regulation of Notch 
pathway (25), and Sox9 activates Ngn-3 expression (26). In 
addition, Ptf-1a is reported to be required for the 
development of multiple pancreatic lineages and is 
involved in exocrine acinar cell development (27). 
 
 Many transcription factors such as Pdx-1, ISL 
LIM homeobox 1 (Isl-1), Ngn-3, NK2 homeobox 2 
(Nkx2.2), NK6 homeobox 1 (Nkx6.1), neurogenic 
differentiation factor (NeuroD), Hlxb9, paired box gene 
(Pax)-4, and (Pax)-6 have been identified as islet 
differentiation factors. Ngn-3 is a key transcription factor 
for endocrine development and is absolutely required for 

islet cell development (28). Nkx2.2 is required for the final 
differentiation of beta cells and production of insulin (29, 
30). Nkx6.1 and Pax-4 are downstream of Ngn-3 and 
appear to act as beta cell determining factors (31, 32). Pax-
6 is required for islet cell proliferation, morphology, and 
beta cell function (33). 
 
 Much progress has been made on pancreas 
developmental biology including transcriptional regulation 
of pancreatic endocrine specification, growth, and lineage 
allocation, which contributes to our understanding of how 
endogeneous beta cells are made. Understanding pancreatic 
organogenesis will be a hint for translational research for 
beta cell regeneration. 
 
4. REPLICATION OF BETA CELLS 
 
 The pancreas is composed of endocrine and 
exocrine tissues. The endocrine pancreas occupies less than 
5% of the pancreatic tissue mass and is composed of cell 
clusters called the islets of Langerhans. The islets of 
Langerhans contain insulin-producing beta cells (about 
80% of the cells in the islets), glucagon-producing alpha 
cells, somatostatin-producing delta cells, pancreatic 
polypeptide-producing cells, and ghrelin-producing epsilon 
cells. The exocrine pancreas occupies more than 95% of the 
pancreas and is composed of acinar and ductal cells, which 
produce digestive enzymes.  
 
 Mature beta cells can replicate throughout life, 
although at a low level (34), evidenced by incorporation of 
bromodeoxyuridine and expression of markers of cell cycle 
entry such as antigen identified by monoclonal antibody 



Regeneration of pancreatic beta cells 

6173 

Ki-67 (35, 36). Recent findings suggest that the beta cell 
population is maintained by replication of differentiated 
beta cells, all beta cells contribute equally to islet growth 
and maintenance (37), and the majority of the newly 
generated beta cells originate from pre-existing beta cells 
(38). The beta cell mass is dynamic and increases in 
response to environmental and physiological changes and 
insulin resistance (38, 39). In fact, beta cell replication can 
be stimulated by pregnancy (40), diabetogenic stimuli such 
as glucose and free fatty acids (41, 42), and growth factors 
such as hepatocyte growth factor (43), epidermal growth 
factor (EGF), gastrin (36, 44), betacellulin (45), glucagon-
like peptide (GLP), or its long-lasting homolog, exendin-4 
(46). In addition, members of the regenerating protein 
family such as Reg protein (47) and islet neogenesis gene 
associated protein (48) can stimulate proliferation of beta 
cells.  
 
 Beta cell proliferation and increase in beta cell 
mass appears to be linked with cell cycle regulators, 
particularly cyclin D2 and cyclin-dependent kinase (CDK)4 
(49, 50). The CDK inhibitor, p27, is expressed in adult 
mouse beta cells, and deletion of this gene results in islet 
hyperplasia (51). It was reported that the decline of beta 
cell proliferation with aging is correlated with the increased 
expression of p16INK4a, a cyclin-D/CDK4 inhibitor, and that 
the absence of p16 expression increases proliferation of 
beta cells and beta cell survival after streptozotocin (STZ)-
induced beta cell damage (52). Interestingly, a recent 
genetic study showed that type 2 diabetes is linked to the 
locus containing the p16 gene (53). In addition, recent 
studies showed that proliferation is reduced in beta cells 
deficient for the G protein alpha subunit, which is required 
for hormone-stimulated cAMP generation, and cyclin D2 
expression was markedly reduced (54). Wnt signalling is 
also involved in regulating pancreatic beta cell proliferation 
by regulation of cyclin D2 expression (55). In addition, 
deletion of the gene encoding menin, a tumor suppressor 
that regulates the CDK inhibitor (56), enhances 
proliferation of pancreatic islet cells (57). Therefore, 
manipulation of cell cycle regulators in beta cells might be 
a useful strategy to expand the beta cell mass.  
 
 Although it is clear that mature beta cells can 
replicate, expansion of primary beta cells in vitro has not 
been successful, as mature beta cells have limited 
proliferative capacity in culture. Therefore, expression of 
oncogenes has been tried as a method to establish beta cell 
lines. Expression of simian virus (SV) 40 large T antigen in 
beta cells in transgenic mice results in a stable beta cell line, 
but these cells produce less insulin in the transformed state. 
When growth is arrested by cessation of T antigen 
expression, insulin production increases. Transplantation of 
these cells into STZ-induced diabetic mice restores 
normoglycemia (58).  
 
 Expansion of human primary pancreatic islet 
cells has also been tried. Primary adult islet cells can be 
stimulated to divide when grown on an extracellular matrix 
in the presence of hepatocyte growth factor/scatter factor, 
but growth is arrested after 10-15 cell divisions due to 
cellular senescence (59). Transformation of adult human 

pancreatic islets with a retroviral vector expressing SV40 
large T antigen and v-Ha-ras Harvey rat sarcoma viral 
oncogene homolog (H-ras)Val 12 oncogenes results in 
extended life-span, but eventually the cells enter a crisis 
phase followed by altered morphology, lack of proliferation, 
and cell death, suggesting that immortalization of human 
beta cells is more difficult than rodent beta cells. However, 
introduction of human telomerase reverse transcriptase 
results in successful immortalization (60), as human cells 
do not express telomerase. This immortalized cell line, 
beta-lox5, loses expression of key insulin gene transcription 
factors, and the introduction of Pdx-1, treatment with 
exendin-4, and cell-cell contact are required to recover beta 
cell differentiated function and glucose-responsive insulin 
production (61).  
 
 In another approach, human islets were 
propagated in vitro by transduction with retroviral vectors 
expressing SV40 T antigen and human telomerase reverse 
transcriptase flanked by loxP sites, and proliferation was 
stopped by excision of the immortalizing genes using an 
adenovirus expressing Cre recombinase. Removal of the 
immortalizing genes by Cre recombinase expression stops 
cell proliferation and increases the expression of beta cell-
specific transcription factors, resulting in reversion of the 
cells. These cells are functionally similar to normal human 
islets with respect to insulin secretion in response to 
glucose and non-glucose secretagogues, although the 
insulin content and amount of secreted insulin is lower than 
human islets (62).  
 
 Establishment of insulin-producing beta cell lines 
by reversible immortalization of primary islets is a 
promising approach for replacing insulin injections, as a 
beta cell line can provide an abundant source of beta cells 
for transplantation. In addition, beta cell lines can be 
genetically manipulated to improve their function and 
survival. However, the functionality of the cell lines and 
safety issues remain to be further studied for therapeutic use. 
 
5. GENERATION OF BETA CELLS FROM 
EMBRYONIC STEM CELLS 
 
 Embryonic stem (ES) cells are derived from the 
inner mass of a blastocyst. In principle, ES cells have the 
potential to generate unlimited quantities of insulin-
producing cells, as they can be expanded indefinitely in the 
undifferentiated state and then be differentiated into 
functional beta cells. Therefore ES cells have been 
investigated as an alternative source of pancreatic beta cells. 
However, generation of fully differentiated beta cells from 
ES cells has been difficult and controversial. Particularly, 
beta cell differentiation from ES cells as determined on the 
basis of immunohistochemical evidence alone has been 
questioned, because insulin immunoreactivity can also 
result from insulin absorption from the medium, as well as 
from genuine beta cell differentiation (63, 64). Thus, C-
peptide measurement is required to prove that these 
differentiated cells produce insulin. A variety of protocols 
have been tried to differentiate ES cells into pancreatic beta 
cells, and it was found that endoderm formation is required 
for successful differentiation of endocrine cells.  
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 Since it was first reported that ES cells are 
capable of differentiating into insulin-producing cells (65), 
many different protocols have been tried to differentiate ES 
cells. Manipulation of culture conditions, multi-step 
protocols for selection of progenitor cells, and addition of 
growth factors and phosphoinositide kinase inhibitor can 
enhance differentiation into beta cells (66-68). Selected 
nestin-positive cells from embryoid bodies can be further 
differentiated in serum-free media with basic FGF and 
nicotinamide, resulting in generation of insulin-producing 
cells (66), but these cells do not reverse hyperglycemia. 
However, modification of this protocol by adding a 
phosphatidylinositol 3-kinase inhibitor increases insulin-
production and reverses hyperglycemia (67). Another 
method is to drive beta cell differentiation by 
engineering the expression of genes for transcription 
factors such as Pax4, Pdx-1, Nkx2.2, and Nkx6.1. 
Overexpression of Pax4 in mouse ES cells promotes the 
differentiation of nestin-positive progenitor and insulin-
producing cells, and these cells secrete insulin in 
response to glucose and normalize blood glucose when 
transplanted into diabetic mice (69). In the same study, 
the expression of Pdx-1 did not have a significant effect 
on the differentiation of insulin-producing cells from ES 
cells. However, another study demonstrated that the 
regulated expression of Pdx-1 in a murine ES cell line by 
the tet-off system enhances the expression of insulin and 
other beta cell transcription factors (70). Transfer of 
Nkx2.2 into mouse ES cells differentiates them into 
insulin-producing cells, and these cells secrete insulin in 
response to glucose (71).  
 
 To enrich insulin-producing cells from mouse ES 
cells, a cell-trapping selection method has been used. A 
neomycin-resistance gene regulated by the insulin promoter 
is transferred to ES cells, which drives differentiation of 
insulin-secreting cells, and transplantation of these cells 
restores normoglycemia in STZ-induced diabetic mice (65). 
In another study, mouse ES cells were transduced with a 
plasmid containing the Nkx6.1 promoter gene, followed by 
a neomycin-resistance gene to select the Nkx6.1-positive 
cells, and then the cells were differentiated in the presence 
of exogenous differentiating factors (72). The selected 
Nkx6.1-positive cells co-express insulin and Pdx-1 and beta 
cell-specific markers such as Nkx6.1, glucokinase, and 
sulfonylurea receptor, and transplantation of these cells into 
STZ-induced diabetic mice results in normoglycemia.  
 
 It was shown that human ES cells can 
spontaneously differentiate in vitro into insulin-producing 
beta cells, evidenced by the secretion of insulin and 
expression of other beta cell markers (73). Differentiation 
of insulin-expressing cells from human ES cells can be 
promoted by culture in conditioned medium in the presence 
of low glucose and FGF, followed by nicotinamide (74). 
Another report suggests that human ES cells differentiate 
into beta cell-like clusters when co-transplanted with 
mouse dorsal pancreas (75). Although several in vitro 
studies suggest the possibility of generating insulin-
expressing cells from human ES cells, differentiation of 
truly functional beta cells from human ES cells has proven 
to be difficult.  

 Further advances in ES cell-derived 
differentiation of pancreatic beta cells involve a step-
wise differentiation, which mimics endogenous 
pancreatic development – sequential stages of definitive 
endoderm, foregut, pancreatic precursor, endocrine 
pancreas, and then mature islet cells. Lessons learned 
from normal embryonic development have resulted in 
successful induction of definitive endoderm from ES 
cells in vitro (76-79). Culture of mouse ES cells in the 
presence of activin A under serum-free conditions results 
in visceral endoderm differentiation, evidenced by the 
expression of Sox17 and chemokine (CXC motif) 
receptor 4 (78). Similarly, production of human ES cell-
derived definitive endoderm can be accomplished by low 
concentrations of serum and activin A. These cells 
express Sox17 and Foxa2 and can be enriched by 
chemokine (CXC motif) receptor 4 expression (79). 
Further studies by the same group reported 
differentiation of human ES cells to endocrine cells using 
a process which mimics in vivo pancreatic organogenesis. 
These cells produce pancreatic hormones; insulin, 
glucagon, somatostatin, pancreatic polypeptide, and 
ghrelin (80). In addition, recent studies reported 
successful generation of C-peptide-positive functional 
insulin-producing cells from human ES cells (81, 82) and 
mouse ES cells (83) by step-wise differentiation. 
 
 Because of their proliferative ability and capacity 
to differentiate in culture, ES cells have received much 
attention as a potential source of limitless quantities of beta 
cells for transplantation therapy to treat diabetes. Although 
in vitro studies suggest the possibility of generating insulin-
producing cells from ES cells, production of truly 
functional beta cells from human ES cells for therapeutic 
use has not yet been reported, as the insulin content and 
insulin secretion are low as compared with normal islets 
and the yield is insufficient. Other limitations are ethical 
concerns and safety concerns with regard to tumor 
formation. In fact, transplantation of ES cell-derived 
insulin producing cells can reverse hyperglycemia for 3 
weeks, but the rescue fails due to immature teratoma 
formation (84). Further studies are needed to develop an 
effective protocol for differentiating ES cells into 
sufficient amounts of fully functional pancreatic beta 
cells for therapeutic use. 
 
6. GENERATION OF BETA CELLS FROM ADULT 
STEM CELLS 
 
 As with ES cells, adult stem cells have the 
potential to differentiate into other cell lineages, but do not 
have the ethical difficulties associated with ES cells. Beta 
cell neogenesis in adults has been reported in animal 
models of experimentally induced pancreatic damage, 
suggesting the presence of adult stem/progenitor cells (85). 
These adult stem/progenitor cells can be potential sources 
for the production of new insulin-producing cells (86-
88). Bone marrow cells, umbilical cord blood cells, 
liver and intestinal cells, pancreatic ductal cells, and 
other cell sources have been investigated for their 
potential to differentiate into insulin-producing cells 
(Figure 2). 
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6.1. Bone marrow cells 
 Bone marrow cells are an abundant source of 
large quantities of stem cells. Evidence regarding the 
capability of bone marrow stem cells to differentiate into 
functional pancreatic beta cells is controversial. Bone 
marrow-derived stem cells have been shown to reduce 
blood glucose levels when transplanted into in diabetic 
mice, although no evidence was found for the 
differentiation of beta cells from these bone marrow cells 
(89, 90). In vitro differentiation of rat bone marrow cells 
induces expression of genes related to pancreatic beta cell 
development and function (91). These differentiated cells 
release insulin in response to glucose and reverse 
hyperglycemia when transplanted into diabetic rats (92). 
Ectopic expression of key transcription factors for the 
endocrine pancreatic development pathway such as insulin 
promoter factor, Hlxb9 and Foxa2 (93) or Pdx-1 (94) in 
human bone marrow mesenchymal cells generates insulin-
producing cells. In addition, a mouse bone marrow cell line 
cultured in high glucose can express beta cell specific 
genes, but the insulin content is very low, less than 1% that 
of normal beta cells (95). Furthermore, it was reported that 
bone marrow stem cells differentiate into pancreatic beta 
cells in vivo without evidence of cell fusion (96). However, 
other studies could not reproduce these results (97, 98), 
fueling the controversy regarding the capability of bone 
marrow stem cells to differentiate into pancreatic beta cells. 
Some studies suggest that bone marrow-derived cells 
stimulate proliferation of endogenous progenitor cells in 
the pancreas, resulting in the increase of insulin-producing 
cells rather than transdifferentiation of bone marrow cells 
into pancreatic beta cells (89, 99).  
 
6.2. Umbilical cord blood cells 
 As umbilical cord blood contains stem cells, is 
readily available in large amounts, and has a low risk for 
graft rejection, umbilical cord blood cells may be a source 
for the generation of insulin-producing cells. Human cord 
blood cells can be induced to express endocrine markers 
such as Isl-1, Pdx-1, Pax4, and Ngn-3 (100). In addition, 
transplantation of human cord blood cells to diabetic mice 
lowers blood glucose levels (101). Another study showed 
that stem cells isolated from human cord blood, which 
express stage-specific embryonic antigen-4 and the stem 
cell marker octamer-4, differentiate into insulin- and C-
peptide-positive cells (102).  
 
6.3. Liver and intestinal cells 
 Because the liver and intestinal epithelium are 
derived from gut endoderm, as is the pancreas (103), 
generation of islets from both developing and adult liver 
and intestinal cells has been tried as a source of insulin-
producing cells. Hepatic oval stem cells can be 
differentiated into insulin-producing islet-like cells in vitro 
in the presence of high glucose. These cells express 
pancreatic beta cell markers such as Pdx-1, Pax4, Pax6, 
Nkx2.1, and Nkx6.1 and reverse diabetes when 
transplanted into diabetic mice (104). Similarly, a rat 
hepatic cell line, which stably expresses an active form of 
Pdx-1 along with a reporter gene, expresses endocrine 
genes and ameliorates hyperglycemia in diabetic mice. 
Exposure of these cells to high glucose can induce 

expression markers of mature islets (105). Another study 
showed that fetal human liver progenitor cells differentiate 
into insulin-producing cells when engineered to express 
Pdx-1 and transplantation of these cells reverses 
hyperglycemia in diabetic mice (106). Similarly, 
differentiation of adult hepatic progenitor cells by 
overexpression of Pdx-1 results in insulin secretion in 
response to glucose (107). It was also reported that adult 
human liver cells engineered to express Pdx-1 produce 
insulin and secrete it in a glucose-regulated manner. 
Transplantation of these engineered cells under the renal 
capsule of diabetic mice results in prolonged reduction of 
hyperglycemia (108). As well, ectopic islet neogenesis in 
the liver can be induced by gene therapy with Pdx-1 (109) 
or a combination of NeuroD, a transcription factor 
downstream of Pdx-1, and betacellulin, which reverses 
diabetes in STZ-treated diabetic mice (110).  
 
 Expression of Pdx-1 in a rat enterocyte cell line 
in combination with betacellulin treatment or coexpression 
of Isl-1 results in the expression of insulin (111, 112). 
Treatment of developing as well as adult mouse intestinal 
cells with GLP-1 induces insulin production mediated by 
the upregulation of Ngn-3, and transplantation of these 
cells into STZ-induced diabetic mice remits diabetes (113). 
Another study showed that neural progenitor cells can 
generate glucose-responsive, insulin-producing cells when 
exposed in vitro to a series of signals for pancreatic islet 
development (114). These results suggest that the 
controlled differentiation of liver or intestinal cells into 
insulin-producing cells may provide an alternative source 
of beta cells. 
 
6.4. Pancreatic stem cells 
 A large body of evidence suggests that adult 
pancreatic ducts are the main site of beta cell progenitors. 
Throughout life, the islets of Langerhans turn over slowly, 
and new small islets are continuously generated by 
differentiation of ductal progenitors (34). Islet cells are 
observed in close proximity to ducts in type 1 diabetic 
patients and partially pancreatectomized rodents (115, 116). 
It was found that islet-like aggregates are generated from 
mouse pancreatic ducts and ductal tissue-enriched human 
pancreatic islets, and these aggregates release insulin after 
glucose stimulation and express islet proteins (117, 118). 
Duct-derived cells from prediabetic nonobese diabetic 
(NOD) mice restores normoglycemia in diabetic NOD mice 
(117). Lineage-tracing studies showed that new beta cells 
originate from existing beta cells (38), questioning the 
contribution of ductal cells to islet regeneration in vivo. 
However, it was recently reported that 30% of new beta 
cells are not derived from replication of existing beta cells 
(119), suggesting that stem progenitor cells may have a 
contribution. In accord with this, a recent study reported 
that Ngn-3-positive cells in the injured adult mouse 
pancreas differentiated into functional beta cells (120). 
 
 
 Multipotent precursor cells clonally identified 
from adult pancreatic islets and ductal populations can 
differentiate into cells with beta cell function (121). The 
clonally identified cells proliferate in vitro, and the 
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expression of the Pdx-1 gene or treatment of ductal cells 
with Pdx-1 protein increases the number of insulin-positive 
cells or induces insulin expression (122, 123). Ectopic 
expression of Ngn-3, a critical factor for the development 
of the endocrine pancreas in humans, in pancreatic ductal 
cells results in their conversion into insulin-expressing cells 
(124). In addition, treatment of human islets containing 
both ductal and acinar cells with a combination of EGF and 
gastrin induces neogenesis of islet beta cells from the ducts 
and increases the functional beta cell mass (125).  
 
 In addition to ductal cells, exocrine acinar cells 
and other endocrine cells can generate beta cells. A lineage 
tracing study showed that amylase- and elastase-positive 
acinar cells can transdifferentiate into insulin-producing 
cells (126). An alpha cell line transfected with Pdx-1 could 
express insulin when treated with betacellulin. It was 
shown that treatment of rat exocrine pancreatic cells with 
EGF and leukemia inhibitory factor can induce 
differentiation into insulin-producing beta cells (127), 
which involves activation of Ngn-3 (128). Considerable 
evidence suggests that beta cells in the pancreatic islets can 
be dedifferentiated, expanded, and redifferentiated into beta 
cells by inducing the epithelial-mesenchymal transition 
process (129). Non-endocrine pancreatic epithelial cells 
also have been reported to differentiate into beta cells (130). 
These results suggest that pancreatic stem/progenitor cells 
are the source of new islets. 
 
6.5. Other sources 
 Other sources of cells have also been investigated 
for their potential to differentiate into insulin-producing 
cells. Injection of allogeneic splenocytes in combination 
with complete Freund’s adjuvant (to prevent anti-islet 
autoimmunity) corrected diabetes in diabetic NOD mice 
(131). This study suggested that the injected splenocytes 
are the source of new insulin-producing cells, but later 
studies failed to show evidence of donor splenocyte-
derived differentiation of insulin-producing cells (132-134). 
In addition, stem cells isolated from the salivary gland 
(135), adipose tissue (136), amniotic epithelium (137), 
neurons (114, 138), and human peripheral blood (139) can 
be differentiated into insulin-producing cells. 
  

The use of adult stem/progenitor cells for 
generating beta cells for transplantation therapy appears to 
be promising, although most studies have only been done in 
animal models. Further studies on the mechanisms for the 
differentiation of adult stem/progenitor cells into insulin-
producing beta cells and characterization of the newly 
generated beta cells are required before these cells can be 
considered for clinical application. 
 
7. IN VIVO REGENERATION THERAPY 
 
Generation of insulin-producing cells in vivo is also an 
attractive strategy for the treatment of type 1 diabetes. 
Various growth factors such as activin A, hepatocyte 
growth factor, keratinocyte growth factor, GLP-1, EGF, 
and betacellulin are known to stimulate pancreatic stem 
cells or progenitor cells and cause them to differentiate into 
an endocrine phenotype. Administration of recombinant 

human betacellulin improves glucose tolerance in alloxan- 
and STZ-induced diabetic mice, and in 90% of 
pancreatectomized rats by promoting beta cell regeneration 
(140-142). Treatment of alloxan-treated diabetic mice or 
diabetic NOD mice with EGF and gastrin reverses 
hyperglycemia by increasing the islet mass by neogenesis 
from ducts (125, 143). It was also reported that the 
combined treatment of activin A and betacellulin results in 
the regeneration of pancreatic beta cells in neonatal STZ-
treated rats (144). In addition, treatment of type 1 diabetic 
NOD mice with a GLP-1 analog, exendin-4, and anti-
lymphocyte serum as an immunosuppressor, resulted in 
rapid restoration of euglycemia after treatment, but 
intraperitoneal glucose tolerance tests were not 
completely normal at 80 days after treatment (145), 
probably due to insufficient numbers of regenerated 
beta cells resulting from the limited extension of the 
GLP-1 half-life afforded by this strategy. The 
production of GLP-1 or betacellulin in vivo by 
adenoviral delivery of these genes results in the 
restoration of euglycemia for a prolonged time and 
normal glucose tolerance by increase of beta cell mass 
(146, 147). The increase of beta cell mass might be due 
to the proliferation of existing beta cells and/or 
differentiation of stem/progenitors, which need to be 
identified by cell lineage studies. Recently, it was 
reported that the administration of keratinocyte growth 
factor into diabetic rats significantly increases ductal cell 
proliferation, resulting in the increase of beta cell mass 
(148). As well, treatment of STZ-induced diabetic mice 
with islet neogenesis associated protein can reverse 
hyperglycemia (48).  
 
 The expression of Pdx-1 (109) or a combination 
of NeuroD, a transcription factor downstream of Pdx-1, and 
betacellulin (110) in the liver remits hyperglycemia in STZ-
induced diabetic mice. In addition, administration of an 
adenoviral vector encoding Pdx-1 or v-maf 
musculoaponeurotic fibrosarcoma oncogene homolog A 
(MafA) into the intestine was shown to convert intestinal 
cells into insulin-producing cells (149, 150).  
 
 Injection of mesenchymal splenocytes and 
complete Freund’s adjuvant into diabetic NOD mice 
restores normoglycemia, and CD45- splenic mesenchymal 
cells were found to be responsible for the reversal of 
autoimmunity and the source of islet regenerating cells 
(131). A successful clinical trial involving autologous 
hematopoietic stem cell transplantation and immune 
suppressor in diabetic patients was reported (151). 
Although beta cell function was shown to be increased, the 
mechanism of action is not clear.  

 
Clinical trials are now underway for beta cell 

regeneration in type 1 diabetes using exendin-4 and a 
combination of EGF, gastrin, and GLP-1 agonists along 
with immune regulators. Such treatments may not only 
provide a method to regenerate the beta cell mass from 
remaining beta cells in type 1 diabetic patients, but might 
be used in conjunction with islet transplantation therapies 
to expand and/or preserve the beta cell mass in transplanted 
islets. 
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8. SUMMARY AND PERSPECTIVES 
 
 Regeneration of pancreatic beta cells has been 
investigated as an attractive strategy for a cure for diabetes. 
Production of large amounts of beta cells by replication of 
beta cells in vitro has been tried using reversible 
immortalization, but the functionality of these engineered 
beta cells is still not optimal. Another option for the 
production of large amounts of beta cells is differentiation 
from stem cells. Information obtained from pancreas 
developmental biology has contributed to the design of 
strategies to differentiate stem cells into mature beta cells. 
Although a number of studies have reported successful 
differentiation of insulin-producing cells from embryonic 
or adult stem cells, yields are still too low for clinical needs 
and the differentiated beta cells are not as functional as 
endogenous beta cells. Step-wise differentiation of stem 
cells appears to be more effective than direct expression of 
pancreatic transcription factors. In vivo regeneration of beta 
cells using beta cell growth factors seems to be successful 
in animal models. Further studies are required to fully 
understand pancreatic islet development and to apply this 
knowledge to create safe and effective clinically applicable 
methods to regenerate pancreatic beta cells.  
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