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1. ABSTRACT 
 
 The very purpose of the endometrium is human 
reproduction, a process made possible by the interaction 
between immune and endometrial cells. While endometrial 
cells seem to be responsible for immune cell infiltration, 
they also have the capacity to limit the infiltration and 
activity of immune cells. This cellular interaction is 
prominent not only during the implantation window, but 
also during labor. Indeed, the proper interaction between 
the endometrium and trophoblast and immune cells enables 
proper implantation and also determines placental 
detachment. The molecular alterations observed during 
implantation are well documented; however, the molecular 
basis of placental abruption still remains unclear. The 
proper placental detachment during the third stage of labor 
is a crucial event in the overall course of labor, whereas 
placental abruption leads to severe complications. The 
place where trophoblast and immune cell interaction begins 
during Fallopian tube gestation without the participation of 
endometrial cells is the tubal wall. This difference is most 
consequential during tubal rupture. The determination of 
the mechanisms responsible for endometrial participation in 
immune tolerance during pregnancy could have important 
clinical consequences and may prove significant in the 
development of immunotherapy.  

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The uterus is an organ that undergoes constant 
remodeling. This process is controlled by various factors, 
such as hormonal changes and autocrine and paracrine 
endometrial cell activity (1). Immune cells constitute 7% of 
all endometrial cell population during the proliferative 
menstrual cycle phase; during the secretory cycle phase 
their percentage increases to 30% of all endometrial cells 
and, once menstruation begins, to 40% (1). Werth and 
Grusdew in the nineteenth century and Noe in the twentieth 
century proposed dividing the uterus into two parts, the 
archimetra and the neometra (2, 3). The archimetra is an 
endometrial-subendometrial unit, composed partly of the 
epithelial and stromal endometrium and partly of the 
underlying stratum subvascular of the myometrium, with a 
predominantly circular arrangement of muscular fibers (2, 
3). The archimetra plays an important role in all 
reproductive processes beginning with intercourse through 
implantation and delivery (2, 4-10). The archimetra is 
controlled not only by endometrial cells, but also by 
immune cells. The immune system associated with the 
endometrium is a component of membrane associated 
lymphoid tissue (MALT). There are, however, some 
features of this system that distinguish it from MALT. 
White et al. (11), have proposed a definition of lower 



Regulation of immune response in endometrium 

1019 

reproductive tract lymphocytes as tertiary lymphatic tissue. 
Because of the complexity of the processes taking place 
within the uterus, Beier et al. (12),  have suggested that the 
endometrium may in fact be an independent organ. The 
main feature of the endometrium that differentiates its 
mucous membrane from that of other organs is the 
periodicity of the changes in the number and activity of 
immune cells (13). Their functional status seems to depend, 
on the one hand, on the hormonal changes taking place 
during the menstrual cycle, but seems, on the other hand, to 
be directly dependent on the activity of immune regulatory 
cells (14), as well as on the immunomodulating activity of 
endometrial cells (15-17). The second feature typifying the 
endometrium is the profile of immune cells infiltrating the 
endometrium that alters according to the particular 
menstrual cycle phase (13), along with the special role of 
NK cells (18-20). These cells may constitute almost 90% of 
the immune cell population during the secretory cycle 
phase (13). Further immune cell infiltration of the 
endometrium is observed during menstruation; the 
dominant cells within the endometrium at that time are 
neutrophils and macrophages, while NK cells along with 
eosinophils constitute an important but not prominent 
percentage of cells (21). The similarity of the endometrium 
to lymphoid tissue has been noted, and it has been 
suggested that this similarity may be helpful in elucidating 
the unique immunomodulating action of endometrial tissue 
(22-26).  
 
3. BEGINNING OF IMMUNE TOLERANCE 
PROCESS DURING PREGNANCY 
 

The strong immunomodulating activity of 
endometrial cells has to be taken into consideration when 
analyzing the phenomena of fertilization and ovum 
implantation which take place within the endometrium and 
for which the level of immune cell activity is pivotal. The 
regulation of immune cell activity can be realized by 
factors secreted into the extra-cellular matrix such as: PRL, 
IL-1, IL-11, IL-13, IL-15, IL-18, LIF, RANTES (15, 27-
42), as well as other proteins that behave in a similar 
manner (Fas, Fas-L, TNF-alpha, HOXA10) (43-49). During 
the changes brought about by the various menstrual cycle 
phases, cyclic alterations of the above mentioned 
immunomodulating factor expression have also been 
observed (41, 50). To evaluate the dynamic changes taking 
place during the menstrual cycle phases, the menstrual 
cycle has been divided into six subphases: early-, mid-, and 
late- proliferative, and early-, mid-, and late- secretory (51-
52). This division of the menstrual cycle is precise and 
indicative of the dynamic changes taking place over the 28 
days of the physiological menstrual cycle. The highest 
concentration level of immunomodulating factor expression 
has been observed during the mid-secretory (41, 50) and 
menstruation phases (16, 53-56). These two phases are the 
most important for endometrial activity. Tabibzadeh (23) 
has stated that the balance between the grade of TGF-beta 
activity and LEFT protein expression are essential for 
endometrial immunomodulating activity. A dispersion of 
extracellular matrix (ECM) during the mid-secretory phase 
of the cycle has been observed to be crucial for ovum 
implantation (57). In cases where fertilization and ovum 

implantation do not occur, the ECM dispersion intensifies, 
leading to its degradation by the alteration of TGF-
beta/LEFT balance observed during menstruation (24, 25, 
58, 59). The mid-secretory cycle phase is also typified by 
mononuclear cytotoxic cell accumulation within the 
endometrium (19, 60). It has been shown that the 
concentration of dNK cells (the NK cell subtype, 
CD56brightCD16neg, phenotype which dominates in the 
decidua in the late proliferative cycle phase in contrast to 
peripheral blood NK cells, CD56dimCD16+ phenotype) 
begins during the late proliferative cycle phase just before 
ovulation and is maintained until the mid-secretory cycle 
phase when their number reaches the highest level. When 
implantation does not occur, the number of NK cells drops 
slightly (13, 19, 20, 61); moreover, the simultaneous 
infiltration into the decidua by other immune cells has been 
observed at this time, with the conclusion that a change in 
the immune dominating profile develops during 
menstruation (21, 55, 56, 62). The beginning of proper 
decidualization within the endometrium, which takes place 
after the termination of the ovum implantation process, is 
concerned with the following increase in cytotoxic immune 
cell infiltration (63). The initiation of ovum implantation 
seems to stimulate simultaneous molecular processes 
leading to the development of immune tolerance during 
pregnancy phenomenon (64). This process, which still 
remains unclear, is responsible for the maintenance of the 
antigenically foreign fetus developing during the 40 weeks 
of pregnancy in the maternal uterus (65).  

 
The cellular and molecular processes taking place 

during the physiological menstrual cycle in the 
endometrium precede implantation and prepare the 
endometrium for the development of the immune tolerance 
phenomenon. The nature of immune tolerance has so far 
been explained at the maternal-fetal interface, exploring the 
interactions between placental cells and maternal immune 
system cells. According to the previous reports, the 
molecular alterations occurring in this process are not only 
controlled by placental cells, but also by other fetal cells 
(66). The fact of fetal cell transmission through the 
placental barrier, including erythroblasts, lymphoblasts, as 
well as fetal cell fragments (apoptotic bodies originating 
from fetal cells) has been known for more than 50 years 
(67, 68, 69). Apoptotic bodies arising from these cells are 
also present within maternal peripheral circulation. The 
expression of the Fas-L antigen on the fetal cell membrane 
fragments circulating in maternal blood has been shown 
(67). Fetal cells as well as their fragments (apoptotic 
bodies), and even free DNA fragments originating from 
fetal cells undergoing apoptosis, are present in maternal 
circulation and might participate in the creation of the 
immune tolerance during pregnancy phenomenon (70-72). 
Additionally, soluble forms of fetal proteins are present in 
the maternal blood, i.e., sHLA-DR and sHLA-G, which 
possess strong immunomodulating activity (73-75). 
Recently, cytokines originating from fetal monocytes, such 
as IL-6, have been demonstrated to activate the maternal 
immune system (66). Therefore, the basis of immune 
tolerance during pregnancy is not the existence of the 
impermeable placental barrier masking the fetal presence, 
but the proper regulation of maternal immune system 
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activity. The comparison of pregnancy to an allogenic graft 
as a maternal immune tolerance to fetal antigens, proposed 
by Medawar remains still up-to-date, but is incomplete 
(76). The immune tolerance during pregnancy is also 
closely typified by Clark’s proposed comparison of 
pregnancy to cancer (77-78). This comparison would seem 
ethically controversial on account of the extremely 
different effects of the two processes. From the molecular 
point of view, however, the processes taking place at the 
maternal-fetal interface and those at the border of 
cancerous and healthy tissue are similar (132). The basic 
difference between both mentioned concepts comes from 
the fact that a grafted organ participates in the regulation of 
the organ recipient’s immune system activity level only 
extremely rarely. In contrast to what happens with a graft, 
the cancer cell is an active participant in the process of 
immune tolerance development, which process enables 
cancer growth. Regulatory mechanisms are pivotal for 
neoplasmatic growth and for tumor escape from immune 
surveillance inasmuch as they restrict immune activity 
against the cancer (64, 79).   

 
Maternal immune tolerance phenomenon to fetal 

antigens is connected with both trophoblast and 
endometrial cell action. The ability of trophoblast cells to 
remove tryptophane from placental microenvironment –the 
IDO mechanism--has been observed (80). HLA-G antigens 
have been identified in the cell membranes of trophoblast 
cells, and these antigens are responsible for the inhibition 
of NK cell activity by their interaction with KIR receptors 
(81). Fas-L expression by trophoblast cells enables the 
induction of activated lymphocyte apoptosis when these 
cells have the Fas-receptor on their cell membranes (43). 
Moreover, the presence of CD25+CD4+ regulatory 
lymphocytes with CTLA-4 antigen (82), which enables the 
interaction with dendritic cells (with the ligand CD80-
CD86), has been demonstrated within the decidua, and the 
growth of 2,3 IDO expression leading to the restriction of 
immune cell activity has also been indicated (83). They can 
also inhibit lymphocytes by IL-10 and TGF-beta (84). An 
interaction between CD200 antigen and CD200R on other 
immunocompetent dendritic cells or suppressory 
lymphocytes Tγσ, leads to the growth of Th2 cytokine 
secretion and the stimulation of IDO activation in the 
decidua (78). Maternal immune tolerance to fetal antigens 
is typified by dynamic, continuous, molecular changes as in 
Th1/Th2 balance. Pregnancy does not appear to be a simple 
process of the domination of one type of Th response, 
because during its normal course, an increase in cytokine 
levels produced by both types of lymphocytes, Th1 (IL-2, 
INF-gamma), and Th2 (IL-10, IL-4, TGF-beta) has been 
observed (79, 85-87). 
 
3.1. Maternal immune tolerance phenomenon during 
spontaneous abortion 

The development of reproductive medicine, 
especially in vitro fertilization, has indicated that the 
recognition of phenomena occurs in the early stages of 
immune tolerance. The results of a series of studies have 
indicated that the main types of maternal immune cells 
participating in the process of ovum implantation are NK 
cells and macrophages (19, 60, 89). The immune tolerance 

during pregnancy phenomenon has also been observed as 
not a simple process of immune cell activity inhibition (64, 
90), but rather a special activation of immune cytotoxic 
cells (60, 91, 92). Recurrent miscarriages develop when 
maternal immune cytotoxic activity increases (41, 93-98), 
but can also be observed when a lack of proper immune 
cytotoxic activity within the endometrium occurs during 
the preconceptive period (27, 89). Spontaneous abortion is 
most commonly caused by embryonic aberration (94), but 
normal embryo development in itself does not guarantee a 
successful pregnancy. Spontaneous abortion is 
accompanied by an increase in the number and activity of 
immune cytotoxic cells, including NK cells (19, 99, 100), 
with a decrease of suppressory lymphocyte CD4+CD25high 

infiltration within the decidua and in the maternal 
peripheral blood (101, 102). Therefore, spontaneous 
abortion would seem to result from the disruption of 
immune system regulation (93, 95, 96). The proper level of 
cytotoxic immune cell activity within the decidua 
conditions the peculiar vascularization of the maternal-fetal 
interface and the normal course of implantation and further 
pregnancy development (63, 88). In an experimental study 
of mouse clones deprived of dNK cells, no ovum 
implantation was observed in most of the cases, while in 
the cases where ovum implantation did occur, severe 
placental developmental anomalies were noted. (103). dNK 
cells are typified by the presence of numerous granules 
containing mainly granzyme-B and perforines (104). The 
presence of granules containing perforines has been shown 
to be significant in dNK recruitment to the decidua (104). 
Granzyme-B is a direct caspase-3 activator, while perforine 
participates in NK-mediated cytolysis (105) and is 
responsible for proper intracellular granzyme-B action. 
dNK granules contain proteins which are substantial 
mediators of apoptosis and condition cytotoxic lymphocyte 
activity (105). Clinically, two phases of abortion can be 
differentiated, according to the presence or absence of fetal 
structures within the uterus during abortion: inevitable 
abortion and complete abortion. A significant increase in 
the number of CD56+ and CD69 antigen expression during 
abortion has been shown in comparison to all six phases of 
menstrual cycle, but only in cases of inevitable abortion. In 
complete abortion, the number and activity of NK cells 
were comparable to those in the mid-secretory cycle phase 
(107, 108). These observations confirm a high 
preconceptive activity level of NK cells during the 
physiological menstrual cycle (mid-secretory cycle phase) 
and the possibility of change in immune cell activity during 
the development of abortion.   
 
3.2. Selective suppression phenomenon  

The activation of cytotoxic lymphocytes during 
every menstrual cycle phase is enabled by the development 
of mechanisms protecting adjacent cells against cytotoxic 
action. Such a phenomenon has been observed by Chao et 
al. (109),  in the endometrium during the secretory cycle 
phase by analyzing CD69, CD25, and HLA-DR antigen 
expression. CD25 antigen expression is a marker of 
lymphocyte T activity; CD69 antigen expression indicates 
the activity of T and NK cells, while HLA-DR may 
demonstrate T, NK, and macrophage activity (19, 110-
112). The increase in the number of CD69+CD3+ and HLA-
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DR+CD3+ lymphocytes during the secretory cycle phase in 
the endometrium in comparison to the peripheral blood 
without simultaneous differences in the number of 
CD25+CD3+ lymphocytes is defined as a selective 
suppression phenomenon (109). Analogically, this 
phenomenon has been observed in TIL in breast, uterine, 
cervical, and endometrial cancers (113-116). CD25 is a 
receptor for IL-2 (IL-2Ralpha), a cytokine essential for NK 
and CTLs activation (117). This phenomenon has also been 
noted during early pregnancy development by the decrease 
of CD25 receptor expression on CD4+ and CD8+ 
lymphocytes within the decidua (19, 109). It seems to result 
from the partial restriction of cytotoxic immune cell 
activity by the decrease of CD25 antigen expression with a 
simultaneous increase of other markers of cytotoxic 
immune cell activity (CD69 i HLA-DR) (118). Chao et al. 
(118), have observed a decrease in CD25 antigen 
expression on T CD4+CD25low cytotoxic lymphocytes 
throughout pregnancy, while the number of suppressory 
CD4+CD25high lymphocytes increased within the decidua 
(118). The cells that participate in the development of 
selective lymphocyte suppressory phenomenon include 
trophoblast (118) and endometrial cells, thanks to their 
immunomodulating activity. As a result of these 
phenomena, a higher number of NK cells with restricted 
activity able to undergo lysis has been observed during the 
secretory than the proliferative cycle phase (119). During 
the secretory cycle phase, an alteration in immune cell 
activity takes place which conditions the success of 
implantation. In the case of no ovum implantation, the dNK 
cell activity increases until menstruation and the number of 
NK cells decreases slightly (13, 119). The restriction of 
immune cell activity is realized by their selective 
suppression and seems to result from a complex decidual 
immunomodulating activity. Qiu et al. (45), have indicated 
that Fas-L expression in the decidua during pregnancy is 
related to an inhibition of leukocyte infiltration into the 
decidua. Joswig et al. (44), have suggested that the 
presence of Fas-L expression in the endometrium in the 
surrounding of the implanting ovum is responsible for the 
inhibition of activated immune cells. When fertilization and 
implantation do not occur, the selective suppression 
phenomenon protects the integrity of the endometrium. At 
the same time, the number of activated cytotoxic immune 
cells increases (19, 60, 104), while the suppressive activity 
of trophoblast cells is replaced by decidual activity. This 
phenomenon conditions the direction of cytotoxic immune 
cell action.  
 
3.3. The participation of RCAS1 in the development of 
selective suppression phenomenon 

Many immunomodulating factors may participate 
in the development of selective suppression phenomenon, 
including RCAS1. RCAS1 is a membrane protein that 
inhibits the growth of receptor-expressing immune cells 
and induces their apoptosis (lymphocytes T and B and NK 
cells) (120). It has been shown that RCAS1 interaction with 
the receptor on the effector cell may lead to FADD 
activation and through the caspases cascade induce effector 
cell apoptosis (121). RCAS1 can also be expressed in a 
soluble form, as has been demonstrated in the blood serum 
derived from women with ovarian, endometrial, and head 

and neck cancers (122, 123). RCAS1 has been shown to be 
responsible for tumor cell escape from host immunological 
surveillance in such cancers as breast, esophageal, gastric, 
liver, lung, head and neck, uterine, cervical, endometrial, 
and ovarian (124-131). Nevertheless, since this protein has 
also been demonstrated in physiological conditions in the 
placenta, palatine tonsils, bone marrow, and the normal 
mucosa of the female reproductive tract, it is a poor 
prognostic factor in cancer (121, 130, 133-140). This 
protein expression has also been noted in non-neoplasmatic 
diseases such as immune-mediated diseases of the liver and 
in the case of nasal polyps (133, 141). RCAS1 seems to be 
responsible for the creation of immune tolerance during 
pregnancy (137, 142). The biological role of this protein is 
probably concerned with the regulation of immune 
cytotoxic cell activity. The increased apoptosis of 
lymphocytes--mainly CD3 positive cells--surrounding 
tumor RCAS1 positive cells and RCAS1 positive 
metastatic tumor cells in lymph nodes has been observed in 
uterine and cervical cancers (126). Such a relation between 
immune cell apoptosis and Fas-L and TNF-alpha 
expression has not been confirmed by this study. Similarly, 
in other reports, RCAS1 expression in tumors has been 
accompanied by an increased apoptosis of TIL in lung 
cancer (130), and also apoptotic lymphocytes have been 
identified adjacent to RCAS1-positive RS cells in 
Hodgkin’s disease (135). Sonoda et al. (122), have 
demonstrated an inverse correlation between the presence 
of soluble RCAS1 in the blood serum and the number of 
peripheral blood cytotoxic lymphocytes. Similary, an 
inverse correlation has been observed between RCAS1 
expression and the number of TIL (mainly CD3 positive 
cells) in breast (143) and esophageal cancer (125).  

 
Recently, the participation of RCAS1 in the 

apoptosis of CD4 positive lymphocytes derived from HIV 
positive patients has been shown (144). The presence of 
RCAS1 in normal endometrium and tubal mucosa has been 
also demonstrated (140). The expression of RCAS1 has 
been observed to alter in accordance with menstrual cycle 
changes, growing with the increasing number of CD56 
positive cytotoxic lymphocytes during the secretory cycle 
phase (106). By contrast, in endometrial cancer, RCAS1 
overexpression has been accompanied by a drop in CD56 
positive lymphocytes in the endometrium (106). The 
number of these cells has been significantly lower in 
endometrial cancer than in the endometrium during the 
secretory cycle phase. Nakashima et al. (120), have shown 
that RCAS1 may lead not only to cytotoxic lymphocyte 
apoptosis, but also inhibits the growth and restricts the 
activity of these cells. In physiological conditions, other 
than cancer, however, RCAS1 action seems mainly to be 
involved in the restriction of cytotoxic immune cell growth 
rather than in inducing apoptosis. In recent studies, it has 
been shown that the increase in the number of immune cells 
(mainly CD56 positive cells) is related to a concomitant 
increase in RCAS1 expression that starts in the 
endometrium during the periovulatory cycle phase (late 
proliferative and early secretory) (139). RCAS1 
immunoreactivity has been analyzed with the simultaneous 
expression of CD69 and CD25 antigens, and it has been 
suggested that it participates in the selective cytotoxic 
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immune cell suppression phenomenon. This phenomenon 
indicates the proper compensation by the endometrium 
with regard to cytotoxic activity increase during 
fertilization and ovum implantation. The existence of this 
mechanism enables the accumulation of activated immune 
cytotoxic cells in selected regions.  

 
Besides the selective suppression of immune 

cells, the compensation of growing cytotoxic activity in the 
endometrium is realized by the protection of endometrial 
cells from immune-mediated apoptosis through the 
disturbance of apoptotic signal transduction. This 
endometrial ability has been named resistance to immune-
mediated apoptosis (145-146).  
 
3.4. Resistance to apoptosis 

Apoptosis, a phenomenon presented by Kerry in 
1972, is one of the basic mechanisms that regulates the 
number of cells and enables changes in their activity (the 
interaction between immune cells and somatic cells) (147). 
The alterations of apoptotic levels in the endometrium 
corresponding to menstrual cycle changes and the layers of 
the endometrium have been observed. The presence of 
apoptosis, mainly in the superficial layer of the 
endometrium, has been noted during the proliferative and 
secretory cycle phases, while apoptosis occurring in the 
basal layer has been observed during menstruation. 
Apoptosis is more prominent during the secretory cycle 
phase than the proliferative; its level increases 
insignificantly during menstruation (55, 148). The 
disturbance of apoptosis leads, on the one hand, to an 
inability of apoptotic signal transduction, as bcl-2 level 
changes, and on the other hand, to an inability to receive 
such a signal (changes of membrane Fas expression) (149). 
The distribution of cells demonstrating the apoptotic 
changes within the endometrium does not correlate with the 
decrease of Bcl-2 level (148); additionally, the Fas 
membrane expression in the endometrium has not been 
seen to increase with the increase of the apoptosis level 
(148). Watanabe et al. (149),  have therefore suggested that 
endometrial cell apoptosis may not depend on the 
expression of these two apoptosis markers. Tabibzadeh has 
demonstrated that TNF-alpha is the main apoptosis 
mediator in the endometrium during menstruation (149). 
The initiation of apoptosis seems to result from the activity 
of various factors. In the final stage of this process, DNA 
fragmentation related to the level of DNA-nuclease 
(DFF40) activity can be observed (150). The activation of 
this enzyme is processed by the fragmentation of 
DFF45/DFF40 complex by caspase-3. Caspase-3 has to be 
activated by caspase-8, which active form originates from 
the stimulation of DISC or cytochrome C originating from 
mitochondria (152). The cellular amount of DFF-45 
correlates with the DFF-40 level (153) and the alterations 
in DFF-45 nuclear expression have been observed as 
participating in the process of resistance to apoptosis (133). 
DFF-45 expression in the endometrium during the 
secretory cycle phase has been observed to be higher than 
during the proliferative cycle phase (154). The proper 
intracellular Zn++ ions concentration is necessary for the 
caspase cascade enzyme activity, which seems to be 
especially important for caspase-3 function. The decrease 

of intracellular Zn++ ion concentration leads to the growth 
of caspase-3 activity (152, 156). Parry et al. (157),  have 
shown that Zn++ ions inhibit caspase-3 activity. 
Intracellular Zn++ distribution is particularly controlled by 
metallothionein (MT) (158).  
 
3.5. MT anti-apoptotic activity 

Metallothionein is a cystein-rich protein that 
participates in the regulation of processes important for 
both cell proliferation and death (159-162). The connection 
between the increase of cytoplasmic MT expression and the 
decrease of caspase-3 activation has been observed. The 
MT cytoplasmic increase is also accompanied by a 
decrease in mitochondrial originating cytochrome C level 
(163). Two metallothionein isophormes, MT-1 and MT-2, 
are ubiquitous in humans (164, 165). MT expression is 
regulated by hormones, cytokines, and stress-induced 
factors (such as heavy metals) (166, 167). Following 
cytokine influence, is the MT expression: IL-1 (163), IL-6 
(168), TNF-alpha (169) i INF-gamma (170). MT is an 
important potential factor responsible for the sensitivity of 
cells to induced apoptosis; it is an inhibitor of apoptosis 
(161, 171). An increase in the spontaneous apoptosis level 
has been observed in mouse fetal cells deprived of MT-1 
and MT-2 isophorme genes (172). Kondo et al. (169), have 
suggested that MT anti-apoptotic activity may complete 
Bcl-2 function. In MCF-7 breast cancer cells a decrease in 
MT resulted in the spontaneous apoptosis of these cells 
(173). It has also been suggested that MT protects cells 
against p-53-dependent apoptosis (174). Cui et al. (160), 
have shown a bilateral regulation between MT-1 and 
ECRG2. The ECRG2 gene expression product is 
responsible for the inhibition of the proliferation and 
induction of apoptosis, while MT intensifies proliferation 
and restricts apoptosis (160). MT seems to participate in the 
modulation of the intracellular signal that develops after the 
activation of TNFR-1 and activation of cytoplasmatic death 
domains (175, 176). MT participates in the interaction 
between immune cells and tumor cells (177). Young et al. 
(177), have shown that MT decreases immune cell cytolytic 
activity and seems therefore to participate in the 
suppression of the cytotoxic immune response. The 
intracellular MT expression seems to be responsible for 
protection against cytotoxicity, while nuclear expression 
seems to protect against genotoxicity (174, 178).  The 
ability of endometrial cells to be resistant to apoptosis is 
realized by the intracellular MT level alterations. MT 
expression has been observed to alter in accordance with 
the menstrual cycle phases, its highest level being noted 
during the mid-secretory cycle phase (179). MT 
endometrial expression growth has been accompanied by 
an increase in CD56 positive cell infiltration and in the 
activity of such cells (106). The presence of MT in the 
endometrium and its increasing level during the beginning 
of decidualization indicates the participation of this protein 
in the process of compensation of the growing cytotoxic 
immune infiltration.  

 
In sum, the ability of the endometrium to 

compensate for the growing immune cytotoxic response 
during reproductive processes in early pregnancy is 
realized by the development of resistance to apoptosis and 
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the phenomenon of selective immune suppression. The 
participation of these processes in the development of 
Fallopian tube pregnancy seems to be significant.    
 
4. ALTERATIONS IN IMMUNE TOLERANCE 
PROCESS DURING TUBAL RUPTURE 

 
An evaluation of the course of immune tolerance 

during ectopic pregnancy along with an explanation of the 
role of the endometrium in this process is interesting in 
light of ovum implantation and fetal development. Tubal 
rupture is an example of the sudden termination of the 
immune tolerance process during pregnancy. Exploring the 
mechanisms responsible for the interaction between 
immune cells, tubal mucosal cells, and ectopic localized 
trophoblast cells might be useful in finding a marker for 
tubal rupture. The occurrence of ectopic pregnancy rates is 
18 cases per 1,000 pregnancies with the most frequent 
cases--80%--involving tubal localization. Tubal surgery, in 
vitro fertilization, and inflammation of the reproductive 
tract increase the risk of ectopic pregnancy twofold (181-
184). The reason for extra-uterine ovum implantation still 
remains unclear. It has been suggested that the ectopic 
localization of pregnancy is the result of a disturbance in 
the embryo’s chemotactic process or, alternatively, an 
abnormal uterine peristaltic wave. The diagnosis of an 
ectopic pregnancy is problematic, and early diagnosis is the 
most important factor in the patient’s future fertility and for 
the success of treatment. Unfortunately, ectopic pregnancy 
still remains a chief cause of maternal death during 
pregnancy (183), and for this reason, markers of extra-
uterine pregnancy progression, for example, CA-125 
markers and cytokines, such as IL-8, are sought; however, 
these markers have no established clinical application (185, 
186). Additionally, the risk of tubal rupture has not been 
correlated with chorionic gonadotropin (beta-HCG) serum 
levels in women with ectopic pregnancies (187-189).  
 
4.1. The characterization of the immune system 
associated with Fallopian tube mucosa 

The tubal mucosa constitutes a component of the 
immune system associated with the reproductive tract 
mucosa, which is in turn a component of MALT and has 
been defined as a tertiary immune system (11). The indirect 
proof of the functional aspect of the reproductive tract 
mucosa associated lymphatic tissue is the quantitative and 
qualitative changes observed within the immune cell 
population in the endometrium concomitant with 
pathologic processes taking place in tubal mucosa, as in the 
case of tubal hydrops and recovery following surgery for 
tubal hydrops (190). Mononuclear immune cells 
predominate within the tubal mucosa, with numerous T 
CD3 positive cells (191-194), macrophages, and 
neutrophilic granulocytes (195); however, NK cells are not 
as common as they are in the endometrium, and lymphatic 
follicules are rarely found (194).  

 
4.2. Immunological basis for tubal rupture 

The observation of fetal heart-rate in ectopic 
pregnancy indicates that a normal embryo can be implanted 
in the case of an ectopic pregnancy (196). In Proll’s study, 
HLA-G expression on external cytotrophoblast cells has 

been on a level comparable to that found in the uterus and 
in the uterine tube during implantation (197). Recently, the 
presence of apoptotic bodies and free fetal DNA in patients 
with extra-uterine pregnancy serum has been discovered 
(198), and this phenomenon is one that has been described 
in normal uterine pregnancy (70-72). During trophoblast 
invasion within the uterine tube wall, a decrease of 
trophoblast cell apoptosis has been noted in comparison to 
trophoblast invasion within the uterine cavity (199). 
Increased trophoblast invasiveness has been identified as a 
factor determining the process of perforation (199). If a 
normal embryo is able to be implanted in an extra-uterine 
location, the difference in trophoblast invasiveness may 
result from the altered properties of the adjacent 
environment. The number and quality of immune cells 
within the tubal mucosa during embryo implantation differs 
from those within the endometrium (199, 200). On the one 
hand, the research of Von Rango and Vassiliadou has 
indicated that the environment of the implanting embryo in 
the tubal mucosa is infiltrated predominantly by CD3+ 

positive cells and macrophages, with a complete lack of 
dNK (CD56+CD16-) cells and sporadic presence of NK 
(CD56+CD16+) cells, in contrast to the endometrium with 
predominant dNK cell infiltration (60, 196). On the other 
hand, Stewart-Akers has shown that during the ovum 
implantation in the uterine tube, both CD3+ and CD56+ 

positive cells have been observed at a level comparable to 
that found in the uterine cavity decidua (201). The 
discrepancy in these two studies may have resulted from 
the different stages of advancement of pregnancy in the 
ectopic pregnancies analyzed. The increase in interleukin-8 
(IL-8) blood serum in women with ectopic pregnancies 
indicates the possibility of the participation of this cytokine 
in the chemotaxy of lymphocytes infiltrating the tubal wall 
during the development of pregnancy (186). CD56+CD16+ 
cells are sensitive to chemotactic Il-8 action (202). Il-8 
concentration was observed to increase significantly in the 
blood serum when fluid accumulated in the pouch of 
Douglas during ectopic pregnancy, although IL-8 
concentration remained independent of tubal diameter 
(hematosalpinx) (186). It has been shown that tubal rupture 
is associated with an increase in cytotoxic immune cell 
infiltration (CD56+) (108, 155). The number of cytotoxic 
immune cells within the tubal wall has been found to be 
significantly higher in cases where the tubal wall 
perforation was confirmed during surgery in comparison to 
cases where the surgery preceded tubal perforation. 
Similarly, tubal rupture has been accompanied by an 
increase in the activity of immune cells. Because the 
immunomodulating activity of decidual cells determines 
the activity of immune cells infiltrating the decidua, the 
evaluation of the immunoregulative activity of the tubal 
mucosa has to be performed (especially the evaluation of 
compensation of the increasing cytotoxic immune activity). 

  
The increase in immune cell infiltration in 

unruptured EP with hemorrhage in comparison with that of 
unruptured EP without bleeding has been associated with 
an increase in RCAS1 immunoreactivity level. The next 
stage of tubal rupture accompanied by further infiltration of 
immune cells has apparently not been compensated for by a 
further increase in RCAS1 immunoreactivity level. At the 
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same time, the RCAS1 level in the endometrium during 
unruptured EPs has statistically been significantly higher 
than in the tubal wall. In ruptured EPs, no such differences 
have been observed. In sum, the drop in RCAS1 level, 
which could be a result of an insufficiency in the 
compensatory immune response mechanisms (selective 
suppression phenomenon) in the tubal mucosa (although 
these mechanisms are simultaneously preserved in the 
endometrium), leads to tubal perforation (Figure 1.). In our 
recent study, higher numbers of CD56 and CD69 positive 
lymphocytes in the tubal wall during tubal rupture have not 
been associated with a sufficient increase in MT expression 
(just as in spontaneous abortion) (180). However, an 
increase in MT expression and in the number of CD3 
positive cells in the initial stages of tubal rupture has been 
observed; also observed was further infiltration of immune 
cells in the later stages of tubal rupture accompanied by a 
decrease in MT immunoreactivity level. At the same time, 
the immune cell infiltration in the endometrium increased 
with a concomitant increase in MT immunoreactivity level. 
If the infiltration decreased, so did the MT 
immunoreactivity level. Thus, while compensatory 
mechanisms are active in the endometrium, they seem to be 
disturbed in the tubal mucosa (155). 

 
Tubal perforation seems to be linked to a 

concentration of immune cells in the tubal mucosa and an 
increase in their activity without a corresponding increase 
in the level of proteins compensating for immune cell 
response.  

 
Tubal perforation suddenly ends the development 

of Fallopian tube pregnancy; similarly, placental abruption 
is related to the sudden termination of intra-uterine 
gestation. A comparison of these mechanisms is intriguing.  
 
5. PLACENTAL ABRUPTION 
 
5.1. Changes in immune tolerance level during labor 

Labor is a complex molecular and clinical 
process; to enable its proper course the sequence of events 
must be preserved. The occurrence of regular uterine 
contractions accompanies cervical ripening while expulsive 
contractions should occur at the termination of cervical 
ripening. Placental abruption appears subsequent to fetal 
expulsion and is accompanied by uterine tonic contractions, 
as observed in clinic. Each clinically observed phenomenon 
has its own molecular basis, and the sequence of 
phenomena is also precisely determined. The stages of 
labor that can be observed in clinic are accompanied by 
immunological alterations. Physiological changes in the 
immune tolerance process are observed during each stage 
of labor. An increase in lymphocyte activity during labor 
was demonstrated in the 1980s by Szekeres-Bartho et al. 
(203). Abadia-Molina et al. (204) have observed the 
presence of lymphocytes with a prominent expression of 
antigens, such asCD25+, CD69+, and HLA-DR, showing 
their activity, in the decidua basalis during labor at term. 
The expression of CD25, CD69, and HLA-DR, as well as 
the presence of dNK(CD56+CD16-) and classical NK cells 
(CD56+CD16+), has been shown in the decidua basalis and 
in decidua parietalis during labor at term in elective 

cesarean section (without the spontaneous initiation of 
labor) by Sindram-Trujillo et al. (206, 207). The number of 
dNK cells has been observed to be higher in the decidua 
parietalis than in the decidua basalis, while the number of 
NK cells has been found to be higher in the decidua basalis 
than in the decidua parietalis (207, 208). Also, an increase 
in the number of T-lymphocytes and CD16+ cells (209), 
CTLs (210), T-lymphocytes (CD3), and NK/K (Leu7) 
(211) has been noted in the reproductive tract during labor 
at term. The number of dNK cells in the decidua following 
the spontaneous initiation of labor has statistically been 
shown to be significantly higher than following cesarean 
section (206). The changes in the lymphocytes infiltrating 
profile have been discovered mainly in peripheral NK cells 
(206-208). One of the most important mechanisms 
responsible for immune tolerance during pregnancy 
phenomenon is HLA-G1 expression by trophoblasts, 
cytotrophoblasts, and syncytotrophoblasts, which is 
restricted during labor (74,212), resulting in an increase in 
maternal cytotoxicity level (100, 213, 214). It has been 
demonstrated that the number of CD4+CD25high 
suppressory lymphocytes in the decidua during vaginal 
labor decreases (207, 208).  

 
An increase in the IL-6 level in the amniotic fluid 

during labor at term (cytokine mediating in the immune 
system activity during labor; responsible for the inhibition 
of CD4+CD25high regulatory suppressory lymphocytes and 
IDO positive dendritic cells) has also been demonstrated 
(84, 215). Spontaneous labor has been accompanied by an 
increase in leukocyte blood serum level and a 
corresponding decrease in lymphocyte level (216). This 
may indicate that the initiation and course of labor is 
controlled by peripheral lymphocytes, passaging and 
infiltrating the decidua. The presence of adhesive 
molecules, the expression of which has been identified 
within the entire uterus, has been related to leukocyte 
transition into the uterine cervix and myometrium (ICAM-
1, VCAM, PECAM) (217). The expression of adhesive 
molecules has been shown to increase throughout the entire 
course of pregnancy until the beginning of labor (217, 218). 
Thomson et al. (218), have noted the infiltration of 
leukocytes (CD3+lymphocytes, macrophages, and 
neutrophilic cells) into the upper and lower uterine regions 
during the spontaneous initiation of vaginal labor. Winkler 
et al. (219), have confirmed this observation, analyzing the 
number of leukocytes in the lower region of the uterus. 
Osman et al. (220), have not discovered any changes in the 
number of macrophages and neutrophilic cells in the 
decidua after the initiation of spontaneous labor. The 
immune cells infiltrating the decidua are a source of 
various cytokines, such as IL-1β, IL-6, IL-8, and TNF-
alpha (221), but these cytokines may also originate from 
the decidua itself (220). The activation of fetal APC, 
including mainly macrophages and the concentration of IL-
6 within umbilical blood, also accompany labor at term. IL-
6 concentration may originate from activated fetal 
monocytes (66).  

 
Fetal cytotoxic response deficit, which results 

from an immature fetal immune system, in the case of 
exposure to maternal antigens that are able to transit 
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Figure 1.   The participation of RCAS1 in the development of selective suppression phenomenon during tubla rupture (A) and 
placental abruption (B). 
 
through the placental barrier, leads to an increase in 
fetal macrophage activity (66). Common maternal-fetal 
activation of the maternal immune system initiating the 
labor may also take its course in the above mentioned 
way. The process of cervical ripening is also an event 
of maternal reproductive system adaptation to labor. 
The disintegration of collagen results from an 
increase in the activity of MMPs that are secreted by 
neutrophilic cells and macrophages infiltrating the 
lower region of reproductive tract (219, 222). Winkler 
et al. (219),  have analyzed the number of macrophages 
and neutrophilic cells in the uterine cervix and has noted 
that a sudden increase in their number accompanies 
cervical ripening to 2cm and lasts until 4cm; similar 
changes in IL-6 and MMPs concentration have been 
observed. Contrary to these findings, the concentration 
of factors inhibiting metalloproteinases (TIMP-1) 
begins to increase when the uterine cervical ripening 
reaches 4cm and 6 hours after the beginning of the 
labor (223).  

IL-8 is the basic chemotactic factor for 
macrophages and neutrophils (219). Osmer et al. (224),  
have analyzed the bioptates--derived from the inferior part 
of the uterus and decidua--obtained during cesarean 
sections performed with unripe cervix and has found that 
IL-8 concentration appears in the decidua earlier than in the 
uterine cervix. IL-8 is responsible for NK chemotaxy and 
the most sensitive cells for this cytokine are NK cells (202). 
Sportiz et al. (225), have shown that the dNK decidual 
decrease observed during the third trimester of pregnancy 
might result from the degranulation of these cells, and 
Sidram-Truillo et al. (206),  have observed that cells 
infiltrating the decidua during labor were mainly peripheral 
NK cells. The alterations taking place at the maternal-fetal 
interface seem to precede the occurence of phenomena in 
the uterine cervix. Elective cesarean section is a surgical 
procedure performed without the symptoms of the 
spontaneous initiation of labor when the mechanisms 
responsible for the beginning of labor and its further course 
have not yet begun. The performance of cesarean section 
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after the spontaneous beginning of labor means that the 
molecular processes have been initiated and are being 
broken. The observed prominent placental RCAS1 decrease 
during cesarean section when performed with a ripe cervix 
and with dilation above 2cm seems to confirm this finding 
(226). Steinborn et al. (66), have revealed that during 
induced labor and elective cesarean section, the activation 
of the fetal immune system, which is an important element 
of the mechanism initiating spontaneous labor, has not been 
observed. Balakundi et al. (13,109), have observed 
spontaneous vaginal labor to be preceded by a reduction in 
Fas-L expression of placental cells (227), while 
Pongcharoen et al. (43), have shown a lower level of Fas-L 
expression in the placenta at term in comparison to early 
pregnancy. Moreover, Hackmon et al. (212), have noted a 
HLA-G placental expression decrease during spontaneous 
vaginal labor. Finally, a decrease in RCAS1 placental 
expression has been observed in spontaneous labor in 
comparison to induced labor (228). The above presented 
mechanisms responsible for the activity of the immune 
system and gradual alterations of maternal immune 
tolerance during labor seem to affect the course of placental 
abruption. 
 
5.2. Molecular processes during placental abruption 

Placental abruption complicates 1% of 
pregnancies (229, 230). The etiology of this complication is 
still unknown (229, 231); however, the risk factors have 
been identified and include: repeated fetal loss, previous 
stillbirths, preeclampsia, intra-uterine growth restriction, 
maternal age, multiple pregnancy, prior placental abruption 
(232, 233), pre-term premature rupture of membranes 
(234), and previous cesarean section (235). All the 
presented epidemiological risk factors for pre-term 
placental abruption seem to be related to the regulation of 
maternal immune system activity. Ananth has suggested 
that pre-term placental abruption is a chronic process (229). 
Increased risk of placental abruption has been observed to 
be accompanied by an increased infiltration of 
macrophages and neutrophilic cells in the uterus (229). The 
disruption of proper immune control of activated NK and T 
cells may result in pre-term placental abruption. A 
significant decrease of sHLA-DR in maternal serum has 
been observed (74). A soluble form of HLA-G1 is 
responsible for the induction of lymphocyte apoptosis 
through the activation of the Fas/Fas-L pathway (236). 
Placental abruption has also been accompanied by a 
decrease in sHLA-DR concentration in the maternal blood 
serum (73). Moreover, an increase in the maternal humoral 
response in blood serum (the increase in the level of 
antibodies against paternal HLA which is present in fetal 
cells) during placental abruption has been observed (75). 
RCAS1 placental expression has statistically been shown to 
be significantly higher in cases with retained placental 
tissue than in patients with placental abruption (138). In 
patients with retained placental tissue in the third stage of 
the labor, RCAS1 placental expression has been observed 
to be at a level comparable to that observed in induced 
labor, while during placental ablation, it has been 
determined to be at a level comparable to that observed 
during spontaneous labor (138). These findings seem to 
confirm the hypothesis that placental ablation occurs when 

molecular changes at the maternal fetal interface are 
terminated without an accompanying termination of uterine 
cervical ripening. Analogically, if the molecular changes at 
the maternal fetal interface responsible for placental 
ablation are not terminated while accompanying processes 
of uterine cervical ripening are fully underway, retained 
placental tissue during the third stage of labor occurs (138).  

The presented results would seem to indicate that 
the deregulation of local mechanisms controlling the 
immune tolerance might induce placental ablation. The 
course of this process is regulated by the concentration of 
mediators originating from the maternal immune system, 
the placenta, the fetal immune system, and the decidua. 
Recently, placental abruption has been shown to result 
from a high maternal cytotoxic response level associated 
with the restriction of suppressory decidual activity. 
RCAS1 immunoreactivity has been statistically 
significantly higher in decidual tissue samples derived from 
patients with retained placental tissue than in those derived 
from patients who suffered from placental abruption. An 
increase of RCAS1 decidual immunoreactivity has been 
shown to be associated with a lower number of CD56+ and 
CD3+ cells (237) (Figure 1). The selective immune 
suppression process accompanies pregnancy and in 
placental abruption seems to be suppressed precociously. In 
the case of retained placental tissue during the third stage of 
labor, an opposite phenomenon has been observed in the 
decidua, namely, restriction of the infiltration of activated 
immune cells and increasing suppressory activity of 
decidual cells. The selective immune suppression process is 
continued independently of newborn expulsion. The proper 
course of labor seems to proceed through successive 
diminishment of the level of immune tolerance. The phasic 
course of labor, from its initiation to newborn expulsion, is 
typified by clinical manifestations based on molecular 
alterations. The decrease of immune tolerance level results 
from, amongst other factors, a diminishment of suppressory 
placental action, the unblocking of active lymphocytes 
prepared by the mother throughout the pregnancy, and the 
alteration of decidual compensatory mechanism activity.   
 
6. SUMMARY AND PERSPECTIVES 
 

The activation of immune cells during 
spontaneous labor indicates the existence of mechanisms 
responsible for the regulation of immune tolerance level 
during pregnancy. This activation probably results from 
molecular changes not only in the placenta, but also in the 
endometrium. Because the tubal epithelium does not 
demonstrate the same unique immunomodulating 
properties as the endometrium, ovum implantation within 
the tubal wall leads to tubal rupture. While on the one hand, 
tubal rupture demonstrates the activity of mononuclear cell 
extension, on the other hand it highlights the unique 
properties of the endometrium. Analogical activity of 
immune cells in the endometrium during spontaneous labor 
and spontaneous abortion does not lead to the same 
consequences as in the Fallopian tube. However, a similar 
level of immune cell activity in the endometrium in cases 
with concomitant deregulation of immunomodulatory 
mechanisms leads to placental abruption. The 
determination of mechanisms responsible for the changes 
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in immune tolerance might help with the development of 
the immunotherapy in high-risk pregnancies. 
Immunotherapy could resolve the problems related to pre-
term labor and complications of vaginal delivery and 
cesarean section. Since trophoblast cells use the same 
molecular mechanisms as cancer cells, the evaluation of the 
immunological background of normal labor could help to 
improve the efficacy of cancer immunotherapy.  
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