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1. ABSTRACT 
 

Delayed vasospasm and secondary injury due to 
ischemia occur frequently in the setting of subarachnoid 
hemorrhage (SAH), and these changes have been well 
characterized within the last decades. Considerable effort has 
also been put into the development of therapeutic strategies 
and appropriate monitoring modalities. However, although in 
particular acute injury is known to contribute significantly to 
overall outcome in SAH, these immediate alterations still 
remain largely neglected in current research. Few studies exist 
to date which mainly describe rapid alterations in perfusion 
and metabolism. As the main characteristic of the very first 
minutes and hours after SAH, an immediate phase of CPP-
independent hypoperfusion has been observed repeatedly both 
experimentally and clinically, and it has mostly been attributed 
to the development of acute vasospasm. Endothelin and nitric 
oxide, prime suspect in the pathogenesis of chronic vasospasm, 
may play a pivotal role in this early scenario, possibly being 
promoted by the drastic ICP increase and extravasation of 
blood compounds. The much disputed concept of 
inflammation in chronic vasospasm may not be applicable this 
early after the ictus, but mechanisms of cellular and structural 
changes causing microvascular platelet aggregation and 
immediate disruption of the basal lamina, however, are thought 
to contribute significantly to the imminent cascade of 
disturbances in perfusion and metabolism. This review is 
intended to summarize current insights and illustrate recent 
efforts to better understand alterations in cerebral perfusion in 
these very first minutes and hours after SAH which – at some 
point – may also be amenable to early therapeutic intervention. 

 
 
 
 
 
2. INTRODUCTION 
 

Subarachnoid hemorrhage (SAH) remains one of 
the foremost neurosurgical challenges due to its relatively 
high incidence (10-15/100.000), still associated with high 
morbidity and mortality despite considerable improvement 
in microneurosurgery, interventional treatment and 
neurointensive care units (1). 

 
Several specific phases after SAH have been 

identified, and each phase contributes significantly to the 
overall outcome of this disease, which reaches up to 50% 
of cumulative mortality: the severity of the initial 
hemorrhage (early phase), the intervention to treat the 
ruptured aneurysm (perioperative phase) and the 
development of deficits during the chronic phase of 
vasospasm (chronic phase).  

 
A plethora of experimental and clinical 

investigations concerning the perioperative phase has been 
undertaken to optimize securing the injured vessel, be it by 
endovascular coiling or surgical clipping of the aneurysm 
(2, 3, 4). An equal number of studies and reviews have 
been concerned with the prognosis, identification, treatment 
or prevention of vasospasm during the chronic phase 
between days 5-14 after the bleed (5, 6, 7). 

 
Although the theory of biphasic development of 

vasospasm has been postulated in the Mid-60´s already, 
only very limited further data is available looking into 
the first part, the early phase after SAH (8, 9). The  
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Figure 1. Illustration of the complexity of acute changes in 
SAH as well as their clinical relevance. Acute reduction of 
CBF is caused by a variety of cellular and structural 
changes, but the theory of acute vasospasm as a major 
factor has gained widespread acceptance. Acute 
hypoperfusion is known to correlate with the clinical grade 
at presentation, which in turn determines overall outcome. 
Thus, a correlation of CBF decrease and ultimate clinical 
recovery seems plausible.  

 
initial severity of the hemorrhage and cerebral blood 
flow (CBF) reduction during the very first moments 
after an insult are major determinants for imminent 
morbidity and mortality (10, 11. 12). Neurological 
grading such as the World Federation of Neurological 
Surgeons (WFNS) or Hunt and Hess grading scales are 
universally accepted. The scales are defined by the initial 
and acute neurological deficit of a patient and are known to 
correlate well with the patient´s outcome (13, 14). 

 
Thus, it is all the more surprising, that only 

limited effort has been put into the characterization of this 
acute pathophysiology and those changes in perfusion in 
particular, as it may very well be a crucial trigger in an 
oftentimes detrimental cascade, which is potentially 
amenable to favourable, early manipulation. 

  
In this review we will summarize results and 

conclusions of selected experimental, but most importantly 
also recent clinical efforts highlighting the importance of 
early CBF changes after subarachnoid hemorrhage (Figure 1). 

 
3. EXPERIMENTAL DATA 
 
3.1. Perfusion and metabolism 

As the extent of CBF reduction was found to 
correlate with a worsening in clinical outcome, 

hemodynamic changes have been of interest to several 
research groups. In animal models, the occurrence of 
subarachnoid hemorrhage is usually approximated by either 
endovascular filament perforation or direct injection of 
blood into the cisterna magna or the chiasmatic cistern (15, 
16, 17). Experimentally, a rapid increase in intracranial 
pressure (ICP) and a consecutive dramatic fall in cerebral 
perfusion pressure (CPP) immediately after the insult have 
been reliably reproduced4,36,84,117, while Laser-Doppler 
flow (LDF) remains decreased at 20% of baseline values 
even after recovery of CPP (1, 15, 18, 19). This phase of 
prolonged hypoperfusion which is independent from 
perfusion pressure has been confirmed by studies from 
our own group and others, as well as a generalized loss 
of CO2-reactivity after SAH (1, 15, 20, 21, 22). Furuichi 
et al. were able to show that slow and rapid injection of 
autologous blood into the cisterna magna, as well as 
rapid, but not slow injection of saline leads to an 
increase in sympathetic nerve activity and consequently 
to a dramatic and prolonged decrease in CBF (23). The 
underlying narrowing within the microvasculature was 
observed together with a suppression of metabolism, as 
estimated by a reduction in tissue oxygenation, and it 
was correlated with the severity of the hemorrhage (18, 
24). Metabolic disturbances, as appreciated by 
microdialysis and magnetic resonance spectroscopy, 
include a depletion of glucose and concomitant increase 
in lactate and excitatory amino acids, supporting the 
theory of relative substrate depletion (25). 
 
3.2. Cellular changes 

CBF reduction is thought to precede complex 
cellular changes3, which include rapidly developing 
cytotoxic edema on diffusion-weighted imaging (DWI) 

(25, 27). A wave-like propagation of cell depolarization, 
failure of energy-dependent Na+/K+ pumps and neuronal 
cell death may lead to cellular swelling (27). 
Generalized edema has been frequently observed after 
SAH, and as the extent of hypoperfusion seems to 
correlate with the extent of neuronal cell death, a recent 
capacious review explores the emerging role of 
apoptosis in caspase-dependent and -independent as well 
as mitochondrial pathways, mechanisms that may be 
influenced favourably by application of caspase 
inhibitors among others (28, 29, 30). 
 
3.3. Structural changes 

The exhaustion of autoregulation as mentioned 
above has been hypothesized to contribute to changes of 
vascular integrity; both the disruption of the blood-brain 
barrier and endothelial injury have been observed 
consistently within minutes to hours after the injury (31, 
32, 33, 34). Adhesion molecules are expressed rapidly 
within the vasculature, promoting inflammation and 
consecutive luminal changes (35, 36). Other mechanisms 
include induction of vascular endothelial growth factor, 
luminal proteases and the above mentioned rise in ICP to 
increase permeability (37, 38, 39, 40). Loss of vascular 
integrity has also been attributed to an immediate loss of 
collagen IV in conjunction with an activation of MMP-9, 
leading to cerebral edema and vasoconstriction (39, 41). 
Platelet aggregation within minutes after SAH is followed 
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by a release of vasoactive compounds and mechanical 
blockage of vessels, also causing Hypoperfusion (42).  

 
Ostrowski et al. have expertly summarized 

current insights into the cascades of molecular signaling 
pathways that are initiated early after a bleed, and in 
another recent overview, Sehba et al. have recapitulated 
oxidative injury by free radicals among other mechanisms 
(43, 44).  

 
We will therefore limit our synposis to few most 

pertinent explanatory principles in view of acute 
vasospasm, which as its own entity is well documented 
both historically and in current experimental setups (8, 19, 
30, 45, 46).  
 
3.4. Acute vasospasm 
3.4.1. Endothelin 

Endothelin (ET) is considered a prime causative 
suspect in the setting of delayed vasospasm, but acute 
liberation of ET-1 and the rapid development of 
vasoconstriction has also been investigated and is thought 
to be caused by the rapid increase in ICP itself throughout 
the brain, a hypothesis that is supported by the fact that 
early hypoperfusion is also a generalized phenomenon (7, 
47, 48, 49, 50, 51). Other factors such as vascular shear 
stress, oxyhemoglobin and hypoxia can also induce the 
transcription of ET-1 mRNA with consequent synthesis of 
ET-1 within minutes (52). Consequently, additional 
investigations are already concerned with the prevention of 
acute vasospasm on the basis of endothelin A receptor 
antagonists (53, 54). 
 
3.4.2. 20-HETE 

20-hydroxyeicosatetraenoic acid (20-HETE) is 
another mediator of cerebral vasospasm; it activates protein 
kinase C and rho kinase and thereby sensitizes the 
vasculature to calcium, but it is also known to modulate the 
response to vasodilators and vasoconstrictors alike (55). An 
increase in 20-HETE within the CSF after SAH has been 
demonstrated both in animal experiments and clinically, 
and it has been associated with an acute decrease in CBF 
(56, 57, 58, 59). Interestingly, it has also been shown, that 
the inhibition of 20-HETE synthesis may have a beneficial 
influence on both acute Hypoperfusion and chronic 
vasospasm (60, 61, 62). Similar effects have been observed 
with the application of hypothermia and lipid-peroxidase 
inhibitors (1, 63). 
 
3.4.3. Nitric oxide 

Nitric oxide (NO) has been vigorously studied 
due to its well known vasodilatory effects and its 
maintenance of cerebral blood flow by demand (64, 65). 
Oxyhaemoglobin within the subarachnoid space after SAH 
scavenges NO and triggers ischemia on the basis of 
spreading depolarization (66); decreased availability of NO 
after SAH can cause relative, unopposed vasoconstriction 
(67, 68). Administration of a NO-donor can influence this 
acute vasoconstriction favourably, and it also reduces the 
release of excitatory amino acids (39, 69, 70). The effect of 
NO has been lend further indirect support by an animal 
model where treatment with 3-hydroxy-3-methylglutaryl 

coenzyme A reductase inhibitors (statins) helped to 
augment cerebral blood flow by induction of enhancing 
nitric oxide synthase (eNOS) (71). 
 
4. CLINICAL DATA 
 
4.1. Clinical grade, perfusion and metabolism 

A recent analysis of a very large cohort of SAH 
patients again showed that both cerebral infarction and the 
initial WFNS grade on admission are the most important 
predictors of overall outcome after SAH (72); also, WFNS 
grade itself and the length of the initial loss of 
consciousness are significantly correlated with the 
development of infarction (73). Investigations from 
Jakobsen et al. have been able to correlate the severity of 
this acute neurological deficit with the extent of initial 
hypoperfusion, and those observations have been 
confirmed by several other groups (74). Using Xenon-
enhanced computed tomography (CT) among other 
techniques, a more pronounced initial decrease in CBF was 
found in those patients with a higher Hunt and Hess grade 
(12, 75, 76, 77). If the initial change in CBF parallels the 
neurological presentation of a patient, a correlation of CBF 
and outcome is plausible, necessitating more efforts to 
determine changes in CBF within the very first hours after 
the bleed (78). It remains a logistic challenge to examine 
patients with regard to crucial physiological parameters 
such as ICP, CPP and CBF within the first minutes and 
hours after SAH. High initial mortality and delayed 
presentation to a dedicated neurovascular center usually 
limit the number of patients eligible to be investigated, and 
those few studies successfully enrolling patients very early 
after the bleed usually preclude a generalized conclusion 
due to the small sample size. 

 
Interpretation of an acute decrease in cerebral 

blood flow, though, is certainly limited without the 
knowledge of changes in cerebral metabolism, and – while 
experimental data suggest a scenario of severe depletion of 
energy substrates - ambivalent clinical results exist when 
investigating the correlation of CBF and metabolism (74). 
After SAH, oxygen uptake – measured by the cerebral 
metabolic rate for oxygen (CMRO2) – decreases, and it also 
seems to correlate with clinical grade, being more severely 
diminished in unconscious than in conscious patients (12, 
79, 80, 81). Some debate has been concerned with the 
occurrence of luxury perfusion immediately after SAH, 
usually defined as a more pronounced decrease in CMRO2 
than in CBF, paralleled by an ubiquitous decrease in 
arterio-venous difference for oxygen (AVDO2) (12, 43). 
However, concomitant normal and increased oxygen 
extraction fraction have also been described within the first 
two days contradicting this hypothesis (79, 82). 

 
Admission plasma glucose levels are oftentimes 

elevated after SAH as a catecholamine-driven stress 
response, providing ample amount of substrate in a 
predominantly anaerobic glycolysis, which in turn leads to 
severe lactate-acidosis with a worse prognosis (83, 84, 85, 
86). Also, lactate was found to be elevated in both CSF and 
within the parenchyma (87, 88, 89). It indicates a 
pronounced disruption in metabolism on the basis of 
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impending cerebral ischemia with considerable 
accumulation of excitatory amino acids such as glutamate 
as verified by bed-side microdialysis (90, 91). These 
monitoring findings also support the concept of early 
detrimental hypoperfusion after SAH. 
 
4.2. Intracranial pressure 

On rare occasions, a dramatic rise of ICP to 
diastolic levels immediately after an aneurysmal bleed 
could be observed directly, a stage of the disease that is 
paralleled clinically by the typical initial syncopal 
episode (92, 93, 94). Before CSF can be displaced into 
the spinal canal, this massive increase in ICP has been 
postulated to culminate in a cerebral circulatory arrest of 
several minutes when simultaneous transcranial doppler 
sonography documented oscillating flow velocities of 
systolic input and diastolic output flow on the basis of 
massively increased peripheral resistance (95, 96, 97). 
According to Nornes, patients with a pressure peak and 
consecutive perfusion arrest of only a few minutes 
(Nornes Type I) had a considerably better chance of 
survival than those patients with continuous ICP 
elevation (Nornes Type II), possibly due to the extent of the 
initial ischemic compromise (93, 94). Hypothetically, this 
classification may be reflected somewhat by the general 
observation that patients with a classic non-aneurysmal 
perimesencephalic hemorrhage do suffer a distinctly less 
pronounced increase in ICP, and therefore experience a less 
severe reduction of CBF. This would explain the generally 
more benign outcome. The immense rise in ICP in aneurysmal 
SAH – initially ensuring hemostasis and thereby the patient´s 
survival – has been considered to be caused by the volume of 
acutely extravasated blood in the subarachnoid space, but also 
by acute vasoparalysis leading to direct transmission of arterial 
pressure to the parenchyma.  
 
4.3. Autoregulation 

Disruption of autoregulation has been observed 
not only in the experimental but also in the clinical setting. 
On the basis of both experimentally proven increase of 
CBF and a preservation of CO2-vasoreactivity due to 
modification of the NO pathways, recent clinical analyses 
were looking into the effect of prior therapy with 
cholesterol-lowering agents such as statins in SAH patients 
(98, 99): a match-controlled cohort study which showed 
an improvement in early outcome and a retrospective 
analysis demonstrating a significant decrease in the 
incidence of symptomatic vasospasm (100, 101). Also in 
a prospective fashion, if treatment with statins was 
initiated early after SAH, improvement in 
autoregulation, amelioration of vasospasm and delayed 
neurological deficits could be observed (102, 103). 
However, the implications of these findings have to be 
examined cautiously, even more so on the basis that 
another study has correlated the use of selective 
serotonin reuptake inhibitors (SSRIs) and statins with a 
greater risk of developing vasospasm (104, 105). 

 
4.4. Acute vasospasm 

The hypothesis of immediate, reflectory 
vasodilation as well as luxury post-insult hyperperfusion 

seen with transcranial doppler has been supported by 
few selected clinical observations (106, 107, 108). 
Contrarily, authors have published angiographic case 
studies demonstrating a phase of hyperacute spastic 
narrowing after SAH (109). Angiography during 
aneurysmal rupture could not provide definite proof for 
acute constriction in this ultra-early phase of SAH, as 
more than one third of the patients had to be excluded 
due to obscuration of the vessels in question (110). 
Although these selected contradictory observations do 
not allow to draw a reliable conclusion, a retrospective 
analysis of a large multicenter trial has also 
demonstrated acute vasospasm to occur angiographically 
in up to 10% of patients admitted for the treatment of 
SAH within the first 48 hours (110, 111, 112). It was 
associated with poor admission grade, risk of further 
deterioration, infarction and also poor neurological 
outcome, though it did not correlated with the 
occurrence of late vasospasm. Since detection of 
proximal angiographic vasospasm becomes more and 
more feasible on CT angiography – which probably is a 
suitable and more readily available early diagnostic tool 
in SAH –, further data on the presence of acute 
vasospasm may be acquired in the near future (113). 
However, the incidence of peripheral vasospasm – 
currently appreciated on neither conventional nor CT 
angiography due to technically limited resolution – may 
certainly be even higher than 10% (114). Experimental 
and clinical evidence of distal microvasospasm may in 
part explain the initial decrease in CBF (39, 115, 116). 
Interestingly, prolonged hypoperfusion during the acute 
phase has been observed clinically in small case series 
within the first three days, and this perfusion 
compromise is independent of CPP, as ICP rapidly 
regains prebleeding levels (117, 118). Recently, 
preliminary observations from our own group within the 
first 6 hours after SAH were in excellent accordance 
with those findings (Figure 2, unpublished data), and 
may correspond to early focal lesions found acutely in 
high-grade SAH by magnetic resonance imaging (119).  

 
It is believed by some groups that 

inflammatory cell infiltration of the aneurysm wall as 
well as progressive degradation of the endothelial layer 
may herald the rupture of an aneurysm, followed by 
disruption of the basal membrane and consequently 
culminating in an aneurysmal tear (120). In a time 
course that has to be characterized in more detail, 
mononuclear leukocytes then secrete ET-1 and 
proinflammatory cytokines such as IL-1β, IL-6 and 
TNF-α (121, 122). ET-1 is considerably more elevated 
in the parenchyma than in the CSF or plasma, which is 
in good aggreement with the fact that endothelin mostly 
acts in a paracrine fashion from the adventitial, not the 
luminal side of the vessel (123, 124, 125). The 
importance of these responses in the acute phase after 
SAH is supported by the fact, that only the early 
intrathecal concentration of proinflammatory cytokines 
has been associated with poor clinical outcome (126). 
Correspondingly, but not addressing the acute phase, 
selective endothelin-A receptor antagonists have been 
found to ameliorate delayed vasospasm (7). 
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Figure 2. Illustration of exemplatory cerebral blood flow 
changes measured by Xenon-enhanced CT early after SAH. 
The first patient presented three hours after SAH (upper 
left: symmetrical hemorrhage on CT) to our department 
with moderate headache and mild confusion, GCS 14, 
being graded HH II°. Except for the right frontal area close 
to normal perfusion levels were present (upper right). The 
second patient also presented three hours after SAH, but 
was comatous upon admission with a GCS of 4 being 
graded HH V°. CT scanning (lower left; external 
ventricular drain in place) showed severe SAH and Xenon-
enhanced CT demonstrated profound and ubiquitous 
reduction in perfusion averaging approximately 15ml/100g 
x min (lower right). 

 
Cell adhesion molecules (CAMs) and E-selectin 

in particular have also been advocated to participate in the 
development of vasospasm through very early steps of an 
inflammatory response, as they increase rapidly after SAH 
in both CSF and plasma (127, 128). It has been argued, 
however, that most inflammatory changes are less likely to 
occur during the very acute phase due to their time-
consuming nature of initiation as expertly outlined in a 
overview by Sercombe et al. (129). 
 
5. CONCLUSION 
 

Acute hypoperfusion is a characteristic feature 
early after SAH. As a multifactorial event it precedes a 
preliminary recovery and secondary deterioration due to 
delayed vasospasm. The combination of this early and 
profound change in perfusion is thought to reflect the 
impact of primary injury, thereby causing a specific 
vulnerability to secondary insults. 
 
6. PERSPECTIVE 
 

A multitude of contributing factors has been 
described in acute brain injury after SAH so far, but 
understanding of the underlying mechanisms and the 
ultimate relevance of these early changes still is 
incomplete. It will be crucial for future research efforts to 
shed more light into this cascade, since although primary 

neuronal loss cannot be prevented, amelioration of the 
extent of acute injury might prove useful to minimize 
potentially deleterious sequelae. 

 
Acute hypoperfusion constitutes one major factor 

in the pathophysiological cascade of SAH. Strategies to 
counteract these early CBF changes may well be beneficial 
for our SAH patients, but this requires thinking about early 
interventions rather than waiting for chronic vasospasm to 
occur later on. 
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