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1.  ABSTRACT  
 
 Viral infections often lead to generalized 
immunosuppression characterized by the downregulation of 
virus-specific CD4+ and CD8+ T cell responses and/or non-
specific inflammation. One of the mechanisms for the 
virus-induced immunosuppression is the induction of 
CD4+CD25+ regulatory T (Treg) cells that act to suppress 
effector T cell functions during infection. Depending on the 
situation, the CD4+CD25+ Treg cell-mediated suppression 
can be either beneficial or detrimental to the host. On one 
hand, they play a critical role in maintaining host 
homeostasis by controlling exaggerated and destructive 
inflammations paralleling strong antiviral immune 
responses and thus contribute to host protection. On the 
other hand, suppression of virus-specific T cell responses 
by the Treg cells depresses host antiviral immune responses 
and thus facilitates viral persistence and disease 
progression. Despite numerous reports on induction of 
CD4+CD25+ Treg cells in viral infections, it is still not fully 
clear how they are induced and how they act to suppress 
effector T cell functions in viral infections. This review 
discusses recent progress in our understanding of the role 
of virus-induced CD4+CD25+ Treg cells and the 
mechanisms by which they are induced and exert their 
function during infection.  

 
 
2.  INTRODUCTION 
 
 Regulatory T cells, particularly CD4+CD25+ Treg 
cells, have been shown to play an important role in 
regulating immune responses and maintaining homeostasis 
under various disease conditions including autoimmune 
disease, inflammation, cancer, and microbial infections. 
Indeed, a growing body of studies has indicated that 
CD4+CD25+ Treg cells actively regulate host antiviral 
responses by suppressing effector T cell activation and 
functions during viral infections. They are initially 
recognized by their roles in mediating immunologic self-
tolerance to prevent the activation of self-reactive T cells 
and thus prevent harmful autoimmune responses to self and 
foreign antigens (1, 2). The finding by Belkaid et al in 2002 
on the ability of CD4+CD25+ Treg cells to control 
Leishmania major persistence and immunity uncovered a 
new role of these Treg cells in regulation of T cell 
responses to foreign pathogens (3), and thus extended their 
role in maintaining host homeostasis beyond autoimmunity. 
Accordingly, their target cell repertoire for suppression also 
expanded to include pathogen-specific CD4+ and CD8+ T 
cells that are not self-reactive in nature. Because of their 
involvement in a wide variety of disease types and their 
unique role in helping both pathogens and the host, 
CD4+CD25+ Treg cells have been under intensive 



CD4+CD25+ Treg and viral infections 

1153 

investigation in recent years, and are the best characterized 
member in the regulatory T cell family which includes 
several subpopulations of T cells with similar suppressive 
activities but distinct phenotypes, origins, and mechanisms 
of action, such as T regulatory type 1 (Tr1) (4), Th3 (5), 
and CD8+ (6, 7) Treg cells. Although all these groups of 
regulatory T cells have been shown to be involved in 
suppression of T cell immune responses during viral 
infections, this review will mainly focus on the 
CD4+CD25+ Treg cells, since they are likely the major 
player in the Treg cell family and most of the Treg cell-
associated suppressive effects observed in viral infections 
are mediated by this group of Treg cells.  
  
 Effective control of viral infection relies on the 
function of effector T cells to mount strong virus-specific 
immune responses characterized by the activation of 
cytotoxic T cells (CTL). However, this function is often 
suppressed or impaired in viral infections, especially in 
chronic or persistent viral infections such as those caused 
by human immunodeficiency virus (HIV), hepatitis C virus 
(HCV), and Epstein–Barr virus (EBV). This suppression 
enables viruses to evade host immune surveillance, 
prevents them from being eradicated by host immune cells, 
and facilitates the establishment of their persistence or 
latency. A number of mechanisms have been proposed for 
the virus-induced immunosuppression, and different 
mechanisms have been defined in different viral infections. 
Some examples include direct infection of immune cells 
leading to the impairment in their capability to mount 
vigorous antiviral immune responses, induction of 
immunosuppressive soluble factors elaborated by host 
immune cells or infected cells of other origins, induction of 
immunoregulatory cells, suppressive effect of viral 
proteins, or dysregulation of immune responses such as 
cytokine shift from Th1 to Th2 responses (8-10). During 
the recent years, CD4+CD25+ Treg cells that are expanded 
and activated upon virus infection have been found to 
possess strong suppressive effect on virus-specific effector 
CD4+ helper (Th) and CD8+ cytotoxic T cells (11-15). With 
their potent immunosuppressive properties, CD4+CD25+ 
Treg cells represent another mechanism by which viruses 
induce immunosuppression to aid their efforts to overcome 
or evade host antiviral responses. By suppressing host 
antiviral responses, CD4+CD25+ Treg cells contribute to 
the development of chronic or persistent infections and thus 
are beneficial to the virus.  
  
 However, the combat between viruses and the 
host is a dynamic process. While viruses endeavor every 
effort to overcome or evade host antiviral defensive 
responses, the host immune system strives to mount 
vigorous antiviral responses to eliminate invading viruses. 
The activation of immune cells to generate responses to 
viral antigens involves a series of interactions and events 
that culminates in the formation of both non-specific 
inflammatory and specific humoral and/or cell-mediated 
immune responses. These responses need to be strong so 
that viruses can be eliminated and the infection can be 
confined quickly. However, strong responses, both non-
specific inflammatory and specific immune responses, can 
be harmful to the host if the activated immune cells 

overreact. Obviously, these antiviral responses require a 
high degree of regulation to be effective. CD4+CD25+ Treg 
cells are likely to play a key role in this process to control 
excessive inflammatory and immune responses. This has 
been demonstrated by an increasing number of studies 
showing that CD4+CD25+ Treg cells function to suppress 
immune-mediated pathogenesis resulting from viral 
infections (14, 16-19). Apparently, they function to benefit 
the host.  
 
 Thus, CD4+CD25+ Treg cells induced during 
viral infections can be a double-sided sword that, 
depending on the situation, can be either beneficial or 
detrimental to the host. Their suppressive function is 
essential for the maintenance of host homeostasis during 
the course of antiviral immune responses and, therefore, 
constitutes an indispensable component of host defense to 
viral infections. Despite the large number of studies 
showing the activation and involvement of CD4+CD25+ 
Treg cells in viral infections, the mechanisms for their 
induction and action are still not fully understood. This 
review intends to provide a brief summary of recent studies 
on how these cells are induced and how they act to 
suppress effector T cell functions in viral infections. A 
better understand of the dynamics and mechanisms of 
CD4+CD25+ Treg cell induction and action during infection 
will help us develop appropriate strategies to harness these 
cells towards desired clinical outcomes that benefit the 
host.  

3. NATURAL VS INDUCIBLE CD4+CD25+ TREG 
CELLS 
 
 Based on their origins, CD4+CD25+ Treg cells 
can be further divided into two subpopulations, the natural 
Treg cells that emerge from the thymus (1, 20-22) and the 
inducible Treg cells that are induced and converted in the 
periphery from CD4+CD25- naive T cells (22-24). The 
CD4+CD25+ Treg cells isolated from clinical samples of 
viral infections may contain either or both of these two 
subsets of Treg cells. Phenotypically, they are 
indistinguishable in peripheral blood or tissues. 
 
3.1.  Natural CD4+CD25+ Treg cells 
 This type of Treg cells are generated and matured 
in the thymus and then exported to the periphery. They are 
known as natural Treg cells. They represent 5 - 10% of 
peripheral CD4+ T cells in mice and less than 5% in 
humans and constitutively express CD25, the α subunit of 
the IL-2 receptor, on their surface (1, 25, 26). The thymus 
origin of these cells was demonstrated by Asano et al who 
showed that neonatal mice thymectomized on day 3 after 
birth lacked CD4+CD25+ Treg cells and developed 
autoimmune gastritis and high titers of circulating 
antiparietal cell autoantibodies (25). Further studies have 
demonstrated that natural CD4+CD25+ Treg cells are potent 
suppressor T cells that mediate strong immunosuppression 
in a contact-dependent but cytokine-independent manner 
(26-30). In vitro studies have shown that they are anergic to 
polyclonal, allogenic, or antigen-specific stimulation (27, 
31, 32). However, they are able to proliferate in vivo in 
response to T cell receptor (TCR)-mediated stimulation 
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(33). Their suppressive function requires their activation 
via TCR stimulation, and this activation is independent of 
co-stimulation mediated by CD28/CTLA-4 interactions 
with CD80/CD86 (26-29, 34-36). In addition to CD25, they 
also express, either constitutively or specifically, several 
receptors and molecules that may participate in their 
development and function. These include cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4) (37), 
glucocorticoid-induced tumor necrosis factor receptor 
(GITR) (38), and Forkhead box P3 transcription factor 
(FOXP3) (39).  
 
3.2.  Inducible CD4+CD25+ Treg cells 
 This type of Treg cells are generated in the 
peripheral and are converted from CD4+CD25- T cells 
under certain conditions. Generation of CD4+CD25+ Treg 
cells from CD4+CD25- precursor has been demonstrated 
both in vitro (40, 41) and in vivo (42). The conversion can 
be induced by cytokines such as IL-10 (43) and TGFβ (24, 
41, 44), dendritic cells (DC) (23, 45), alloantigens (42), 
superantigens (46), or costimulatory signals (40). Unlike 
thymus-derived natural Treg cells that show exclusively 
cytokine-independent suppression, peripheral-converted 
CD4+CD25+ Treg cells may act through a cytokine-
dependent mechanism (41). Notably, not all conditions that 
induce CD25 expression to convert the phenotype from 
CD4+CD25- to CD4+CD25+ will result in the generation of 
regulatory T cells with suppressive function. This is 
illustrated by Thornton et al who showed that CD4+CD25+ 
T cells generated by Con A stimulation of CD4+CD25- T 
cells purified from normal mice failed to suppress the 
proliferative responses of the CD4+CD25- cells (27). This 
suggests that the conversion of naïve CD4+CD25- T cells to 
CD4+CD25+ Treg cells is likely a complex process which 
may require appropriate signals and cytokine milieu, and 
that mere expression of CD25 is insufficient to render the 
cells capable to mediate suppression.  

4. INDUCTION OF CD4+CD25+ TREG CELLS IN 
VIRAL INFECTIONS 
 
 The existence of Treg cells and their involvement 
in immunosuppression during viral infection was observed 
decades ago in several animal models.  In 1975, Toy et al 
observed that cellular immunity was suppressed in vitro by 
Friend virus-infected mouse spleen cells (47). Similarly, 
Carpenter et al observed that suppressor cells from the 
spleens of reticuloendotheliosis virus (REV)-infected 
chicken severely inhibited the ability of spleen cells from 
uninfected chickens to respond to PHA, and the inhibition 
required cell-cell contact between suppressor and target 
cells (48). In fact, such virus-induced suppressor cells were 
reported in a large number of viral infections in various 
animal models such as in mice infected by Moloney 
sarcoma virus (49, 50), Friend leukemia virus (47) and AK 
virus (51), in cats infected by feline leukemia virus (52) 
and feline immunodeficiency virus (FIV) (53), and in 
chickens infected by REV (54) and Marek's disease virus 
(55). In humans, suppressor cells were found in patients 
infected with measles virus (56), herpes simplex virus 
(HSV) (57), and reovirus (58). Despite the clear evidence 
for the presence of such suppressor cells in various types of 

viral infections, the nature of these suppressor cells were 
not clear at that time. 
 
 It was not until recent years that the role of some 
T cells, particularly CD4+ T cells, in mediating 
immunosuppressive effects during virus infection was 
demonstrated. In 2001, Iwashiro et al showed that CD4+ T 
cells from mice chronically infected with Friend virus were 
able to suppress antitumor immune responses in vivo after 
being adoptively transferred into uninfected mice and also 
inhibit CTL generation in mixed lymphocyte cultures in 
vitro (11). This was the first evidence showing the 
induction of CD4+ Treg cells in viral infection. Since then, 
the induction of CD4+ Treg cells, particularly CD4+CD25+ 
Treg cells, has been demonstrated in many human and 
animal viral infections including HIV (13, 46), hepatitis B 
virus (HBV) (59, 60), HCV (15, 61, 62), HSV (12, 16), 
EBV (63) cytomegalovirus (CMV) (46), human T cell 
lymphotropic virus type 1 (HTLV-1) (64), FIV (53), 
murine acquired immunodeficiency syndrome (MAIDS) 
virus (65), Coxsackievirus B3 (CVB3) (66), dengue virus 
(19), and simian immunodeficiency virus (SIV) (67). The 
induction is often manifested by the increased number of 
CD4+CD25+ Treg cells in the peripheral blood or local 
tissues of virus-infected patients, and this increase is 
always associated with certain changes in host antiviral 
immune responses or disease status. For example, in HIV 
infection, the increased frequency of CD4+CD25+ Treg 
cells in patient peripheral blood has been related to low 
peripheral blood CD4+ T cell counts and polarization 
toward a Th2 immune response (68). In chronic severe 
HBV infection, the frequencies of CD4+CD25+ Treg cells 
in both peripheral blood and liver-infiltrating lymphocytes 
were significantly increased, and this increase correlated 
with serum viral load (69). Since it is impossible to 
differentiate natural from inducible CD4+CD25+ Treg cells 
in the peripheral, it is not known whether the increase in 
CD4+CD25+ Treg cell frequency after virus infection 
results from the expansion of natural Treg cells or the 
conversion of naïve CD4+CD25- T cells, or both. Another 
indication of CD4+CD25+ Treg cell induction in viral 
infections is their activation. Normal CD4+CD25+ Treg 
cells require activation through the engagement of their 
TCR to become suppressive (27). However, CD4+CD25+ 
Treg cells isolated from virus-infected animals or patients 
are fully functional and do not need additional TCR-
mediated activation. Evidently, these cells have been 
activated in vivo after virus infection, most likely through 
the engagement of their TCR with viral antigens or other 
undefined mechanisms.   
 
5. ROLE OF VIRUS-INDUCED CD4+CD25+ Treg 
CELLS 
 
 As a component of the immune system, 
CD4+CD25+ Treg cells are expected to participate in host 
antiviral immune responses with the goal to protect the host 
from undue damage by viruses and restore homeostasis. 
However, their role in viral infections appears complicated 
and it is still difficult to predict the exact role that they will 
play in any given virus infection. Whether they act to 
benefit the host or virus may depend on various factors 
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such as the nature and the stage of the infection and 
immune activation.  
 
5.1.  Role of CD4+CD25+ Treg cells in viral pathogenesis 
 Numerous studies have shown that CD4+CD25+ 
Treg cells suppress host antiviral immune responses. 
Although it is not known whether the suppression 
represents an active strategy of viruses to weaken host 
defense against them or just a “side-effect” of host antiviral 
immune responses, it provides viruses with the opportunity 
to evade host immune attack and facilitate their spread and 
pathogenic effects. The targets of suppression by 
CD4+CD25+ Treg cells include both CD4+ and CD8+ 
effector T cells as well as other cells that may be involved 
in antiviral immune responses such as dendritic cells (70), 
monocytes/macrophages (71), and NK cells (72, 73). Since 
CD8+ cytotoxic T cells play a major role in antiviral 
immune responses, it is not surprising that they are the 
prime target of CD4+CD25+ Treg cell suppression. Indeed, 
a large body of studies have shown that virus-specific 
CD8+ T cell responses including their proliferation, IFNγ 
production, perforin expression, and cytotoxic activities are 
suppressed by CD4+CD25+ Treg cells in many human and 
animal viral infections (14, 15, 46, 60, 69, 74-77). As a 
result, host antiviral immune responses are impaired and 
infections progress. Interestingly, not all functions of CD8+ 
T cells are suppressed in every virus infection. For 
example, suppression of CD8+ T cell effector functions 
without affecting their proliferation and activation was 
reported in mouse chronically infected with Friend 
retrovirus (74, 77), although suppression of CD8+ T cell 
proliferation was observed in many other viral infections. 
The question is what influences the CD4+CD25+ Treg cells 
to selectively suppress one function of CD8+ T cells but not 
another. In addition to CD8+ T cells, the proliferation and 
effector functions of CD4+ T cells are also suppressed by 
virus-induced CD4+CD25+ Treg cells in many viral 
infections (13-15, 18, 19).   
 
 For many chronic or persistent infections, how 
viruses escape host immune surveillance and what leads to 
the development of persistent infection have been the hot 
topics of investigation. One possible mechanism appears to 
be the induction of CD4+CD25+ Treg cells at the early 
stage of acute infection that dampens the T cell antiviral 
responses resulting in their inability to completely clear the 
virus. For example, in HCV infection, virus-specific T cells 
have been shown to arise early after infection and strong T 
cell responses are induced during acute phase of infection 
(78, 79). This rapid response of immune system is 
necessary for quick clearance of the virus and control of the 
infection. However, complete clearance of the virus and 
full recovery only occur in a small percentage of HCV-
infected patients and most patients develop chronic disease 
with persistent infection. The reason for the failure to clear 
the virus in most of the patients during the initial antiviral T 
cell immune responses still remains unknown. However, 
weak or unsustained acute CTL responses have been linked 
to the development of chronic disease (79, 80). One 
possible explanation for the weak CD8+ T cell responses 
during acute viral infection is the early induction of 
CD4+CD25+ Treg cells upon infection. Recently, Perrella et 

al observed that the frequency and suppressive activity of 
CD4+CD25+ Treg cells were increased in the majority of 
the patients with acute HCV infection (81). Similarly, in 
SIV-infected rhesus macaque and African green monkey 
models, Estes et al (82) and Kornfeld et al (67) also 
observed a rapid induction of CD4+CD25+ Treg cells 
during acute SIV infections. More significantly, the early 
induction of CD4+CD25+ Treg cells during acute infection 
was associated with the failure of viral clearance, as 
patients with elevated frequency and function of 
CD4+CD25+ Treg cells progressed to chronic infection, 
whereas those who showed no significant increase in Treg 
frequency or function during acute phase of infection 
cleared the virus and fully recovered from the disease (81). 
It is highly likely that these Treg cells induced at the early 
stages of infection suppressed CD8+ T cell functions during 
acute infection, resulting in the failure of viral clearance. In 
support of this hypothesis, Suvas et al demonstrated in a 
mouse model of acute HSV infection that depletion of 
CD4+CD25+ Treg cells before infection noticeably 
accelerated the viral clearance (12). These observations 
provided support for the proposition of early induction of 
CD4+CD25+ Treg cells as one of the mechanisms for 
developing chronic or persistent viral infections and raised 
the possibility to use this induction as a clinical predictor 
for the prognosis of acute viral infection.  
 
 Early induction of CD4+CD25+ Treg cells is 
likely programmed to control the magnitude of CD8+ T cell 
activity to ensure that no host damage will result from the 
strong antiviral immune responses which are often 
accompanied by local or systemic inflammation. However, 
the induction may have been exaggerated or occurred too 
early, as in the case demonstrated by Estes et al in acute 
SIV infections (82), where it dampens the CD8+ T cell 
response before the viruses have been completed cleared. 
What triggers the premature induction of these Treg cells 
remains to be determined. Rapid replication and spread of 
viruses, together with acute inflammation or massive 
activation of antiviral immune responses during acute 
infections, may create a microenvironment that facilitates 
premature expansion and activation of CD4+CD25+ Treg 
cells. Thus, it appears that the magnitude and timing of the 
early induction of CD4+CD25+ Treg cell activity may play 
a decisive role in the fate of the acute infection. 
  
 Amazingly, viruses can not only induce 
CD4+CD25+ Treg cells to suppress host antiviral immune 
responses to aid their infection, but also inhibit the function 
of these cells leading to the dysregulation of host immune 
response that favors their pathogenic effects and 
development of latency. This was demonstrated in a mouse 
model with γ-herpesvirus 68 infection, in which direct viral 
infection of CD4+CD25+ Treg cells decreased the 
frequency and function of these cells and resulted in an 
uncontrolled expansion of leukocytes and the establishment 
of viral latency (83). Such inhibition of CD4+CD25+ Treg 
cell function was also observed in a human retroviral 
infection in which CD4+CD25+ Treg cells defective in their 
suppressive function were found in patients infected with 
HTLV-1 virus (17). An HTLV-1 viral protein, Tax, was 
identified as responsible for the direct inhibition of Treg 
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cell function. These patients showed high levels of immune 
activation and developed a neurological inflammatory 
disease termed HTLV-1–associated myelopathy/tropical 
spastic paraparesis (HAM/TSP), which may result from a 
break in immunological self tolerance. In these studies, 
both γ-herpesvirus 68 and HTLV-1 viruses directly infected 
CD4+CD25+ Treg cells. Conceivably, the expression of 
viral proteins, such as HTLV-1 Tax protein, or replication 
of these viruses within the Treg cells inhibited the 
expression of certain cellular proteins essential for the 
suppressive activities of CD4+CD25+ Treg cells, such as 
FOXP3, GITR and HTLA-4 (17), and thus impaired the 
function of these cells. Interestingly, another virus, FIV, 
that also directly infects CD4+CD25+ Treg cells, did not 
show suppressive effects on the cells (53). Instead, 
infection by FIV phenotypically and functionally activated 
the Treg cells. 
 
5.2. Role of CD4+CD25+ Treg cells in host defense 
5.2.1. Control of inflammatory responses  
 Virtually all viral infections induce host 
inflammatory responses, which may represent an essential 
component of host defense mechanisms against viral 
infections. However, excessive inflammation can cause 
tissue damage and thus be harmful to the host if left 
uncontrolled. CD4+CD25+ Treg cells have been suggested 
to play a critical role in controlling exaggerated 
inflammatory responses accompanied with many acute and 
chronic viral infections. A recent study on acute dengue 
virus infection showed that CD4+CD25+ Treg cells, which 
were induced during the acute dengue virus infection, are 
able to suppress the production of inflammatory cytokines 
including IFNγ, TNFα, and IL-6 from T cells and 
monocytes in vitro in response to dengue virus antigens 
(19). The disproportionate production of these 
inflammatory cytokines has been thought to contribute to 
the severity of dengue disease since they cause plasma 
leakage in the patients (84). More importantly, a significant 
increase in CD4+CD25+ Treg cells was found in patients 
with mild disease symptoms but not in those with severe 
disease. This is a strong indication that the activity of 
CD4+CD25+ Treg cells contributes to the control of 
inflammatory phase of the disease and is beneficial for 
disease outcome. The role of CD4+CD25+ Treg cells 
described here in acute dengue virus infection seems not in 
agreement with that described above in acute HCV 
infection. This may be due to the difference between the 
two viruses and the infections they cause. Unlike HCV, 
Dengue virus rarely causes chronic infection and the virus-
induced inflammation is much more severe during the acute 
infection. This is perhaps a good example for the 
conception that the role of CD4+CD25+ Treg cells varies 
with the nature of the virus and infection.   
 
 If CD4+CD25+ Treg cells are critical in 
controlling virus-induced inflammation, one would expect 
that the absence of these cells would negatively impact the 
disease outcome. Indeed, in a mouse model of human HSV 
stromal keratitis, which usually results from a T cell-
mediated immunoinflammatory response to HSV infection 
in the corneal stroma, the pathological lesion is 
significantly more severe if mice were depleted of 

CD4+CD25+ Treg cells before infection (16). Similarly, in 
an influenza virus hemagglutinin (HA)-induced mouse 
uveoretinitis model,  depletion of CD4+CD25+ Treg cells 
exacerbated intraocular inflammation, whereas injection of 
mice with HA-specific CD4+CD25+ T cells controlled the 
disease (85). 
 
 One negative aspect for the function of 
CD4+CD25+ Treg cells in controlling virus-induced 
inflammatory responses is that the suppression is not 
selective or specific. Thus, while CD4+CD25+ Treg cells 
exert their suppression on inflammatory responses, 
simultaneous suppression may occur on virus-specific T 
cell responses necessary for virus clearance. This is best 
illustrated in chronic HCV infection. While a significant 
inverse correlation was found between the frequency and 
HCV-specific TGFβ response of CD4+CD25+ Treg cells 
and liver inflammation (15, 18), the same group of chronic 
HCV patients also showed a positive correlation between 
these Treg cells and viral load (15). Thus, CD4+CD25+ 
Treg cells acted to protect the host through controlling viral 
infection-associated liver inflammation. However, this 
protection is at the expense of reduced antiviral T cell 
responses and increased risk for virus spread.   
 
5.2.2. Control of hyperactivation of immune responses  
 Chronic or persistent immune activation is a 
characteristic of certain human and animal retroviral 
infections such as HIV (86), and has been suggested to be 
responsible for the disease deterioration. In HIV and SIV 
infections,  elevated immune activation induced by virus 
infection has been thought to result in CD4+ T cell 
depletion (87-89), a hallmark of AIDS progression. An 
increasing line of evidence indicates that the 
hyperactivation of T cells may be controlled by 
CD4+CD25+ Treg cells, which are induced in most 
retroviral infections (13, 46, 53, 64, 65, 67, 82). The 
induced CD4+CD25+ Treg cells are able to suppress virus-
specific CD4+ and CD8+ T cell responses in vitro in a cell 
contact-dependent and cytokine-independent manner. 
Decrease in the frequency of these Treg cells as HIV 
infection progresses has been found to be associated with 
immune activation of CD4+ and CD8+ T cells in HIV 
patients (90). Importantly, patients with strong HIV-
specific CD4+CD25+ Treg cell functions in vitro showed 
favorable clinical markers of disease status such as 
significantly lower levels of plasma viremia and higher 
CD4+ to CD8+ T cell ratios than those without Treg cell 
activity (14). This suggests that CD4+CD25+ Treg cells 
may play an important role in protecting HIV patients from 
progression to AIDS. In support of this, a recent study 
found a direct correlation between the preservation of CD4+ 
T cell counts and high percentage of CD4+CD25+ Treg 
cells in SIV-infected sooty mangabeys (91) which, in 
marked contrast to HIV-infected humans, usually show 
normal CD4+ T cell counts and lack of generalized immune 
activation, and rarely progress to AIDS despite chronic 
high levels of virus replication (92).   
 
 Another piece of evidence supporting the 
beneficial role of CD4+CD25+ Treg cell suppression of 
HIV-specific T cell responses is the study of HIV-1 
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infection in young children. It has been observed that 
vertical transmission of HIV-1 in utero only occurs in a 
very low percentage (only 3% - 15%) of HIV-1-exposed 
infants (93). A recent study has found that the virus-
specific T cell responses are weak in HIV-1-exposed 
children. The weak T cell responses are likely due to the 
suppression by CD4+CD25+ Treg cells, since the responses 
become strong after the Treg cells are removed (94). This 
suggests that CD4+CD25+ Treg cells may contribute to 
suppress the activation of virus-specific T cells and thus 
protect against infection in young children.  
 
 The studies described above demonstrate the 
benefit of CD4+CD25+ Treg cell induction in viral 
infections that induce immune hyperactivation. 
Conceivably, their absence or a deficiency in their 
suppressive function may lead to progression of the 
infection and deterioration of the disease. Indeed, in 
patients with HTLV-1-associated HAM/TSP, the frequency 
of CD4+CD25+ Treg cells actually increased when 
compared to the HTLV-1–infected asymptomatic carriers 
and uninfected healthy donors (17). However, these cells 
are defective in their suppressive functions and unable to 
control the hyperactivation of virus-specific T cell immune 
responses in HTLV-1 infection (17). This leads to the 
progression of HTLV-1 infection and the manifestation of 
HTLV-1-associated HAM/TSP. As discussed above, the 
loss of suppressive function may result from their direct 
infection by HTLV-1 virus. This could also represent one 
of the potential mechanisms for the failure of these Treg 
cells to successfully control chronic activation of T cells in 
AIDS patients.  
 
5.2.3. Control of virus-associated autoimmune disorders 
 Viral infection has long been associated with the 
development of autoimmune diseases (95). For example, 
patients with chronic HCV infection often develop mixed 
cryoglobulinemia (MC), an autoimmune disorder 
characterized by polyclonal B cell activation and 
autoantibody production (96). Other autoimmune disorders 
have also been associated with chronic HCV infection, 
including membranoproliferative glomerulonephritis, 
autoimmune thyroiditis and lymphoproliferative disorders, 
autoimmune thrombocytopenia, pruritus, and type II 
diabetes mellitus (97-99). In addition, many viruses are 
associated with the development of type I diabetes (100), 
multiple sclerosis (101, 102), myocarditis (66, 103, 104), 
and systemic lupus erythematosus (105) in human and 
animals. One mechanism for the onset of the autoimmune 
diseases after virus infection may be the reduction or 
impairment of the CD4+CD25+ Treg cell suppressive 
function following virus infection, which leads to the 
breakdown of self tolerance and the enhancement of 
autoimmune T cell responses. This is implicated by the 
finding that the frequency of CD4+CD25+ Treg cells was 
significantly reduced in chronic HCV-infected patients who 
developed MC symptoms as compared to those with 
asymptomatic MC, no MC, or healthy controls (106). In 
this particular case, the CD4+CD25+ Treg cell deficiency 
likely enhanced the CD4+ T cell help to autoantibody-
secreting B cells leading to the development of MC 
symptoms. Consistently, in an animal model, depletion of 

CD4+CD25+ Treg cells in reovirus-infected mice resulted in 
the development of severe insulitis leading to an overt early 
diabetes (107). Thus, failure to maintain Treg cell function 
may be a critical determinant for disease expression in 
virus-induced autoimmune diseases. 
 
6. MECHANISMS OF CD4+CD25+ TREG CELL 
INDUCTION IN VIRAL INFECTION  
 
 To date, many questions regarding the 
mechanisms for CD4+CD25+ Treg cell induction during 
viral infections still remain to be answered. Direct evidence 
on the induction of these cells by viruses or viral proteins is 
very limited. How these cells are generated and activated 
following virus infection is largely unknown, especially for 
the natural Treg cells since they are generated in thymus 
and are assumed to respond only to self-antigens (108). The 
induction of CD4+CD25+ Treg cells is not likely a selective 
event, since other CD4+ and/or CD8+ T cells are also 
induced at the onset of infection. In addition, both 
CD4+CD25+ Treg cells and CD4+ helper T cells have been 
induced against the same epitopes on the viral protein in 
HCV-infected patients (61), suggesting that the same signal 
that induces regular CD4+ T cells can also induce Treg cells 
simultaneously. One possibility is that, instead of selective 
induction of the Treg cell population, all CD4+ T cells are 
induced upon infection, and then the activated CD4+CD25+ 
Treg cells suppress effector CD4+ T cell functions. If this is 
the case, a kinetic change in activation of the CD4+ T cell 
populations should be detectable. Data from many studies 
have suggested that CD4+CD25+ Treg cells can be induced 
through a number of mechanisms during virus infection. 
 
6.1. Viral antigens 
 To date, information on direct induction of 
CD4+CD25+ Treg cells in vivo by viral antigens is still 
limited, although in vitro responses of these cells to viral 
proteins and peptides have been reported in several studies 
(13, 15, 109). Whether viral antigens directly activate and 
expand CD4+CD25+ Treg cells in vivo still remains to be 
demonstrated. However, this possibility is strongly 
suggested by observations from a large number of studies. 
First, virus-specific CD4+CD25+ Treg cells can be rapidly 
induced in vitro by culturing PBMC from virus-infected 
patients with viral peptides, as shown in HCV infection 
(110), suggesting that these cells have previously been 
primed by cognate HCV viral antigens in vivo. 
Furthermore, it has been found that only a small number of 
peptides from a peptide pool can induce Treg cells and the 
actual peptides that can stimulate Treg cells vary between 
patients, indicating the existence of dominant epitopes for 
CD4+CD25+ Treg cells. Second, CD4+CD25+ Treg cells 
specific to viral antigens can be found in virus-infected 
patients. Studies from Weiss et al showed that HIV viral 
protein p24 readily induced IL-10 production and TGFβ 
mRNA expression by CD4+CD25+ Treg cells from HIV-
infected patients (13). This induction was p24-specific 
since CMV and PPD showed no or low stimulation of IL-
10 and TGFβ expression in these cells. Similar specific 
responses to viral antigens has also been observed for 
CD4+CD25+ Treg cells from patients with HCV infection 
(15). These studies demonstrated the existence of virus-
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specific CD4+CD25+ Treg cells in vivo and suggested that 
expansion and activation of CD4+CD25+ Treg cells in vivo 
may be triggered by viral antigens. Third, as discussed 
above, CD4+CD25+ Treg cells isolated from virus-infected 
patients are fully functional and do not need additional 
activation for their suppressive function. Apparently, they 
have been activated in vivo following virus infection. Since 
the acquisition of their suppressive function requires their 
activation via TCR (27), it is highly likely that this TCR-
dependent activation in vivo is achieved through the 
engagement of their TCR with viral antigens. Finally, a 
more direct implication comes from a study by Huber et al, 
who showed that a single nonconserved amino acid 
difference in the nuclear capsid proteins of Coxsackievirus 
B3 H3 and H310A1 strains completely changed their 
capabilities to induce CD4+CD25+ Treg cells (66). Thus, a 
direct interaction between viral proteins or peptides and 
Treg cells is likely involved in Treg cell induction. 
 
 Several possibilities exist for direct induction of 
CD4+CD25+ Treg cells by viral antigens in vivo. As 
discussed above, viral infections often trigger autoimmune 
responses, and one of the ways this could occur is through 
the mechanism of molecular mimicry. It has been shown 
that viral peptides with sufficient structural similarity to 
self-peptides can activate T cell clones that are specific 
only for autoantigens such as myelin basic protein (111, 
112). Such molecular mimicry between viral and host 
proteins has been observed in a number of viruses such as 
measles virus (113), HBV (111), HSV (112, 113), EBV 
(63, 112), and Adenovirus type 12 (112). Autoantibodies 
have been found frequently in the sera of patients infected 
with hepatitis, chickenpox, herpes, mumps, or measles 
viruses (114). In fact, it was concluded a long time ago that 
molecular mimicry is a common phenomenon following 
the finding that many human and animal viruses share 
antigenic determinants with host cell proteins (114, 115). 
Although the mechanism of molecular mimicry has not 
been confirmed for CD4+CD25+ Treg cell induction in viral 
infections, it still remains a plausible hypothesis for viral 
antigen-mediated direct induction of CD4+CD25+ Treg cell 
activation, especially for the induction of thymus-derived 
natural Treg cells since they are considered to only respond 
to autoantigens. In addition, many human and animal 
retroviruses contain highly conserved immunosuppressive 
peptides in their envelope proteins (116-119). These 
peptides are able to suppress immune responses of 
lymphocytes, monocytes, NK cells and macrophages. It 
remains to be determined whether these 
immunosuppressive viral peptides directly induce 
CD4+CD25+ Treg cell generation and/or activation. 
However, this proposition is encouraged by the study of 
Walker et al, who demonstrated that antigen-specific 
CD4+CD25+ Treg cells can be generated in vitro from 
either naïve or memory CD4+ T cells using influenza virus 
hemagglutinin epitopes (120). Moreover, viral antigen may 
induce generation of CD4+CD25+ Treg cells from regular 
CD4+ T cells in chronic viral infections by long-term, low-
dose stimulation of these cells. This resembles the so-called 
“low-zone tolerance” that describes the antigen-specific 
tolerance resulting from long-term stimulation with sub-
immunogenic doses of antigens (121). Finally, the 

induction may also be achieved by superantigens expressed 
by some viruses such as mouse mammary tumor virus 
(122).  
 
6.2. Virus-induced cytokines  
 The cytokines that have been studied extensively 
in the context of Treg cell generation and activation are 
TGFβ and IL-10, due to their pronounced 
immunosuppressive nature. Accumulating data indicate that 
TGFβ plays an important role in induction of CD4+CD25+ 
Treg cells. However, this induction seems limited only in 
peripheral through either expansion of a small number of 
thymus-derived natural CD4+CD25+ Treg cells maintained 
in peripheral (123, 124) or conversion of peripheral naïve 
CD4+CD25- T cells into FOXP3-expressing CD4+CD25+ 
Treg cells (24, 125). The latter may be due, at least partly, 
to the capability of TGFβ to upregulate the expression of 
CD25, FOXP3, and CTLA-4 on activated naïve CD4+ T 
cells (24, 41, 44, 125-127). It seems clear that TGFβ is not 
required for thymic generation of CD4+CD25+ Treg cells, 
since several studies have shown that CD4+CD25+ Treg 
cells develop normally in thymus in both TGFβ1-/- mice 
(128, 129) and transgenic mice defective in TGFβ1 
signaling specifically in T cells and thymocytes (127, 130, 
131). Thus, the role of TGFβ is most likely to maintain the 
peripheral CD4+CD25+ Treg cell pool and expand the cells 
when necessary.   
 
 The effect of virus-induced cytokines on the 
induction of CD4+CD25+ Treg cells during viral infections 
still remains to be fully illustrated. Elevated levels of TGFβ 
expression and production have been detected in many viral 
infections including HIV (132, 133), SIV (82), HCV (134, 
135), EBV (136), CMV (137), dengue virus (138), 
influenza virus (139), HTLV-1 (140), and vaccinia virus 
(141) infections. The elevated TGFβ levels may represent 
either a strategy utilized by virus to induce 
immunosuppression for their invasion, or host protective 
anti-inflammatory response against virus-induced 
inflammation, or both. The induction of TGFβ may occur 
very rapidly after infection, as shown in a SIV-infected 
Africa green monkey model, in which the upregulated 
TGFβ expression was detected as early as 24 hours after 
infection (67). Importantly, the strong induction of TGFβ1 
was correlated with both upregulation of FOXP3 
expression and increased levels of CD25+ T cells in the 
infected animals, indicating an active role of virus-induced 
TGFβ in expansion and activation of CD4+CD25+ Treg 
cells in viral infection.  
 
 The capability of IL-10 to induce CD4+CD25+ 
Treg cells in vivo was demonstrated in a mouse model of 
type I diabetes, in which overexpression of IL-10 using an 
IL-10-expressing adeno-associated virus vector induced 
CD4+CD25+ Treg cells in vivo and ameliorated the disease 
(142). The induction of the Treg cells by IL-10 seems to be 
an indirect event mediated through dendritic cells. IL-10 
has been shown to inhibit the upregulation of the 
costimulatory molecules including CD40, CD80, CD86 on 
DC (143, 144). Consequently, it arrests the development of 
fully matured DC but leads to the generation of the so-
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called “regulatory DC” with reduced expression of the 
costimulatory molecules similar to immature DC. These 
regulatory DC have been shown to induce CD4+CD25+ 
Treg cells (23, 144). Similar to TGFβ, IL-10 production is 
also induced in many human and animal viral infections 
(145-150). Notably, some viruses, such as EBV (151) and 
parapoxvirus orf virus (152) and equine herpesvirus 2 
(153), encode a viral homolog of cellular IL-10. Like 
cellular IL-10, viral IL-10 is also able to inhibit DC 
maturation and function and promote generation of 
immature DC that promote T cell anergy (154, 155).  
 
6.3. Virus-induced DC 
 DC are potent antigen-presenting cells (APC) 
essential for activation of both virus-specific CD4+ and 
CD8+ T cells. Like TGFβ, DC have no effect on thymic 
generation of CD4+CD25+ Treg cells. Increasing evidence 
from recent studies have shown that DC, under appropriate 
conditions, are able to either directly induce antigen-
specific expansion of functional CD4+CD25+ Treg cells 
both in vitro and in vivo by stimulating extensive 
proliferation of these Treg cells (156, 157), or induce naïve 
CD4+ T cells to differentiate into CD4+CD25+ Treg cells 
with strong suppressive function (45). Thus it is 
perceivable to expect the involvement of DC, whether 
active or passive, in expansion and activation of 
CD4+CD25+ Treg cells in viral infections. In fact, many 
viral infections have shown dysregulation of DC during 
infection. This includes reduced expression of MHC class 
II and co-stimulatory molecules such as CD40, CD80, and 
CD86, and impaired function in effector T cell stimulation 
(158-161). The dysregulation of DC may result from direct 
infection by viruses (162) or from the suppression by virus-
induced immunosuppressive cytokines such as IL-10, as 
described above. These DC are able to induce CD4+CD25+ 
Treg cells (23, 144). Interestingly, the study by Moseman et 
al showed that activated allogeneic plasmacytoid dendritic 
cells (PDC) can efficiently induce naïve CD4+CD25- T 
cells to differentiate into suppressive CD4+CD25+ Treg 
cells (45). This raised the possibility for the existence of a 
specialized DC subset dedicated to the CD4+CD25+ Treg 
cell induction. Similar function of virus- or CpG-stimulated 
PDC to induce other types of Treg cells such as Tr1 and 
CD4+ cytotoxic Treg cells has also been reported (163, 
164). PDC have been shown to play a central role in innate 
immunity against viral infections (165) and many studies 
have shown that PDC are activated by viral infections (164, 
166-168). A striking feature of the activated PDC is their 
production of high levels of IFNα upon viral infections 
(169), which is an essential component of innate immunity 
against viral infections (170). Interestingly, IFNα has been 
shown to synergize with IL-10 in priming CD4+ T cells to 
differentiate into Tr1 regulatory T cells (164, 171). 
 
7. MECHANISMS OF SUPPRESSION BY VIRUS-
INDUCED CD4+CD25+ TREG CELLS 
 
 The molecular mechanisms by which Treg cells 
suppress effector T cells are still not fully understood. 
However, enormous progress has been made towards our 
understanding on how virus-induced Treg cells exert their 
suppressive functions on effector T cells. It has been 

generally accepted that CD4+CD25+ Treg cells exert their 
suppressive function through direct cell-to-cell contact with 
effector T cells or APC. However, controversial results 
have been obtained regarding cytokine involvement in 
mediating CD4+CD25+ Treg cell suppression. While most 
in vitro studies have shown that suppression by 
CD4+CD25+ Treg cells is cytokine-independent, a large 
body of in vivo studies has demonstrated the requirement of 
TGFβ and IL-10 for suppression by CD4+CD25+ Treg cells 
(3, 130, 172-176). Nevertheless, accumulating evidence has 
suggested that suppression by CD4+CD25+ Treg cells may 
be mediated by a variety of mechanisms and that the 
molecules and pathways involved in mediating the 
suppression may vary with conditions or stages of disease 
and/or immune responses.  
 
7.1. FOXP3   
 FOXP3 is specifically expressed in CD4+CD25+ 
Treg cells and has been suggested to be a master regulator 
for the development and function of CD4+CD25+ Treg cells 
(39, 177-179). This is based the observations that induction 
of FOXP3 expression is usually accompanied by an 
acquisition of suppressive function of CD4+CD25+ Treg 
cells, and loss of FOXP3 expression abrogates the ability of 
the cells to suppress effector T cell responses. In viral 
infections, this is best illustrated in patients infected with 
HTLV-1 virus. Infection of CD4+CD25+ Treg cells by 
HTLV-1 virus leads to the reduction of FOXP3 mRNA 
expression and protein production. This abrogates the 
ability of HTLV-1-infected Treg cells to suppress the 
proliferation of CD4+CD25- T cells, resulting in the 
development of HAM/TSP in HTLV-1-infected patients 
(17, 180). Since FOXP3 is essential for the development of 
peripheral CD4+CD25+ Treg cells (39, 177-179, 181, 182), 
it is not clear whether the loss of CD4+CD25+ Treg cell 
activity is due to a decrease in the frequency of the 
CD4+CD25+ T cells with regulatory capability in the total 
CD4+CD25+ T cell population, or due to the loss of 
function of CD4+CD25+ Treg cells. However, increased 
production of IL-2 was detected in these cells, suggesting 
that reduction in FOXP3 expression may lead to a defect in 
their regulatory function rather than a decrease in their 
frequency, since normal functional CD4+CD25+ Treg cells 
do not produce IL-2 (27, 28, 31). Interestingly, Sereti et al 
found that high levels of FOXP3 expression can be induced 
in a long-lived population of cytokine-expanded naïve 
(CEN) CD4+CD25+ T cells in HIV-infected patients 
receiving IL-2 immunotherapy (183). These IL-2-expanded 
FOXP3+CD4+CD25+ T cells are phenotypically and 
functionally distinct from naturally occurring CD4+CD25+ 
Treg cells and do not display strong suppressive activity. 
This raised the question about the previous statement that 
only CD4+CD25+ Treg cells express FOXP3 and suggested 
that expression of FOXP3 may not necessarily confer 
immunosuppressive activity on the cells.  
 
7.2. CTLA-4  
 Because CD4+CD25+ Treg cell suppression is 
dependent on direct cell contact, the surface molecules on 
Treg cells, target cells, and the cells with potential 
involvement in CD4+CD25+ Treg cell function have gained 
much attention in recent years. Among them, CTLA-4 has 
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drawn widespread interest because of its high constitutive 
expression on CD4+CD25+ and other Treg cells (37). A 
number of studies have implicated that CTLA-4 expression 
plays a key role in mediating the suppressive function of 
CD4+CD25+ Treg cells, as in vivo blockade of CTLA-4 
abolished the suppressive activities of these Treg cells to 
control inflammatory (174, 175) or autoimmune (37) 
diseases. A similar role of CTLA-4 has also been observed 
in viral infections. In mice infected with Friend virus, virus 
infection induced CD4+CD25+ Treg cells and these cells 
suppressed allogeneic CTL generation in vitro (11). 
Blocking CTLA-4 activity with a monoclonal anti-CTLA-4 
antibody reversed this Treg cell-mediated suppression and 
restored the CTL generation. In another study with SIV-
infected macaques, increased effector function of both SIV-
specific CD4+ and CD8+ T cells and decreased viral load in 
lymph nodes were detected after treating the animals with 
the anti-CTLA-4 antibody that blunted CD4+CD25+ Treg 
cell suppression (184). These studies provide evidence for 
the essential role of CTLA-4 in mediating the suppressive 
effect of CD4+CD25+ Treg cells on host antiviral immune 
response. In many viral infections, such as in HIV (185, 
186) (187), SIV (82), HCV (188, 189), influenza (190), and 
EBV (191) infections, upregulated expression of CTLA-4 
has been observed in parallel to the induction of 
CD4+CD25+ Treg cells. There is also a recent report on the 
direct effect of HIV-1 viral protein Vpr on the induction of 
CTLA-4 in HIV-infected T cells (192).  
 
 How CTLA-4 mediates the suppressive effect of 
CD25+CD4+ Treg cells is still under investigation. One 
commonly accepted mechanism is that it functions through 
its interaction with costimulatory molecules CD80 and 
CD86 on APC and/or effect T cells (193). Ligation of 
CTLA-4 to CD80/CD86 on APC either induces the 
production of the immunosuppressive enzyme indoleamine 
2,3-dioxygenase (IDO) (194, 195) and the generation of 
inhibitory tryptophan metabolites (196-198), or competes 
with CD28 on effector T cells to bind to CD80/CD86 on 
APC and thus blocks the costimulatory signaling pathway 
for effector T cell activation. This seems true for CTLA-4 
in viral infections, as elevated IDO expression was detected 
in viral infections in both animal model (188, 189) and 
patients infected with HCV (188). More convincingly, 
decreased IDO expression was detected in SIV-infected 
macaques following CTLA-4 blockade, which apparently 
diminished the suppressive effect of CD4+CD25+ Treg 
cells, as increased SIV-specific effector T cell function and 
decreased viral load were detected in these animals (184).  
 
7.3. TGFβ 
 Because of its marked immunosuppressive 
property and elevated production following CD4+CD25+ 
Treg cell activation in many situations, TGFβ has been 
examined extensively for its role in mediating CD4+CD25+ 
Treg cell suppression. The results obtained are rather 
controversial or confusing. While a number of in vitro 
studies have shown that suppression by CD4+CD25+ Treg 
cells does not involve the activity of TGFβ (27, 28, 31, 
199, 200), several in vivo studies have demonstrated the 
importance of TGFβ in CD4+CD25+ Treg cell suppression 
(130, 172, 174-176). However, the latter is debatable as 

well, as some studies have also shown the independence of 
CD4+CD25+ Treg cell function on TGFβ in vivo (66, 128, 
200). In an effort to explain these above discrepancies, 
Nakamura et al made an interesting finding that mouse 
CD4+CD25+ Treg cells express the latent form of TGFβ1 
on their surface, and suggested that the cell contact-
dependent suppression by CD4+CD25+ Treg cells was 
mediated by this cell membrane-bound TGFβ1, which is 
activated upon cell contact between the Treg and target T 
cells (34). However, this mechanism was not confirmed by 
others in either human (35) and mouse systems (200), as 
CD4+CD25+ Treg cells strongly suppressed CD4+ T cells 
from mice deficient in Smad3, a signaling protein essential 
for TGFβ suppression of T cell proliferation and activation, 
and the CD4+CD25+ T cells from Smad3-/- mice were as 
efficient in mediating suppression as those from wild-type 
mice, indicating that no TGFβ signaling is involved in the 
suppression (200).  
 
 To date, data about the role of TGFβ in virus-
induced CD4+CD25+ T cell suppressive function are 
derived exclusively from in vitro studies, and 
inconsistent results similar to those mentioned above 
have also been observed for CD4+CD25+ T cells from 
virus-infected subjects. Most in vitro studies using these 
Treg cells indicate that TGFβ is not essential for 
CD4+CD25+ Treg cell-mediated suppression because 
anti-TGFβ antibody cannot block the suppressive effect 
of these Treg cells on virus-specific CD4+ or CD8+ T 
cell responses (13, 14, 75, 76, 201). However, unlike the 
in vitro results described above in other systems, there is 
also a report that in vitro suppression by CD4+CD25+ 
Treg cells is TGFβ-dependent. In this study, addition of 
anti-TGFβ antibody to the cell culture abrogated 
CD4+CD25+ Treg cell-mediated suppression and 
increased HCV-specific IFNγ production in HCV-
stimulated PBMC (15). Thus, further studies, 
particularly in vivo studies, are needed to clarify the role 
of TGFβ in mediating CD4+CD25+ Treg cell function in 
viral infections.  
 
 Although there is still a lack of in vivo 
demonstration for the role of TGFβ in mediating 
CD4+CD25+ Treg cell function in viral infections, it can be 
anticipated that TGFβ may contribute to the suppression by 
virus-induced CD4+CD25+ Treg cells in vivo. This is based 
on the fact that almost all viral infections lead to 
immunosuppression and virus-induced TGFβ has been 
suggested as the key mediator of immunosuppression in 
viral infections (137, 202, 203). Many studies have shown 
that CD4+CD25+ Treg cells from virus-infected patients 
produce high levels of TGFβ (13, 15, 67, 82, 134). In 
addition, a wide variety of cell types are capable to produce 
TGFβ upon virus infection, including other types of 
regulatory T cells such as Th3 (204) and CD8+ Treg cells 
(205).  Thus, the suppressive effect observed in vivo 
represents a total effect of TGFβ from all sources. It is 
difficult to conceive that the TGFβ produced by virus-
induced CD4+CD25+ Treg cells does not join the total 
TGFβ pool in mediating immunosuppression during viral 
infections.  
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7.4. IL-10  
 Another immunosuppressive cytokine potentially 
involved in mediating CD4+CD25+ Treg cell function is IL-
10. Similar to TGFβ, studies on the role of IL-10 in 
mediating CD4+CD25+ Treg cell function in viral infections 
have shown controversial results. Most in vitro studies 
using CD4+CD25+ Treg cells from virus-infected patients 
showed that blocking IL-10 activity in vitro by using anti-
IL-10 or anti-IL-10 receptor antibodies could not abrogate 
the suppression by CD4+CD25+ Treg cells, and thus 
concluded that the suppression was not mediated by IL-10 
(13, 14, 201). However, a study by Huber et al showed that 
coxsackievirus B3 variant H310A1-induced CD4+CD25+ 
Treg cells were dependent on IL-10 for their suppressive 
function in vivo, and anti–IL-10 treatment abrogated the 
protection by CD4+CD25+ Treg cells against viral 
myocarditis (66). This seems consistent with the results 
from other in vivo studies that showed the dependence of 
CD4+CD25+ Treg cells on IL-10 for their suppressive 
functions in controlling expansion of peripheral CD4+ T 
cells (206), over-production of cytokines (207), Th1-
mediated inflammation (208), and autoimmune 
pneumonitis (209).  
 
7.5. IL-2 
 Inhibition of IL-2 production was the first 
mechanism suggested for CD4+CD25+ Treg cell-mediated 
suppression when Thornton et al observed that CD4+CD25+ 
Treg cells inhibited the proliferation and IL-2 production of 
CD4+CD25- effector T cells, and that addition of 
exogenous IL-2 not only markedly enhanced the effector 
CD4+ T cell responses but almost completely abrogated the 
suppressive effects of CD4+CD25+ Treg cells (27). 
However, this mechanism was questioned since IL-2 is not 
required for the development and function of T cells in vivo 
(210, 211), except for Treg cells themselves (212). In viral 
infections, little is known about the role of IL-2 in 
mediating the suppressive function of virus-induced 
CD4+CD25+ Treg cells. The only information is a study on 
HIV infection showing that suppression of HIV p24-
stimulated CD4+ T cell proliferation by CD4+CD25+ Treg 
cells is associated with the inhibition of IL-2 production 
(14). Whether IL-2 plays a role in virus-induced 
CD4+CD25+ Treg cell function still remains to be 
determined. 
 
7.6. GITR 
 GTIR has been shown to be constitutively and 
predominantly expressed at high levels on CD4+CD25+ 
Treg cells (38, 213). Initially, data from both in vitro and in 
vivo studies suggested an essential role of GITR in 
mediating CD4+CD25+ Treg cell function. This was based 
on the observations that CD4+CD25+ Treg cell-mediated 
suppression of anti-CD3-stimulated or peptide-specific 
CD4+ T cell proliferation was abrogated after blocking 
GITR signaling with anti-GITR antibodies in vitro (38, 
213), and that injection of normal mice with the antibodies 
led to the development of autoimmune gastritis and 
autoantibodies against parietal cells (38), a typical 
consequence from the loss of CD4+CD25+ Treg cell 
function in maintaining self-tolerance. However, it was 
later found that addition of anti-GITR antibody could not 

reverse the CD4+CD25+ Treg cell-mediated suppression of 
CD4+ T cells from GITR-/- mice (214), although these Treg 
cells from normal mice expressed GITR. Furthermore, 
CD4+CD25+ Treg cells from GITR-/- mice showed 
comparably potent suppressive activity to those from 
normal mice, and the suppression by CD4+CD25+GITR-/- 
Treg cells could be reversed by the addition of anti-GITR 
antibody. Collectively, these results clearly indicate that 
suppression by CD4+CD25+ Treg cells is mediated through 
the GITR on the target cells and not on the CD4+CD25+ 
Treg cells. Thus, engagement of the GITR on CD4+CD25+ 
Treg cells plays no role in abrogation of the CD4+CD25+ T 
cell-mediated suppression. Instead, engagement of GITR 
on target T cells, which turned out to render the target T 
cell resistant to the suppression by CD4+CD25+ Treg cells, 
is required to overcome CD4+CD25+ Treg cell-mediated 
suppression. Nonetheless, engagement of GITR with its 
ligand or antibody will likely change the status of effector 
T cell responses to pathologic stimuli, and thus may 
possess therapeutic potential. In support of this, studies on 
a mouse Friend virus model of retrovirus infection showed 
that administration of anti-GITR antibody to the infected 
mice increased Th1 cytokine production by both CD4+ and 
CD8+ T cells, ameliorated disease manifestation, and 
reduced virus load (74, 215). Consistently, La et al 
demonstrated that a single injection of anti-GITR antibody 
to HSV-infected mice immediately after viral infection 
significantly increased both the number of activated, 
antigen-specific CD4+ Th1 and CD8+ T cells and their IFNγ 
production (216). Thus, signaling through GITR enhances 
the antiviral immune responses. This concept has been 
tested in animal models for its potential clinical application 
in antiviral therapy. One approach is to use GITR ligand 
(GITRL) as an adjuvant to enhance viral vaccine efficacy. 
In a recent study on the development of DNA vaccine for 
HIV infection, Stone et al generated plasmids encoding a 
multimeric soluble GITRL fusion protein to use as an 
adjuvant (217). Immunization of mice with HIV DNA 
vaccine plus GITRL adjuvant plasmids significantly 
augmented virus-specific CD4+ and CD8+ T cell responses 
including their proliferation, IFNγ production, cytolytic 
activity, and antibody production. Since ligation of GITR 
provides costimulatory signals to both CD4+CD25+ Treg 
cells and CD4+CD25- effector T cells (218), the enhanced 
effector T cell responses may represent combined effects of 
direct activation upon ligation of their GITR with GITRL 
and indirect activation through the reduction of Treg cell 
suppressive effect following the ligation of GITR on Treg 
cells.     
 
 In summary, more studies are still needed to 
clarify the mechanisms by which CD4+CD25+ Treg cells 
execute their suppressive functions. Whether there are more 
molecules potentially involved in the function of these Treg 
cells remains to be determined. Giving the fact that the 
suppression of CD4+CD25+ Treg cells can be abrogated by 
blocking one molecule but not another and that all 
molecules described above are potentially capable of 
mediating CD4+CD25+ Treg cell function, it is likely that 
the suppression of CD4+CD25+ Treg cells is mediated by 
different molecules under different conditions such as the 
nature of virus and infection, or the stage, magnitude, and 



CD4+CD25+ Treg and viral infections 

1162 

nature of inflammation and immune activation. It is 
important to find out whether the suppression observed is 
mediated by a single molecule or results from the collective 
effects of multiple molecules. In fact, the role of these 
molecules in mediating Treg cell function may change 
during the course of infection as disease condition changes. 
For example, as shown in the study on Leishmania major 
infection, IL-10 is not involved in suppression by 
CD4+CD25+ Treg cells at the early stage of infection, but is 
required at a later stage when chronic infections are well-
established (3).  
 
8.  CONCLUSIONS AND PERSPECTIVE 
 
 In a productive and successful immune response 
to a viral infection, the processes of mounting a vigorous 
antiviral immune response and restricting excessive 
inflammatory responses to minimize collateral damage to 
host tissues are appropriately regulated and homeostasis is 
maintained. Because of their unique suppressive function, 
CD4+CD25+ Treg cells appear to play a key role in 
controlling undue inflammatory and hyperimmune 
responses in viral infections. However, this benefit is 
achieved at the cost of reduced antiviral immune responses 
and increased risk of developing chronic or persistent viral 
infection. The active role of CD4+CD25+ Treg cells in 
regulating antiviral immune responses makes them 
promising targets for clinical antiviral therapy. The biggest 
challenge is how to direct the function of these Treg cells 
precisely towards a desired therapeutic outcome to benefit 
the host, and, at the same time, keep their detrimental effect 
to the minimum. This requires a clear understanding of the 
biological and functional properties of CD4+CD25+ Treg 
cells in viral infections. To date, information on many 
aspects of CD4+CD25+ Treg cells in viral infections is still 
very limited. Many questions still remain to be answered 
and controversial results to be clarified. Further studies are 
needed to depict precise mechanisms on how CD4+CD25+ 
Treg cells are induced and regulated during viral infections 
and how they execute their function. Special attention 
should be paid to the discrepancy between in vitro and in 
vivo observations. To date, there is still no explanation for 
this discrepancy. Since in vitro assay conditions usually do 
not reflect the actual physiological environment in vivo, 
data from in vitro studies should be interpreted with 
caution. Accordingly, the functional property of 
CD4+CD25+ Treg cells in vivo will very likely differ from 
that predicted from in vitro studies. This is particularly 
important in the design of therapeutic strategies 
targeting CD4+CD25+ Treg cells for clinical application 
since strategies based on in vitro observations may not 
generate the anticipated effect in vivo. Finally, it should 
also be kept in mind that other types of regulatory T cells, 
such as Tr1, Th3, CD8+, and CD45RBlow Treg cells, may 
also regulate immune responses in viral infections. The 
relationship between these Treg cells and CD4+CD25+ 
Treg cells and how they affect each other in viral 
infections are unclear. Detailed in vivo analysis should 
provide information for our understanding of the 
biological effect of these Treg cells in viral infections 
and help with the development of strategies for the 
prevention and treatment of viral diseases. 
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