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1. ABSTRACT 
 

Ticks are ectoparasites of wild and domestic 
animals and humans that most notably impact global health 
by transmitting disease-causing pathogens. While 
information on the molecular interactions between ticks 
and pathogens that facilitate pathogen infection, 
development and transmission is limited, a comprehensive 
understanding of the tick-pathogen interface would be 
fundamental toward development of new and novel 
measures for control of both tick infestations and tick-borne 
pathogens. Recently, vaccine studies using key tick 
antigens and characterization of tick gene function by RNA 
interference (RNAi) have provided new information on 
genes that impact the tick-pathogen interface. In this review 
we summarize current research and prospects of tick 
vaccines and genetic manipulation of ticks targeted to the 
tick-pathogen interface. The knowledge gained from these 
collective studies will be fundamental toward 
understanding of tick-pathogen interactions and for 
formulation of control methods targeted at both ticks and 
tick-borne pathogens. Use of these molecular approaches 
will likely contribute to control measures that will notably 
reduce tick populations and tick-borne diseases in the 
future. 

 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Ticks are obligate hematophagous ectoparasites 

of wild and domestic animals and humans that are 
classified in the subclass Acari, order Parasitiformes, 
suborder Ixodida and distributed from Arctic to tropical 
regions of the world (1, 2). Despite efforts to implement 
measures to control tick infestations, ticks and the 
pathogens they transmit continue to be a serious constraint 
to human and animal health (3, 4). 

 
Ticks are considered to be second worldwide to 

mosquitoes as vectors of human diseases (5) and the most 
important vector of diseases that affect the cattle industry 
worldwide (6). For example,  Ixodes spp. vector several  
human pathogens, including Borrelia burgdorferi (Lyme 
disease), the closely related B. afzelii, B. lusitaniae, B. 
valaisiana and B. garinii, Anaplasma phagocytophilum 
(human granulocytic anaplasmosis), Coxiella burnetii (Q 
fever), Francisella tularensis (tularemia), Rickettsia 
helvetica, R. japonica and R. australis, Babesia divergens, 
as well as tick-borne encephalitis virus (TBEV), a causative 
agent of tick-borne encephalitis. Boophilus spp. are major 
tick pests of veterinary importance in tropical regions. 
Infestations with the cattle tick, B. microplus, economically 
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impact cattle production by causing reductions in weight 
gains and milk production, and by transmitting pathogens 
that cause babesiosis (Babesia bovis and B. bigemina) and 
anaplasmosis (A. marginale). 

 
 New strategies are needed for the control of ticks 

and tick-borne pathogens. Characterization of the 
molecular mechanisms that mediate tick-pathogen 
interactions will likely provide new targets for vaccines and 
genetic manipulation of ticks. Evidence that co-evolution 
and long term survival of ticks and tick-borne pathogens 
undoubtedly involves genetic traits from both organisms 
includes reports of pathogen ligands and tick receptors that 
enable pathogen infection of ticks (7, 8).  

 
Recent advancements in tick vaccine 

development and RNA interference (RNAi) have been 
reviewed in several publications (9-15). Herein, we will 
extend these reviews by focusing on the application of 
molecular technologies targeted to the tick-pathogen 
interface.  These technologies, in concert with other 
emerging ones, are needed to advance our understanding 
of tick-pathogen interactions and will likely provide 
new and novel strategies for development of improved 
vaccines for the simultaneous control of ticks and tick-
borne pathogens. 

 
3. TICK VACCINES AND THE TICK-PATHOGEN 
INTERFACE  
 
3.1. Tick vaccines for the control of tick infestations 

The feasibility of controlling tick infestations 
through immunization of hosts with selected tick antigens 
was demonstrated following the pioneering work of Allen 
and Humphreys (16) with the development of vaccines that 
reduced Boophilus spp. infestations on cattle (recently 
reviewed by 3, 4, 13, 14). This vaccine, based on the 
recombinant B. microplus Bm86 gut antigen, caused 
reductions in the number, weight and reproductive capacity 
of female ticks that fed on immunized cattle. Overall, the 
most notable vaccine effect was the decline of larval 
infestations in subsequent tick generations. Controlled field 
trials using Bm86-based vaccines in cattle resulted in the 
control of B. microplus and B. annulatus infestations and a 
correlation was found between the antibody titers of cattle 
immunized with Bm86 and tick fecundity (17).  Use of the 
integrated approach of acaricide application and 
vaccination in relation to seasonal tick populations resulted 
in a more cost-effective and environmentally sound mean 
of controlling tick infestations by reducing acaricides 
applications (13, 14, 17, 18).  
 
3.2. Discovery of tick vaccine antigens  

The Bm86 tick vaccine antigen that was first used 
in commercial cattle tick vaccines was discovered from 
proteins in crude tick extracts after fractionation, 
immunization and tick challenge in cattle (19). Subsequent 
approaches for antigen identification included 
immunomapping tick antigens that elicited an antibody 
response in the infested hosts and the testing in vaccination 
experiments of tick proteins that were considered to be 
important for the parasite function and/or survival (3, 13).  

 Recently, advances in molecular biology and 
systems biology have provided new avenues for efficient 
discovery of tick vaccine antigens. The initial tick antigens 
selected for study were based on the assumption that cell 
membrane-exposed or secreted proteins would be required 
for antibody recognition in ticks fed on vaccinated cattle. 
However, tick protective antigens identified by expression 
library immunization and RNAi included those intracellular 
proteins that play important roles in tick physiology and 
reproduction and may therefore also be candidate vaccine 
antigens (20, 21). Although the mechanism by which 
antibodies are transported across tick cell membranes and 
complex with antigens is not completely understood, 
antibodies are specifically transported inside tick cells to 
interact and neutralize intracellular proteins (22, 23). 
Therefore, these results challenge the paradigm that vaccine 
antigens must be extracellular proteins and thus expand the 
repertoire of candidate tick vaccine antigens.  
 

In the near future, the application of high 
throughput functional genomics screening will likely result 
in the discovery of tick vaccine antigens that include both 
extracellular and intracellular proteins. 

 
3.3. Tick vaccines and the control of tick-borne 
pathogens 

While reduction of tick infestations has been a 
foremost goal of tick vaccine development, an equally 
important impact is reduction of the transmission of 
medically and economically important pathogens by ticks. 
Immunization of cattle with Bm86 vaccines resulted in 
lower infestations as well as a reduction in the incidence of 
babesiosis and anaplasmosis in some regions (13, 14, 17, 
18). Tick vaccines may therefore have a dual impact of 
targeting tick infestations and the incidence of tick-borne 
diseases by decreasing the exposure of susceptible hosts to 
ticks (Figure 1).  

 
3.4. Feasibility of targeting tick proteins to reduce tick 
vector capacity 

Recent research results demonstrated that tick 
vaccines also reduce tick vector capacity.  The candidate 
antigens involved in vector capacity were those at the tick-
pathogen interface found to be necessary for the infection, 
development and transmission of pathogens.  Three 
proteins have been shown thus far to be involved in tick 
vector capacity: the tick receptor for OspA (TROSPA) that 
is required for colonization of I. scapularis with B. 
burgdorferi (8); the R. sanguineus P64 putative cement 
protein (24); and the tick protective antigen subolesin (25).  
Use of these antigens in vaccine formulations has resulted 
in reduced vector capacity of ticks for infection with B. 
burgdorferi, TBEV and A. phagocytophilum/A. marginale, 
respectively. Recently, Narasimhan et al. (26) 
demonstrated that immunity against I. scapularis salivary 
proteins that are expressed within 24 hours of tick 
attachment impaired transmission of B. burgdorferi by ticks 
to guinea pigs.  

 
The feasibility of vaccinating animal host 

populations to decrease the prevalence of tick-borne 
pathogens in ticks, thus reducing the risk for pathogen 
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Figure 1. Tick vaccines could be used to immunize animal host populations to decrease tick infestations and the prevalence of 
tick-borne pathogens (TBP) in ticks, thus reducing the risk for pathogen transmission to susceptible animals and humans.  

 
transmission to humans and animals, was recently 
demonstrated by Gomes-Solecki et al. (27) and Tsao et al. 
(28). In this research, B. burgdorferi infections in I. 
scapularis were reduced when ticks fed on mice 
immunized with the bacterial protein OspA, possibly by 
blocking bacterial adhesion to the tick receptor.  

 
Collectively, these results demonstrated the 

feasibility of developing vaccines by targeting pathogen 
and tick-derived key proteins at the tick-pathogen interface 
for the control of tick infestations and the transmission of 
tick-borne pathogens (29-31) (Figure 1). 

 
4. GENETIC MANIPULATION OF TICKS TO 
TARGET THE TICK-PATHOGEN INTERFACE 
 
4.1. Methods and mechanism of RNAi in ticks 

RNAi is a nucleic acid-based reverse genetic 
approach that results in the silencing of gene expression 
and allows for study of the impact of gene function on 
metabolic pathways (32). Small interfering RNAs 
(siRNAs) are the effector molecules of the RNAi pathway 
that is initiated by double-stranded RNA (dsRNA) and 
results in a potent sequence-specific degradation of 
cytoplasmic mRNAs containing the same sequence as the 
dsRNA trigger (33). Post-transcriptional gene silencing 
mechanisms initiated by dsRNA have been reported in all 
eukaryotes studied thus far, and RNAi has rapidly become 
and important molecular tool for functional genomics 
studies on a variety of organisms, as well as other 
applications (34). 

 
RNAi is currently the most widely used gene-

silencing technique in ticks because use of other methods 
of genetic manipulations has been limited. As recently 

reviewed by de la Fuente et al. (15), RNAi has rapidly 
proved to be a valuable tool for studying tick gene function, 
for characterization of the tick-pathogen interface and for 
the screening and characterization of tick protective 
antigens.  

 
Four methods have been used for RNAi in ticks: 

(i) injection or microinjection of dsRNA into unfed or fed 
ticks, (ii) soaking or incubation of dsRNA with ticks, tick 
tissues or cells, (iii) feeding of dsRNA to ticks and (iv) 
virus production of dsRNA (15). The application of these 
methods for RNAi in ticks depends on the experimental 
design and objectives. Injection of dsRNA into adult ticks 
is the most universal method for in vivo RNAi in ticks, 
particularly with the possibility of generating a high 
number of treated individuals through inherited RNAi (35, 
36). Inherited RNAi and feeding of dsRNA solutions to 
ticks are relatively easy ways to deliver dsRNA into 
immature tick stages for the study of tick-pathogen 
interactions (35-37). However, incubation with dsRNA 
solutions is probably the best approach for ex vivo and in 
vitro studies of gene expression and pathogen infection and 
multiplication in isolated tick organs and cell lines (38, 39). 
Virus production of dsRNA may impact the generation of 
transgenic ticks resistant to tick-borne pathogens (see 
section 4.3). 

 
The mechanism of RNAi in ticks has not been 
characterized and the proteins involved in the process of 
RNAi have not been identified, with the exception of  a B. 
microplus sequence that was shown to be similar to  
Argonaute (Ago)-2 (15). We recently proposed a model for 
RNAi in ticks based on current information on RNAi in 
Drosophila melanogaster and mosquitoes (15). Exogenous 
or viral dsRNA enter the cytoplasm, where it is first
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Table 1. Summary of RNA interference experiments targeting the tick-pathogen interface 
Tick species Target gene Delivery of dsRNA Phenotype at the tick-pathogen interface Refs 
Ixodes scapularis TROSPA Microinjection into nymphal 

ticks 
Reduction in infection and transmission of  
B. burgdorferi 

8 

Ixodes scapularis Salp15 Microinjection into nymphal 
ticks 

Reduction in the capacity of tick-borne  
B. burgdorferi to infect mice 

43 

Ixodes scapularis Salp16 Microinjection into nymphal 
ticks 

Reduction of A. phagocytophilum survival in 
ticks 

44 

Ixodes scapularis Salp14 Microinjection into nymphal 
ticks 

Reduction in mRNA levels but no effect on 
acquisition of  A. phagocytophilum and B. 
burgdorferi 

45 

Ixodes scapularis Isac Nymph capillary feeding  Reduction in tick infection by B. burgdorferi  37 
Dermacentor variabilis Subolesin (4D8) Injection into adult ticks Reduction in tick infection by A. marginale 25, 42, 51 
Haemaphysalis 
longicornis 

Longicin Microinjection into adult ticks Inhibition of B. gibsoni killing by ticks 46 

Dermacentor variabilis GST Injection into adult ticks Reduction in A. marginale levels in tick guts 
after AF and salivary glands after TF 

42 

Dermacentor variabilis Ubiquitin 
vATPase 

Injection into adult ticks Reduction in A. marginale levels in tick guts 
after AF  

42 

Dermacentor variabilis Salivary selenoprotein 
M 

Injection into adult ticks Reduction in A. marginale levels in salivary 
glands after TF 

42 

Ixodes scapularis IDE8 
cells 

Proteasome  
Ferritin 
GST 

Incubation with dsRNA 
solution 

Reduction in A. marginale levels 42 

Ixodes scapularis IDE8 
cells 

Subolesin 
 (4D8) 

Incubation with dsRNA 
solution 

Reduction in A. marginale levels 42, 51 

Ixodes scapularis IDE8 
cells 

Selenoprotein W2a 
HSC 

Incubation with dsRNA 
solution 

Increase in A. marginale levels 42 

Data updated after (15). Abbreviations: TROSPA, tick receptor for B. burgdorferi OspA; Salp, salivary gland protein; Isac, I. 
scapularis anticomplement; GST, glutathione-S transferase; AF, acquisition feeding; TF, transmission feeding; HSC, 
hematopoietic stem/progenitor cells protein-like. 
 
processed into double stranded siRNAs about 21–23 
nucleotides in length. The key protein for this specific 
degradation in D. melanogaster is Dicer-1. This RNase III-
like dsRNA-specific ribonuclease contains RNase III, 
helicase, and PAZ (Piwi/Argonaute/Zwille) domains that 
are involved in protein–protein interactions, a dsRNA 
binding domain and a DEAD-box helicase domain. Dicer-1 
then presents the siRNAs to the RNA-induced silencing 
complex (RISC), which incorporates the siRNAs and 
targets and degrades any mRNA with cognate sequences. 
Other protein components of RISC, such as the Ago protein 
family, may be required for RNAi. However, a more 
complete understanding of the mechanism of dsRNA-
induced RNAi in ticks would facilitate a better use of this 
genetic approach.    

 
4.2. RNAi for the characterization of the tick-pathogen 
interface 

Molecular characterization of the tick-pathogen 
interface is an emerging research area. Differential gene 
expression has been characterized in Dermacentor 
variabilis ovaries in response to rickettsial infection (40), in 
salivary glands of female R. appendiculatus infected with 
Theileria parva (41) and in I. scapularis IDE8 cells, D. 
variabilis and B. microplus ticks in response to infection 
with A. marginale (42). While the function of many tick 
genes at the tick-pathogen interface is unknown, results 
thus far have provided evidence that pathogens modify 
expression of tick genes involved in defense mechanisms, 
thus facilitating tick vector capacity.  

 
While RNAi has been used primarily for study of 

tick gene function (15), it was also used recently to study 
the role of tick gene expression in infection and 
transmission of B. burgdorferi (8, 37, 43), A. 

phagocytophilum (44), and A. marginale (25). Silencing of 
key genes in the respective tick vectors resulted in 
reduction of the tick vector capacity for these pathogens 
(Table 1). However, in other RNAi experiments, gene 
knockdown did not affect pathogen acquisition by ticks 
(45) or facilitated B. gibsoni transmission by targeting the 
Haemaphysalis longicornis antimicrobial peptide, longicin 
(46) (Table 1).  

 
Studies of the tick protective antigen, 

subolesin, provided evidence that tick gene expression 
may be targeted by RNAi to test the role of encoded 
proteins in tick biology and the vector capacity of ticks 
(Figure 2). Subolesin was recently shown by both RNAi 
gene silencing and immunization trials using the 
recombinant protein to protect hosts against tick 
infestations, reduce tick survival and reproduction, and 
cause degeneration of gut, salivary gland, reproductive 
tissues and embryos (35, 36, 47-50). The silencing of 
subolesin expression by RNAi also decreased vector 
capacity of ticks for A. marginale (25). In addition, 
subolesin mRNA levels were determined by real-time RT-
PCR in uninfected and A. marginale-infected D. variabilis 
guts and salivary glands and IDE8 cultured tick cells, as 
well as in uninfected and A. phagocytophilum-infected I. 
scapularis nymphs and ISE6 cultured tick cells (51). In 
these experiments, subolesin was differentially expressed in 
A. marginale-infected ticks in a tissue-specific manner in 
which mRNA levels increased in response to A. 
marginale infection in tick salivary glands but not in the 
guts. Subolesin knockdown by RNAi reduced 
Anaplasma infection/multiplication only in cells in 
which infection increased subolesin expression, i.e. in A. 
marginale-infected D. variabilis salivary glands and 
IDE8 cells (51).  
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Figure 2. The tick protective antigen subolesin provided evidence that tick gene expression may be targeted by RNAi to test the 
role of encoded proteins in tick biology and the vectorial capacity of ticks. Experimental results were derived from de la Fuente et 
al. (25, 91). 

 
These studies demonstrated a role of subolesin in 
Anaplasma-tick interactions, suggesting that this protein 
may be useful in a vaccine formulation for the control of 
tick infestations and pathogen infection/multiplication in 
ticks.  

 
Recently, a functional genomics approach to 

characterize tick genes regulated in response to A. 
marginale infection in cultured IDE8 tick cells and ticks 
was reported by de la Fuente et al. (42).  RNAi in D. 
variabilis ticks and IDE8 tick cells was used for functional 
studies of differentially expressed genes/proteins that were 
identified by suppression-subtractive hybridization and 
differential in-gel electrophoresis analyses. Through these 
studies molecules were identified that affected A. 
marginale infection in IDE8 tick cells and at different sites 
of development in ticks (Table 1).  Importantly, the results 
revealed that a molecular mechanism occurs by which tick 
gene expression mediates the A. marginale developmental 
cycle and trafficking through ticks. 

 
Collectively, these studies demonstrated that 

RNAi constitutes an important tool for the study of the tick-
pathogen interface which will likely contribute to the rapid 

identification and characterization of candidate antigens for 
use in pathogen transmission-blocking tick vaccines. 

 
4.3. Other potential approaches for the genetic 
manipulation of ticks and the characterization of the 
tick-pathogen interface 

Recombinant bacteria, parasites and viruses that 
naturally infect ticks may be useful for developing novel 
methods for the study of tick-pathogen interactions and the 
manipulation of the tick-pathogen interface. However, the 
genetic transformation of intracellular bacteria that infect 
ticks has been difficult to attain because of their 
intracellular location, small size and complex growth 
conditions. Transformation and tick infection with 
recombinant bacteria has recently been reported for 
Escherichia coli (52, 53), B. burgdorferi (54-57), B. afzelii 
(58), and R. monacensis (59). Methods have been 
developed for the production and detection of recombinant 
organisms in cultured cells for the tick-borne rickettsial 
pathogens, R. prowazekii (60-62), C. burnetii (63, 64), A. 
phagocytophilum (65), Ehrlichia muris (66), and F. 
tularensis (67-69). Transformation of the protozoan 
parasite, B. bovis, with potential applications for other 
Babesia species, has also been reported (70).   
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Therefore, paratransgenesis is an alternative 
approach for the manipulation of ticks by production of 
infective recombinant tick symbionts such as Wolbachia 
and other related organisms (71-73). Although these 
experiments have not been reported in ticks, recent 
developments suggest that transformation of Wolbachia 
may be feasible (74, 75). Additionally, the sequencing of 
the I. scapularis genome has revealed the presence of 
sequences with identity to Rickettsia spp., which are 
possible tick symbionts with a long co-evolutionary history 
(90).  

 
These preliminary studies suggest the possibility 

of developing paratransgenic ticks with transformed 
pathogens for study of tick-pathogen interactions by 
expression of recombinant proteins and other molecules in 
the tick. Use of fluorescent bacteria and parasites may 
allow researchers to document pathogen infection, 
multiplication and trafficking in ticks (57). Antibiotic-
resistant bacteria are an important tool for in vitro studies in 
cell culture. Recombinant bacteria and parasites could serve 
as a vehicle for delivery of recombinant proteins and 
dsRNAs for use in functional studies of tick biology and 
tick-pathogen interactions.  

 
The infection of tick cells with vector-borne 

RNA viruses such as Semliki Forest virus was found to 
trigger the RNAi pathway and may be useful in 
characterizing dsRNA-mediated gene silencing in ticks 
(76).  Recombinant viruses engineered to produce dsRNA 
may allow for induced and/or enhanced RNAi in vivo in 
ticks. This approach has been used to render mosquitoes 
resistant to arboviruses (77-80) and Plasmodium parasites 
(81), thus confirming the potential of this approach for 
targeting the vector-pathogen interface to control the 
transmission of vector-borne pathogens. 

 
Finally, although remotely possible at this time, 

the production of transgenic ticks through embryo 
microinjection, electroporation or transfection may be 
feasible. While transformation methods with transposable 
elements similar to those developed for Drosophila (82) 
and mosquitoes (83) have not been established in ticks, 
electroporation and transfection of foreign DNA has been 
accomplished in shrimp embryos (84-86). Recently, Sunter 
et al. (91) discovered a short interspersed repetitive element 
(SINE; designed Ruka) that may be mobile in the genome 
of R. appendiculatus, B. microplus, A. variegatum and I. 
scapularis. Although at its infancy, this and other similar 
sequences present in tick genomes may be used to develop 
transformation methods in ticks. Transgenesis is being 
investigated as a means of engineering mosquitoes with a 
genetic trait that confers resistance to malaria or causes 
population suppression while driving the new trait through 
field populations (87). Recently, a promising result was 
reported in which transient sterile ticks were produced by 
RNAi of subolesin and may be used in the future 
development of methods for autocidal control of ticks (48). 
Development of techniques for production of transgenic 
ticks for autocidal control and resistance to pathogen 
transmission would enhance research in this area.    
 

5. SUMMARY AND PERSPECTIVE 
 
Tick vaccines and RNAi have proven useful for 

studying tick-pathogen interactions and for targeting the 
tick-pathogen interface with the goal of interrupting the 
transmission of tick-borne pathogens.  Advances in the use 
and applications of RNAi in ticks, as well as development 
of new approaches for the genetic manipulation of ticks, 
will greatly enhance future opportunities to study the tick-
pathogen interface. The combination of tick and pathogen 
genomics (88-90) with high throughput screening platforms 
using RNAi (92) and other forthcoming technologies will 
increase our knowledge of the tick-pathogen interface and 
will likely  provide novel and improved vaccines targeted 
both at control of tick infestations and the transmission of 
tick-borne pathogens.  
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