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1. ABSTRACT 
 

Dental plaque, a microbial biofilm that 
accumulates on teeth and initiates periodontal disease, is 
composed of hundreds of different bacterial species within 
an organized structure. The biofilm bacteria and their 
byproducts irritate the gingival epithelium and induce an 
“inflammatory response”. The perturbation of epithelial 
cells by bacteria is the first stage in the initiation of 
inflammatory and immune processes which eventually 
cause destruction of the tissues surrounding and supporting 
the teeth, and ultimately result in tooth loss. This review 
addresses the early bacterial-epithelial cell interactions and 
the subsequent responses of the epithelial cell.  It includes 
discussion of how epithelial Toll-like receptors (TLRs) 
respond to different bacterial challenges, the variable 
antimicrobial peptides released and the host signaling 
responses which trigger release of these molecules and the 
overall fate of these cells in terms of survival, apoptosis, or 
cell lysis. 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
The primary initiating agent in periodontal 

disease is dental plaque, a microbial biofilm that 
accumulates on teeth, composed of hundreds of different 
bacterial species within an organized structure (1-3). The 
bacteria in the biofilm and their byproducts accumulate in 
the gingival crevice and irritate the gingival,  inducing an 
“inflammatory response” (4,5). This early stage in chronic 
inflammatory periodontal disease, when bacteria perturbate 
epithelial cells, constitutes the first step in the initiation of 
the immune response, and is part of the innate immune 
system, i.e. part of the inborn responses that require no 
prior learning or experience (6,7).  These processes 
eventually lead to destruction of the tissues surrounding 
and supporting the teeth, including connective tissue and 
bone, which finally results in tooth loss. Thus, the 
etiopathogenesis of periodontal disease is complex and 
involves microbial perturbation of innate, inflammatory 
and adaptive immune systems and is characterized by
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Figure 1. P. gingivalis in the dental biofilm interacts with 
epithelial cells through multiple receptors including the 
Toll-like receptors, G-protein coupled receptors and others 
to elicit various responses directed towards the destruction 
of bacteria (though antimicrobial peptides or AMPs), 
elimination of infected cells (by apoptosis) or invocation 
for help (through cytokines and chemokines).  
 
lesions resembling chronic granulation tissue with a full 
range of inflammatory and immune cells and considerable 
destruction of structural cells and proliferation of 
epithelium and granulation tissue in a frustrated healing 
response (8). This review addresses the early bacterial-
epithelial cell interactions and the subsequent responses of 
the epithelial cell.  It includes discussion of the role of 
epithelial cell Toll-like receptors (TLRs) responding to 
different bacterial challenges, the variable antimicrobial 
peptides released in response to these insults and the host 
signaling responses which produce the cytokine and overall 
cellular response of these cells in terms of protein secretion, 
apoptosis or cell lysis (overview presented in Figure 1). 

 
3. EPITHELIAL CELL FUNCTIONS 

 
3.1. Epithelial cells in host defense 

Epithelial cells line the body and have a vast 
array of functions including being a permeability barrier for 
ingress and egress of everything from ions and molecules 
to bacteria (9). The outer epithelial cell layer is also the 
habitat for a multitude of commensal bacteria and is the 
first physical barrier which pathogenic microbes encounter 
(9,10). Epithelial cells work in concert to mount 
inflammatory and antimicrobial responses and may be 
involved in triggering adaptive immune responses to 
microbes often through dendritic cells or Langerhans cells 
located within the epithelial cell layers (11,12). Epithelial 
cells of the oral mucosa are stratified squamous cells, 
grouped in layers or strata, and these cells work as a team 
in their defensive responses. This contrasts with the highly 

capable neutrophil and monocyte that utilize similar 
systems and additional receptors and molecules permitting 
them to function very effectively alone and with other cell 
types as “professional” defense cells (Figure 2).  Thus, the 
autocrine effects of molecules released by epithelial cells 
for other epithelial cells are important. These molecules 
include the chemokines, which act as alarm or calling 
signals to recruit professional phagocytes and lymphocytes 
to the region.  A multitude of complex activities are 
undertaken by epithelial cells from: 1) apoptosis, designed 
to limit the damage of cell lysis by programmed cell death 
rather than cytolysis where molecules would be released 
that might harm neighboring cells; to 2) initiation of 
inflammation and other host defensive responses by 
proinflammatory cytokine and chemokine release; and 3) 
immediate killing of microbes by production of 
antimicrobial peptides and; 4) release of molecules to 
increase membrane integrity and proliferation to cover 
potential gaps in the epithelial covering and; 5) induction of 
adaptive immune responses (against pathogens in 
conjunction with antigen presenting cells) or tolerance to 
microbes (commensals for example) that do not negatively 
affect the host (6,12,13,14).Epithelial cells are constantly 
bombarded by a vast array of stimuli; from hormones and 
enzymes to microbes and cytokines.  The events that follow 
stimulation involve a labyrinthine course of upstream and 
downstream signals that determines whether a cell 
responds, does nothing, calls for help, mounts an 
antimicrobial response, proliferates or dies.  

 
3.2.  Epithelial innate immunity 

It is important to discuss the typical innate 
immune responses of epithelial cells here and to introduce 
the important role of TLRs.  Innate immunity is now 
recognized as crucial to the host response, is multi-faceted 
and may determine subsequent inflammatory and adaptive 
immune processes.  Variability in these processes may 
explain some of the differences seen in subjects undergoing 
experimental gingivitis (15) and in susceptibility to chronic 
inflammatory periodontal disease (16).  

 
Innate immunity represents the inherited 

resistance to microbial infection and includes specific 
responses directed and detected by pattern-recognition 
receptors (PRRs).  PRRs are strategically located at the 
interface between the mammalian host and microbes, and 
have evolved to recognize conserved microbe-associated 
molecular patterns (MAMPs) (17). Toll-like receptors are 
important PRRs and play a central role in the induction of 
innate immune and inflammatory responses (18,19). Not 
surprisingly, TLRs are expressed predominantly in cells 
which mediate the first line of defense such as neutrophils, 
dendritic cells and monocytes/macrophages and in cells 
that are directly exposed to the outer environment such as 
epithelial cells.  Distinct members of the TLR family 
respond to different types of MAMPs, endowing the innate 
response with a relative specificity (18,19).  For example, 
TLR2 responds to lipoteichoic acid (LTA) and microbial 
lipoproteins, TLR4 to LPS, TLR5 to flagellin and TLR9 
responds to bacterial CpG DNA (18,19). The discovery of 
TLRs and the identification of their ligand repertoire have 
prompted the “bar code” hypothesis of innate recognition
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Figure 2. Epithelial cells trigger a cascade of events in response to microbial insult. These oral epithelial cells are stratified 
squamous layers that can be considered to work as a team in their defensive responses.  Thus, the autocrine effects of molecules 
released by epithelial cells are important. These molecules include the chemokines, which act as homing beacons to recruit 
professional phagocytes, and lymphocytes to the region. The epithelial cells also produce cytokines and anti-microbial peptides 
which both trigger inflammation and kill P. gingivalis, respectively. Therefore, the balance between the microbial insults and the 
level of defensive responses by the epithelial cells may have an effect on the prognosis of periodontitis. The collective events 
happening at the cellular level manifest clinically as inflammation.  

 
of microbes. According to this concept, TLRs read a “bar 
code” on microbes to tailor an appropriate innate response 
(20). For instance, simultaneous activation of TLR5 and 
TLR4 would be interpreted as infection with a flagellated 
gram-negative bacterium. Thus, the host immune system 
detects invading pathogens primarily through an array of 
pattern-recognition receptors which include, but are not 
limited to, the TLRs.  

 
Lipopolysaccharide (LPS) is a major component 

of the outer cell wall of Gram-negative periodontal 
pathogens. It is a key factor in eliciting the inflammatory 
response that can lead to the diseased state (21) and is 
considered an important virulence factor in the 
pathogenesis of periodontal disease. The recognition of 
LPS by inflammatory cells and the transduction of LPS 
signal involve the toll-like receptors and several additional 
molecules, particularly the CD14 receptor and 
lipopolysaccharide-binding protein (LBP) (22,23). 
Recently, base-pair changes in both CD14 and TLR4 genes 

have been described in humans. Arbour et al. (24) 
demonstrated two co-segregating polymorphisms in the 
extra-cellular domain of the receptor of the human TLR4 
gene (Asp299Gly and Thr399Ile).  These mutations were 
found to be associated with decreased airway 
responsiveness after LPS stimulation and suggest a 
functional variability that may affect the host response to 
gram-negative infection.  Meanwhile, a C to T 
polymorphism in the -159  position of  the promoter region 
of the CD14 gene has also been reported (25) and 
associated with increased circulating soluble CD14 levels 
and a higher density of the CD14 receptor in monocytes 
(25,26). Agnese et al. (27) have found a significantly 
higher incidence of gram-negative infections among 

patients with the TLR4 polymorphisms, but no association 

between CD14 polymorphism and the incidence or outcome 
of infection.  Periodontal infection is dominated by Gram-
negative pathogens, so it is reasonable to hypothesize that 
any functional polymorphism in LPS-receptors may affect 
the inflammatory process and the clinical outcomes of 
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periodontal disease.  A word of caution is needed however 
as there are a wide range of TLR and other receptors 
capable of responding to various microbial components.  In 
addition, LPS is only one part of the microbial cell wall and 
numerous studies have shown that responses to whole 
bacteria are so much greater than to LPS alone, 
emphasizing this point (28).  Furthermore, LPS extracted 
from different gram-negative bacteria activates different 
TLRs, and induces different responses (29,30).  Recent data 
has indicated that TLRs may respond not only to bacterial 
but also non-bacterial challenges, such as oxidized low-
density lipoprotein cholesterol (31,32).  Thus, the host may 
respond through inflammation to a wide variety of 
challenges, ranging from a gram-negative bacterial 
infection to excess cholesterol (6).  However, the nature of 
the response differs and its character will depend on 
specific receptors and signal transduction pathways. 

 
Although TLR2 is primarily involved in the 

recognition of peptidoglycans and lipoteichoic acid of 
gram-positive bacteria (24,33), it is also involved in the 
recognition of LPS and other cell wall components of 
Porphyromonas gingivalis (34).  Two functional single 
nucleotide polymorphisms (SNP) at positions 677 (Arg to 
Trp) and 753 (Arg to Gln) have been identified in the TLR2 
gene. These SNPs have been reported to diminish the 
ability of TLR2 to mediate a response to bacterial 
components (35). TLR2 can thus respond to several P. 
gingivalis antigens and thus the polymorphic changes in the 
TLR2 structure may affect the course of periodontitis 
associated with P. gingivalis infection. 

 
3.3.  Role of inflammation in the periodontal tissues 

The primary etiologic agent initiating the 
periodontal diseases is the microbial plaque biofilm which 
accumulates in the gingival crevice. The biofilm bacteria 
irritate the gingiva and induce an “inflammatory response”. 
The rapid, generalized inflammatory processes that occur in 
response to challenges constitute an early step in the 
initiation of the immune response, and are part of the innate 
immune system.  Inflammation is a well-coordinated 
process that involves increased vascular permeability 
followed by migration of polymorphonuclear leukocytes, 
monocytes and lymphocytes into the lesion, and activation 
of cells to secrete inflammatory mediators that guide an 
amplifying cascade of biochemical and cellular events 
(36,37). Although inflammation was once considered a 
nonspecific arm of the immune response, current 
knowledge suggests remarkable specificity with a wide 
ranging repertoire of receptors and corresponding ligands 
are involved.  The specific nature of inflammation allows 
rapid identification and a better tailored response to 
infection (38) or to other threatening external stimuli (7).  

 
The primary role of the inflammatory cascade is 

to protect the host against bacterial invasion. The initial 
recruitment of leukocytes to the infected site is directed by 
chemoattractants or chemical mediators released from 
damaged cells. They migrate into the infected site, creating 
an "inflammatory infiltrate" within the periodontal tissues, 
close to the colonized tooth root surfaces (5). The adhesion 
molecules E-selectin and ICAM-1 are involved in the 

extravasation process of neutrophils out of the blood 
vessels and through  the gingival tissues (39,40,41). In the 
tissue, the neutrophil follows the gradient of chemokines 
such as interleukin (IL)-8 produced by epithelial cells 
following microbial perturbation and crawl towards 
bacteria using ICAM receptors upregulated on fibroblasts 
and epithelial cells. Humoral factors, specific antibodies 
and complement, assist the neutrophils in the protection 
process, particularly in opsonization and phagocytosis. 

 
This review predominantly focuses on the role of 

epithelial cells and thus the innate immune system, in host 
protection against bacteria: but it must be borne in mind 
that this is only one component of the immune system with 
the adaptive response also thought to play an important 
role.  The relative contribution of the different arms viz. 
innate, inflammatory and adaptive immune responses is 
difficult to gauge with our present knowledge base and all 
must be considered. Recently, the innate and inflammatory 
systems have gained increasing attention and clearly have 
enormous influence on the subsequent course of chronic 
inflammatory periodontal disease. The innate immune 
system is the main arm available to epithelial cells in their 
role against bacteria and it contributes with other defensive 
cells to reduce the causative microbial irritation that 
initiates and perpetuates destruction of the periodontal 
apparatus.   

 
Inflammation can be a double-edged sword. On 

one side, the inflammatory response is protective and aims 
to eliminate bacterial invasion into the tissues. Once the 
insult is eliminated, the inflammation resolves, and the 
subsequent immune reactions diminish.  On the other side, 
in more chronic forms of inflammation, the persistence of 
excessive inflammatory mediators leads to destruction of 
the tooth supporting tissues and results in irreversible 
pathological changes such as those seen in periodontitis. 
Periodontitis can therefore be considered as one of the 
chronic inflammatory disorders which include 
inflammatory arthritis, inflammatory bowel disease and 
inflammatory skin diseases among others that share similar 
pathological features. These include inflammatory cell 
infiltration, granulation tissue formation and the loss of 
tissue architecture in the affected organ. In periodontal 
disease, the affected organs include the gingival epithelium 
and the dental attachment apparatus comprising the 
periodontal ligament, cementum, alveolar bone, fibers and 
contiguous connective tissues.  

 
Progression of periodontal disease is due to a 

combination of environment, host-derived and genetic 
factors. Among these factors are pathogenic bacteria, high 
tissue levels of inflammatory cytokines, tissue destructive 
enzymes (including matrix metalloproteinases) and 
prostaglandins, and low levels of anti-inflammatory 
cytokines (40). High levels of inflammatory cytokines such 
as IL-1β and TNF-α have been described in diseased 
periodontal tissues (42) and are bioactive (4). These and 
other cytokines stimulate the production of many mediators 
that accelerate the inflammatory process. Uncontrolled 
production of these inflammatory cytokines may contribute 
to the pathogenesis of the disease.  We have to bear in mind 



P. gingivalis and gingival epithelial cells 

970 

that inflammatory cytokines are essential for clearing some 
bacterial infections (43):  but the same beneficial enhanced 
response can also induce the tissue destruction observed in 
chronic inflammatory conditions such as periodontal 
disease. 

 
4. MICROBIAL CHALLENGE 
 
4.1.  Biofilm interactions 

Gingival epithelial cells are juxtaposed to the 
subgingival dental biofilm and thus form an important part 
of the host’s defense against invasive and non-invasive 
bacteria. Recent research efforts have been geared towards 
understanding the mechanisms by which gingival epithelial 
cells modulate bacterial challenges. One bacterial species 
that has been extensively studied is Porphyromonas 
gingivalis, a gram-negative anaerobe that has been 
considered a periodontal pathogen for almost 20 years (44). 
P. gingivalis is a frequently isolated member of the 
unattached subgingival plaque - the most bioactive area of 
the tooth-biofilm environment (45). Elevated levels of 
various genotypes of this organism have been detected in 
periodontitis-affected areas and almost none in healthy sites 
(46). P. gingivalis, together with Tannerella forsythia and 
Treponema denticola comprises the red complex of oral 
bacterial species. Reviews by Socransky (2,47) on the 
microbial ecology of the periodontium are available for 
detailed information on this topic. However, the scientific 
reports on the fate of gingival epithelial cells that come in 
contact with P. gingivalis are few and are somewhat 
contradictory.  

 
Periodontal disease arises from a polymicrobial 

infection of the gingival pocket by facultative and obligate 
anaerobic bacteria and the interactions among the different 
organisms in this biofilm likely influences the virulence of 
this microbial community.    Diverse mechanisms utilized 
by P. gingivalis and A. actinomycetemcomitans modulate 
the host innate response and these mechanisms may 
function synergistically to facilitate colonization, 
persistence and virulence of multi-species microbial 
populations in the gingival pocket. For example, the 
reduced induction of IL-12 may also affect the activation of 
cytotoxic T cells or natural killer cells resulting in reduced 
clearance of host cells that have been invaded by P. 
gingivalis or A. actinomycetemcomitans (48,49).  In 
addition, the antagonism of TLR4-mediated responses by 
specific isoforms of P. gingivalis LPS may function 
synergistically to reduce the inflammatory response 
induced by organisms such as A. actinomycetemcomitans, 
whose LPS is a strong agonist of TLR4-mediated signaling.  
 
4.2.   Signal transduction features relevant to host 
sensing of microbes  

Agonist-induced activation of the TLR complex 
initiates a diverse array of intracellular signaling pathways 
that can dictate both qualitative and quantitative aspects of 
the host inflammatory response.  The fundamental basis of 
this initial TLR-mediated signal transduction depends upon 
the association as well as the recruitment of various adapter 
molecules that contain the structurally conserved TIR-
domain.  To date, the best-described TIR-containing 

adaptor molecules that impart specificity to a given TLR 
signal transduction pathway include MyD88, TIRAP, 
TRIF, TRAM and SARM (50-53) (Figure 3).  In turn, these 
adaptor molecules provide the necessary framework to 
recruit and activate downstream kinases and transcription 
factors that subsequently dictate the nature, magnitude, and 
duration of MyD88-dependent and MyD88-independent 
responses (50-53). Much attention has been focused on 
discerning the molecular differences between the MyD88-
dependent and MyD88-independent pathways. It appears 
that a major mechanism modulating the nature and 
magnitude of the inflammatory response to a variety of 
TLR-agonists involves the recruitment and activation of 
specific kinase pathways.  In this regard, most studies 
identifying and characterizing the regulatory processes that 
govern the inflammatory response to P. gingivalis or 
associated virulence factors have highlighted the 
importance of the mitogen-activated protein kinase 
(MAPK) and phosphatidylinositol-3 kinase (PI3K) 
pathways.  
 
4.3 Adherence and invasion by P. gingivalis  

It is estimated that over 700 different species are 
capable of colonizing the oral cavity (Aas et al. 2005) and 
subgingival plaque serves as a niche for about 300-400 
bacterial species; however, less than 50 species are 
considered to be putative periodontal pathogens (54). Both 
subgingival residents, Actinobacillus 
actinomycetemcomitans and P. gingivalis are considered as 
major putative periodontopathic bacteria (3). Another 10–
20 species are thought to play a role in the pathogenesis of 
destructive periodontal disease (1) . Among the oral 
bacteria, P. gingivalis, Prevotella intermedia, 
Fusobacterium nucleatum and A. actinomycetemcomitans 
have been reported to efficiently invade oral epithelial cells 
in vitro (55-63). Cell invasion is a well-orchestrated 
strategy that is considered an essential feature of the 
pathogenesis of P. gingivalis induced periodontal disease. 
Invasion, however, is preceded by cell adherence. The 
different factors that play essential roles in the both 
adherence and invasion processes range from inherent 
virulence factors like bacterial capsule and fimbriae to the 
host cell’s membrane receptors. How invasion leads to loss 
of tissue is unknown, although intracellular P. gingivalis 
with type II fimbriae has been found to clearly degrade 
integrin-related signaling molecules, paxillin, and focal 
adhesion kinase, which disables cellular migration and 
proliferation (64). Invasion may be a means of microbial 
persistence in the gingiva creating a reservoir from which 
the bacteria can exert detrimental effects through the host 
defensive responses; however, due to an inability to culture 
half of the of the bacteria present in the oral cavity, there is 
still uncertainty as to which bacteria are essential in causing 
periodontitis and the degree to which the disease process is 
polymicrobial.  

 
4.4.   P. gingivalis capsule hydrophobicity and 
adherence ability 

Several polysaccharide capsular serotypes, 
designated as K-antigen serotypes and K (-) strains are 
known for P. gingivalis (65,66). The prevalence of the 
capsular serotypes differs across populations (67-69). The
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Figure 3. TLR Pathway - TLRs signal after P. gingivalis perturbation by MyD88 –dependent and –independent pathways. After 
sensing their microbial ligand they combine with their adaptor proteins and trigger a series of signals that result in a variety of 
actions. Primary cytokines like Interleukin-1b are then produced and are released to bind with their specific receptors. This 
results in the production of secondary cytokines like IL-6 and chemokines like IL-8 or in the activation of the caspase-dependent 
apoptosis pathway. When the cells survive because of FLIP (FLice/Caspase 8- Inhibitory Protein) activation, the cytokines and 
chemokines produced can perpetuate their function and the wider spectrum of immunological activity comes into action. 
 
capsular serotypes have been shown to influence the 
adhesion capacity of P. gingivalis in in vitro studies. 
Dierickx et al. (70) reported that the non-encapsulated 
strains adhered more than the capsulated variants. They 
attributed their results to the hydrophobicity of the non-
encapsulated strains that adhere and aggregate better than 
the capsulated strains (65). However, hydrophobicity varies 
depending on the surface characteristics of the cell. Various 
amounts of lipopolysaccharides, different types and 
numbers of cell surface appendages and capsular material 
may alter the cell’s hydrophobic properties (71-76). Growth 
conditions and the expression of fimbriae based on the 
phase condition also influence the overall degree of 
hydrophobicity (77-79).   

 
In a study on cultured periodontal pocket 

epithelium cells, the morphological changes associated 
with cell death occurred faster for mono-layers inoculated 
with non-encapsulated strains of P. gingivalis (80). The 
authors concluded that dead pocket epithelial cells harbor 

more P. gingivalis cells, with the non-encapsulated strain 
associating in higher numbers. Consequently, the damage 
they caused to the host cell occurred faster than in the 
encapsulated strain. In another study, P. gingivalis strains 
which showed high adherent activity had higher numbers of 
peritrichous fimbriae on the surface, whereas, fimbriae on 
the strains showing low adherent ability were barely 
apparent (81). There is a consensus among the past and the 
recent studies that the hydrophobicity of P. gingivalis 
leading to adherence on host cells is more likely related to 
fimbrial expression rather than capsular structure itself (63, 
81-85). 

 
4.5.   P. gingivalis fimbriae, genotypes and varying 
adhesion/invasion efficiency 

Fimbriae are important in the adherence and 
colonization of P. gingivalis (86-89). To date, six P. 
gingivalis fimbrial genotypes (I–V and Ib) have been 
identified according to the different nucleotide sequences 
of the fimA genes encoding the major fimbriae, FimA (62, 
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90-93). The fimA gene is present in all fimbriated strains 
but not in afimbriated strains (94) and recombinant 
fimbriae is less adherent than endogenous fimbriae (95). 
There is strong evidence supporting a crucial role for FimA 
in P. gingivalis adhesion in mammalian cell types; indeed, 
non-fimbriated mutants of P. gingivalis, constructed by 
inactivation of the fimA gene, displayed reduced adhesion 
and invasion of epithelial cells compared to wild type P. 
gingivalis (96). A major epithelial cell binding domain of 
P. gingivalis fimbriae is the amino-terminal domain 
corresponding to amino acid residues 49 to 90 of the 
fimbrillin protein (88).  The other type of fimbriae, the 
short fimbriae, are not as extensively studied as the long 
fimbriae (FimA) but they are required for cell to cell 
interaction and are important in the formation of biofilm 
(97,98).  

 
The different genotypes of fimbriae relate to the 

differences in P. gingivalis virulence and pathogenecity as 
evidenced by their varying capacity to adhere and invade 
the host cell. Among the six variants, fimA genotypes I and 
II seem to possess the greater adhesive ability and invasive 
efficiency; but whether their invasive efficiency correlates 
with their adhesive ability still remains unclear. Nakagawa 
et al. (83) examined the abilities of various recombinant 
FimAs to adhere to human pharyngeal carcinoma epithelial 
HEp-2 cells and to invade these cells over the course of 6 
hours. They found that adhesion and invasion peaked after 
4 hours of incubation. In addition, type II rFimA-
microspheres adhered most prominently to HEp-2 cells and 
invaded significantly more than the other strains.  A strong 
conclusion was drawn from the study, stating that P. 
gingivalis strain with type II fimA had the greatest abilities 
to adhere to and invade epithelial cells. Recently, however, 
Umeda et al (85) reported that P. gingivalis type II 
fimbriae’s adhesive ability did not necessarily correlate 
with its invasive efficiency. P. gingivalis strain 33277, a 
FimA I carrier, was not as adhesive but it was more highly 
invasive than KdII 865 (FimA II). The authors suggested 
that other factors beyond adherence promoted by major 
fimbriae influence the ability to invade epithelial cells. 

 
To test the virulence of P. gingivalis Type II 

fimbriae in epithelial cells, mutants were generated by 
substituting type I fimA with type II fimA and vice-versa 
using plasmid vectors (99). The substitution of type I fimA 
with type II enhanced bacterial adhesion/invasion to 
epithelial cells, whereas substitution with type I fimA 
resulted in diminished efficiency. Furthermore, type II 
clones swiftly degraded cellular paxillin and focal adhesion 
kinase, and inhibited cellular migration, whereas type I 
clones and failed to do so. The results show that type II 
fimA determines the virulence of P. gingivalis.  

 
Epithelial cells function as a physical barrier and 

in immune surveillance through their ability to elicit an 
innate immune response. Human gingival epithelial cell 
(HGECs) express pattern recognition receptors (PRRs) 
including Toll-like receptors (TLR) 1, 2, 4 and 6 that 
respond to P. gingivalis (100) and in fact possess mRNA 
for all TLRs except TLR8. P. gingivalis FimA is detected 
by PRRs resulting in the activation of 

monocytes/macrophages (101,102). In HGECs, however, 
FimA was not able to elicit a response even in the presence 
of CD14, an essential coreceptor for TLR-2 mediated 
response (28). This reflects the different tactics used by P. 
gingivalis when interacting with different host cell types or 
a host strategy to limit inflammation. 

 
Yilmaz and colleagues (103) reported that P. 

gingivalis fimbriae promote adhesion to gingival epithelial 
cells through interaction with β1 integrins. Integrins are 
major adhesion receptors that make transmembrane 
connections to the cytoskeleton and activate many 
intracellular signaling pathways (104). The fimbriae-
integrin association is thought to represent a key step in the 
induction of the invasive process and the subsequent cell 
responses to P. gingivalis infection (103). 

 
Studies on bacterial fimbriae offer a much clearer 

understanding on the role of bacteria and their components 
in the pathogenesis of periodontitis. However, a certain 
degree of prudence must be observed in designing research 
methodologies for growing bacteria. A screening study of 
P. gingivalis clinical isolates revealed that about 60% of the 
21 strains studied had fimbriae (105); but whether this 
actually represents the true percentage before in-vitro 
propagation of the bacteria is not known. Several important 
environmental factors like growth temperature, absence 
versus presence of glucose and static versus shaking broth 
may enhance or repress fimbrial synthesis or influence the 
degree of fimbriation by up to 90% (106-110). Thus, the 
outcome of in-vitro bacterial culture, regardless of it being 
a clinical isolate or a laboratory strain, may have an effect 
on bacterial invasion.  As discussed above, bacterial strains 
with high number of peritrichous fimbriae were more 
adherent, a virulence factor that is important in the invasion 
process. Research studies should attempt to closely mimic 
the oral environment that permits the “normal”, 
uninterrupted growth of bacteria and researchers must 
relate results within the context of our best knowledge of 
the actual scenario pertaining in the periodontium. 
Although the technique for bacterial propagation has not 
changed extensively over the years, there is a need to 
describe in detail the methods used in all studies that utilize 
bacterial cultures. This way, other groups wishing to 
replicate the studies may religiously follow the materials 
and methods previously employed. This will minimize 
conflicting results that could restrict research advances on 
bacterial interaction with oral epithelial cells.  

 
4.6.    Other factors mediating adhesion and invasion 
efficiency 

The interaction of P. gingivalis with the oral 
epithelium triggers the release of a vast array of proteins 
that mediate adherence or invasion. Proteases have been 
implicated in the pathogenicity of P. gingivalis and 
gingipain, a predominant member of the proteinase family, 
is secreted on the surface of P. gingivalis (111) and can 
cripple or negate host defense proteins by various 
mechanisms (111-115). Gingipain genes rgpA and rgpB 
encode Arg-gingipains (Rgp) A and B, respectively and 
these enzymes possess arginine-specific amidolytic activity, 
while a third gene, kgp, encodes an enzyme with lysine-



P. gingivalis and gingival epithelial cells 

973 

Table 1.   Porphyromonas gingivalis and apoptosis studies 
Cell type Pg strain1 Apoptosis Pathway References 

ATCC 33277  
ATCC 49417  
A7A1-28 
W83  

Inhibition JAK/Stat 
Phosphatidylinositol 3-Kinase/Akt 
Bcl-2 

139 
138 
137 

ATCC 33277 Induction NFκB/Fas–FasL 14 

Oral Epithelial cells 
 

W83 
FLL33 
V2296 

Induction Not reported 
 

116 

W83  
FLL32 

Induction Caspase-3  119 

FDC 381 Induction Not reported 129 

Endothelial cells 

FDC381 Induction Not reported 130 
ATCC 33277 Induction Caspase-3 128 
ATCC 53977 Induction Not reported 127 

Fibroblasts 

A7436 Induction Not reported 126 
Cardiac myoblasts ATCC 33277 Induction p38, ERK  215 

W50 Inhibition Not reported 135 
HG-184  
A7A1-28  
FDC 381 

Late Induction Not reported 136 
PMN 

FDC 381 Inhibition Not reported 134 
Lymphocytes W50 Induction Not reported 132 
Monocytes ATC33277 Inhibition ERK- and MAPK-dependent expression of p21 133 

1Live cells and/or cell extracts 
 

specific amidolytic activity (Lys-gingipain [Kgp]) (116). 
The adhesin domains of gingipain are considered important 
for its virulence. Antibody raised against the recombinant 
adhesin domain of Arg-gingipain A blocked bacterial 
attachment to epithelial cells (117). In addition, gingipains, 
especially Kgp, are involved in the degradation of epithelial 
cell adherens junctions which may facilitate bacterial 
invasion through cell layers (112). The bacteria can also 
induce degradation of N-cadherin, a group of glycoproteins 
responsible for the calcium-dependent cell-to-cell adhesion 
(118). Gingipains from P. gingivalis W83 have also been 
shown to induce N- and VE-cadherin and integrin b1 
cleavage in endothelial cells which cause cell detachment, 
disruption of cell adhesion and both caspase- dependent 
and caspase-independent apoptosis (119,120). 

 
P. gingivalis exploits several other ways to fulfill 

epithelial cell adhesion and invasion. It has been shown to 
preferentially adhere to shorter chains of human glycolipids 
which might act as a first step in bacterial invasion process 
(121). Epithelial cytokeratins may also act as receptors for 
P. gingivalis fimbriae (89) . In addition, fimbriated P. 
gingivalis induces formation of integrin-associated focal 
adhesions with subsequent remodeling of actin and tubulin 
cytoskeleton for its accommodation inside the host cell 
(122) and can selectively target components of the 
mitogen-activated protein (MAP) kinase pathway, 
specifically c-Jun N-terminal kinase to complete the 
invasion process (123). MAP kinases are essential for cell 
signaling, cytokine responses and cytoskeletal 
reorganization among others (124).  

 
4.7.   Cell fate after P. gingivalis invasion 

Gingival epithelial cells are among the first line 
of cellular defenses against P. gingivalis infection in the 
oral cavity. With such an important role, understanding 
their fate after bacterial invasion could shed more light on 
the pathogenesis of periodontitis, the most common cause 
of tooth loss among adults. As discussed above, P. 
gingivalis gains entry into the cell with the help of inherent 
virulence factors like fimbriae and proteases and through

 
several other factors such as host cell receptors and surface 
glycolipids. However, the cascading events that happen 
after invasion of gingival epithelial cells are not as 
extensively explored as in other cells like macrophages and 
endothelial cells or in other tissues like the intestines. 
Despite limited scientific literature, the fate of epithelial 
cells after invasion could be dichotomized generally into 
inhibition or induction of apoptosis.  

 
Kerr et al 1972 (125) first described the two 

forms of cell death, necrosis and apoptosis. Since then, the 
number of articles describing the two processes has 
significantly surged into a combined number of more than 
320,000 (Pubmed search). The effect of P.gingivalis on 
apoptosis in several different cell types has been 
extensively studied (Table 1). Although the literature is 
consistent regarding apoptosis induced by whole bacteria or 
Porphyromonas gingivalis components in fibroblasts (126-
128), endothelial cells (119,120,129,130), cardiac 
myoblasts (131), lymphocytes (132), monocytes (133) and 
PMNs (134-136), a controversy still exists regarding 
epithelial cells. In agreement with the studies in PMNs, 
monocytes and macrophages, Nakhjiri et al (137), Yilmaz 
et al (138) and Mao et al (139) have shown inhibition of 
apoptosis, while in agreement with the studies in 
fibroblasts, endothelial cells, cardiac myoblasts and 
lymphocytes, Chen et al (118) and Brozovic et al (14) have 
shown induction of apoptosis in epithelial cells.  

 
Live Porphyromonas gingivalis ATCC 33277 at 

an MOI:100 and MOI:1000, was shown to induce transient 
DNA fragmentation at 2 hours but apoptosis was no more 
evident at 24 hours. Furthermore, infection with 
Porphyromonas gingivalis provided resistance to 
camptothecin-induced apoptosis. The anti-apoptotic 
molecule Bcl-2 and the pro-apoptotic Bax correlated with 
the results at the mRNA and protein level, (137). The 
expression of pro-apoptotic molecule Bax was transiently 
elevated but declined after 24 hours. In contrast, the anti-
apoptotic molecule Bcl-2 was up-regulated by P. gingivalis 
only after 24 hours of stimulation. On the other hand, the 
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anti-apoptotic Bcl-xl and the pro-apoptotic Bcl-xs failed to 
show any correlation to the apoptosis detected by histone-
associated DNA fragment ELISA. In another related study, 
the activation of phosphatidylinositol-3/Akt pathway, a 
known inhibitor of apoptosis, contributed to the survival of 
primary epithelial cells 24 hours post-infection with P. 
gingivalis 33277 at an MOI:100 and inhibition of 
staurosporine –induced apoptosis (138). SiRNA blocking 
of Akt and JAK1 abrogated the ability of P. gingivalis to 
block apoptosis suggesting that P. gingivalis can block 
apoptotic pathways in gingival epithelial cells through 
manipulation of the JAK/Stat pathway that controls the 
intrinsic mitochondrial cell death pathways. This effect on 
apoptosis was dose dependent and strain independent (139).  

 
On the other hand, protease-active extracellular 

protein preparations from Porphyromonas gingivalis W83 
and isogenic mutants with different levels of proteolytic 
activity were shown to induce apoptosis in human epithelial 
KB cells, as determined by microscopic observation of the 
apoptotic morphology. The percentage of apoptotic cells at 
48 hours correlated with the proteolytic activity of the 
bacterial strain (118). Inaba et al. (140) investigated 
epithelial cell death and invasion using microspheres 
conjugated to P. gingivalis vesicles (vcMS). Apoptotic cell 
death was induced by vcMS at six hours in P. gingivalis-
invaded cell. Heat-killed Porphyromonas gingivalis ATCC 
33277 at an MOI:100 was also shown to induce apoptosis 
in primary human gingival epithelial cells in a time-
dependent manner, as determined by DNA fragmentation 
and caspase-8 and -3 activation. Apoptosis was more than 
two-fold higher than the control at 24 hours, and it was 
induced through Fas-FasL upregulation (14). This was 
supported by a similar study on gingival fibroblasts that 
showed an activation of caspase-6, caspase-7, caspase-9 
and caspase-3 starting at around 24 hours, coincident to 
apoptotic DNA damage (128). In addition, the invasion 
process needed a high MOI for optimal infection and 
plateaued at MOI 200. DUTP-biotin nick end labeling 
(TUNEL) kinetics showed that P. gingivalis apoptosis is a 
late process in infection and that mutant P. gingivalis is less 
proficient in this regard (128).  

 
The later studies suggesting induction of 

apoptosis in epithelial cells by P. gingivalis are in 
agreement with several ex vivo studies in which apoptosis 
has been detected in situ in human gingival tissue at sites of 
chronic bacterially induced inflammation (141,142). The 
majority of the apoptotic activity is evident in the 
superficial layers of the junctional epithelium (142) and 
within the connective tissue (141,142), and is expressed in 
epithelial cells, fibroblasts and inflammatory cells. 
Caspase-3 and -7, two major effector caspases associated 
with apoptosis, were also shown to be activated to a higher 
extent in tissue homogenates from patients with chronic 
periodontitis than in healthy tissue (143) and this increased 
caspase activation was detected in situ in inflamed gingival 
biopsies. A considerable number of cells in the gingival 
epithelium and connective tissue also revealed active 
caspases, whereas in healthy tissue almost no caspase 
activation was observed. These results suggest that caspase 
activation may be functionally involved in periodontitis-

associated tissue damage. To correlate their findings with 
the role of P. gingivalis in apoptosis, the authors co-
incubated HaCat cells with P. gingivalis strain MccM 527. 
A 20 to 30 percent reduction in cell viability was seen, but 
the characteristic membrane blebbing or chromatin 
condensation seen in apoptotic cells was only noted after P. 
gingivalis-infected mononuclear cells were seeded into the 
culture wells.  

 
The fate of gingival epithelial cells after bacterial 

invasion presents a challenging topic that still needs further 
investigation. Periodontitis is a chronic disease that initiates 
after a long-standing and continuous inflammatory insult to 
the tissues that has overcome the immune system. Different 
studies employ different research methodologies, but the 
peculiar environment that favors the propagation of P. 
gingivalis allowing it sufficient time and continuity to 
infect cells should be kept in mind.  

 
5. EPITHELIAL DEFENSES 

 
5.1.   Anti-microbial peptides 

To maintain health, the mucosal secretions of oral 
epithelia contain multiple anti-microbial proteins that act as 
early host-defense factors in response to microbial 
challenges. Saliva is a complex mixture of protein exudates 
from salivary glands and contains several antimicrobial 
peptides.  Recently, Abiko et al (144) have reviewed 
defensins in saliva and salivary glands and speculated that 
the majority of antimicrobial peptides that are present in 
saliva are also secreted by oral keratinocytes. Over 800 
eukaryotic antimicrobial peptides (AMP) have been 
identified and are accessible in antimicrobial peptide 
databases. Defensins typically share a few key amino acids 
that are needed for overall structure, but otherwise, they 
vary greatly between the different family members ranging 
from 5 to 50 kilo Daltons with a net positive charge 
(145,146). It is thought that this diversity of antimicrobial 
peptides allows the innate immune system to respond 
effectively to a wide range of microorganisms. Moreover, 
antimicrobial resistance may be less likely to develop when 
the host responses involves multiple antimicrobial proteins 
to a single pathogen.  

 
Recent studies indicate that numerous 

antimicrobial proteins like neutrophil defensins, beta 
defensins, lysozyme, BPI, BPI-like proteins, histatins, 
proline-rich proteins, cathelicidin LL-37, cystatins,  mucins 
and secretory leukoproteinase inhibitors (SLPI) are found 
in the oral cavity (147-156). These antimicrobial protein 
families represent a variety of antimicrobial functions 
including membrane permeabilization, cell wall 
degradation, bacterial oxidation and others (157,158). 
Several models have been proposed for the mechanism of 
action of these antimicrobial peptides. The cationic 
peptides interact with negatively charged phospholipid 
groups on the outer membrane of the microbial target cells 
via electrostatic attraction (159). According to “Shai-
Matsuzaki-Huang model”, defensins destroy microbes by 
disrupting the membrane integrity (159). Apart from 
bacteria, human defensins have been shown to have activity 
against fungi, viruses and protozoa (160,161). Recent 
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evidence suggests defensins also have chemoattractant 
properties for cells expressing the chemokine receptor 
CCR-6, such as dendritic cells (162). This suggests that 
defensins play a crucial role bridging innate and adaptive 
immune systems (163,164).       

 
Cationic proteins constitute a large group of 

antimicrobial proteins that represent different 
antimicrobial activities. Their importance is illustrated 
by the fact that depletion of cationic proteins in body 
fluids also removes antibacterial activity (165). The 
different antimicrobial functions of cationic peptides are 
represented by: i) defensins, cathelicidin and PLUNC 
that can interact directly with the bacterial cell 
membrane leading to its permeabilization (166); ii) 
lysozyme, which cleaves the peptidoglycans of bacterial 
cell walls leading to membrane rupture and; iii) the 
antifungal histatins that bind to a fungal cell membrane 
receptor to enter the cells and block mitochondrial 
function (167). 

 
Both the overexpression and the lack of 

antimicrobial peptides have been linked with the 
development of oral diseases. Defensin expression is 
induced by oral bacteria (168) and the levels of 
defensin-1 are significantly higher in patients with oral 
inflammation than in normal controls (169). A typical 
example to illustrate the important role of AMP is 
morbus Kostmann disease, a congenital neutropenia that 
is associated with recurrent infections and periodontal 
disease and deficiencies in LL-37 and α-defensins 
HNP1-3 (170). The finding that one morbus Kostmann 
patient who had undergone bone marrow transplant had 
normal levels of LL-37 and no periodontal disease 
underscores the potential role of antimicrobial peptides 
in host defense of the oral cavity (170). P. gingivalis, 
however, has been shown to be resistant to human 
derived LL-37 and dhvar4a antimicrobial peptides 
(171).  LL-37 peptide is more sensitive to bacteria as it 
has higher protein binding potential and lower 
hydrophobicity compared to hBD-2 (172). 

 
Evaluating the levels of antimicrobial peptides 

may have diagnostic value. Low levels of HNP1-3 
correlated with high caries incidence in children. However, 
other antimicrobial peptides (e.g. hBD-3, LL-37) did not 
correlate with caries incidence (173). While these single 
protein deficiencies are linked to specific diseases, they are 
different from other conditions like xerostomia in Sjögren’s 
syndrome where rampant oral infections and dental decay 
occur as a result of the depletion of all salivary proteins. 
This difference emphasizes the importance of 
complementarity in the mucosal innate immune defense 
(158).  With a more comprehensive understanding of the 
antimicrobial proteins that act in the oral cavity, it is 
possible that protein expression signatures (“fingerprints”) 
can be developed for the diagnosis of individual oral 
diseases or the identification of at-risk individuals, prior to 
the development of the disease. Several families of 
antimicrobial proteins have been extensively studied and 
can be reviewed elsewhere (157,167,174-176).  

 

Synthetic antimicrobial peptides hBD-1, 2, 3 and 
LL-37 were tested against oral pathogens and cariogenic 
bacteria (177). F. nucleatum was found to be highly 
susceptible to hBD-2 and -3 while S. mutans was highly 
susceptible to hBD-3.  In another related study, aerobes 
were 100% susceptible to HBD-2 and HBD-3, whereas 
only 21.4 and 50% of the anaerobes were susceptible to 
HBD-2 and HBD-3, respectively (178). Antimicrobial 
activity of synthetic human BD-2 against A. 
actinomycetemcomitens, P. gingivalis and S. mutans were 
tested by antibacterial broth assay and diffusion assay 
(179). It was observed that the antimicrobial activity of 
hBD-2 was approximately equal to that of minocycline at 
equimolar concentrations.  The hBD-3 was shown to have 
bactericidal activity on oral bacteria such as S. mutans, S. 
sanguinis, S. sobrinus, L. acidophilus, A. 
actinomycetemcomitens and P. gingivalis (180).  

 
Recently, adrenomedullin, a peptide expressed in 

oral epithelial cells was also claimed to be antimicrobial in 
function (181,182).  Adrenomedullin was also found to be 
present in gingival crevicular fluid in the range of 1-2 
µg/mL (183).  However, the concentration of this 
antimicrobial peptide and its role in periodontal disease is 
still debatable and the lack of sensitivity to adrenomedullin 
may enable P. gingivalis resistance (184). Other peptides 
like cathelicidins (SMAP29 and CAP18) also have been 
shown to exhibit antimicrobial activity against P. gingivalis 
(185). Cysteine proteases, cystatin and cystatin derived 
peptides also displayed antimicrobial properties (186). 

  
5.2.   BPI-like proteins 

Several of the human Bactericidal/Permeability-
Increasing or BPI-like proteins correspond to previously 
identified animal proteins including parotid secretory 
protein (PSP) (187), palate, lung and nasal epithelium 
carcinoma associated protein (PLUNC) (Weston et al., 
1999), bovine salivary proteins (BSP)30 (188) and von 
Ebner's minor salivary gland protein (VEMSGP) 
(Genbank# U46068). The human proteins have been 
termed the PLUNC family (189) or BPI-like proteins (190)  
BPI is an antibacterial protein with selectivity for Gram-
negative bacteria. In addition, BPI binds 
lipopolysaccharides and exhibits anti-inflammatory activity 
by inhibiting the binding of LPS to LBP (191). The 
molecular structure has been elucidated and consists of two 
BPI domains, BPI1 and BPI2 (192). This structure formed 
the basis for the identification of the BPI-like proteins. 

 
The BPI-like proteins are typically either about 

250 amino acids in length or more than 450 amino acids. 
The predicted structure of these proteins is related to the 
BPI structure, containing one or two of the BPI domains. 
As an example, PSP and PLUNC are similar to the N-
terminal BPI1 domain of BPI while the longer VEMSGP 
and BPIL2 contain both a BPI1 and BPI2 domains.  As is 
the case in other families of antimicrobial proteins the 
sequence conservation among BPI-like proteins is poor, 
with the exception of two conserved Cys residues. These 
residues are also found in BPI where they form a disulfide 
bridge.  
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Figure 4. Model for microbial plaque and epithelial cell interactions in the initial stages.  In later stages neutrophils, macrophages 
and adaptive immune responses predominate. 
 
5.3.   Expression of BPI-like proteins 

The expression of BPI-like proteins in human 
gingival keratinocytes is influenced by oral bacteria such as 
P. gingivalis and pro-inflammatory cytokines such as 
TNFα and IL-1b (193). In the airways, PLUNC expression 
is upregulated by retinoic acid (194) and expression has 
been linked to epithelial injury, irritation and cancers (195-
197). In contrast, PLUNC expression is downregulated in 
nasopharyngeal carcinoma (198), in some smokers (199) 
and in seasonal allergic rhinitis (200). 

 
5.4.   Function of BPI-like proteins 

The differential expression of PLUNC in 
epithelial injury and irritation suggests that PLUNC or the 
other BPI-like proteins could play a role in inflammation. 
Consistent with this suggestion, PLUNC binds to LPS 
(201). Indeed, Geetha et al (202) found that peptides based 
on the predicted PSP structure block the binding of LPS to 
LBP and block the LPS stimulated secretion of TNFα from 
macrophages. In addition, intact PSP is antibacterial to P. 
aeruginosa and preliminary data suggest that PSP peptides 
are antibacterial to Gram negative but not Gram positive 
bacteria (203). Antibacterial and anti-inflammatory activity 
has also been reported for human PLUNC (204). 

 
5.5.   Mechanism of antimicrobial peptide induction 

The molecular mechanism of antimicrobial 
peptide regulation in oral epithelia is not fully understood.  
The involvement of TLR4 in dendritic cells (205), TLR2 
and TLR4 in intestinal epithelial cells (206) and IL-1R in 
human epidermal cultures (207) have been reported. It has 
also been demonstrated that P. gingivalis induces cytokine 
responses and antimicrobial peptide secretion (208).  
Recently, hBD-2 induction has been associated with the 
Mitogen Activated Protein Kinases (MAPKs) signaling 
pathway in gingival epithelial cells (209) with JNK in 
PC12 and mesangial cells (210,211). It has also been 
shown that different bacteria regulate the expression of 
antimicrobial peptide by differentially activating either NF-
kB, p38 MAPK or JNK signaling pathways (212). 

The periodontal disease niche is an environment 
in which the bacterial population is present as a biofilm 
adherent to the tooth substance within the gingival crevice, 
with constant exposure to serum and tissue derived gingival 
crevicular fluid.  A model could be proposed based on 
current knowledge wherein the bacterial biofilm constantly 
produce proteases and the host produces locally 
antimicrobial peptides, and the whole area is bathed in 
serum transudate that contains a vast range of molecules 
including protease inhibitors (4,213,214) and other 
systemic host defense molecules such as antibodies and 
complement.  Clearly there is balance between pathogen 
and the host as in the case of Crohn’s disease (164) (Figure 
4) but upsets in this balance could lead to exacerbations 
which would be manifested as local abscesses or periods of 
tissue breakdown and this is consistent with the episodic 
nature of periodontal destruction. The biofilm produces 
proteases ostensibly to help garner host tissue molecules for 
nutrition but also to disrupt host attack on the biofilm 
through antimicrobial peptides and systemically 
complement and antibodies.  The release of cytokines by 
the epithelial cells as well as chemokines and 
chemotactic molecules produced by bacteria and from 
complement ensures the ingress of phagocytes to further 
attack the host biofilm.  The professional phagocytes are 
a further important aspect, not however within the remit 
of this review, but must be borne in mind when 
considering the complete periodontitis lesion host 
microbe interaction.  

 
The shedding of bacteria from the biofilm that 

then attach to the host epithelial barrier and undertake 
invasion, apoptosis, cell killing etc is a complex additional 
interaction that current knowledge implies we consider 
although no definitive in vivo proof currently pertains. Thus 
the initial outcome of the microbial-host conflict is 
dependent on the magnitude and nature of both the 
microbial biofilm challenge and the cytokine and 
antimicrobial peptide secretion by epithelial cells and in the 
later stages by phacocytes and adaptive immune responses. 
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6. CONCLUSION 
 
The cellular and soluble defenses of the oral 

cavity are engaged dynamically in a continuous response to 
microbial challenges. P. gingivalis interacts with oral 
epithelial cells through TLRs and from there, various 
responses are elicited including: cytokine and antimicrobial 
protein secretion, apoptosis, necrosis and others. These 
responses are directed towards the microbial biofilm and 
trigger a plethora of local and systemic reactions (viz. 
recruitment and development of inflammatory and immune 
cells), directed towards eliminating the source of infection 
and minimizing and resolving cellular or structural loss. 
The epithelial cells, being part of the innate immune 
system, possess a natural ability to ignore, fight against 
offending microorganisms, and/or call for help via the 
cytokines and chemokines as needed.  
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