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1.  ABSTRACT 
 

Despite significant improvements in early post-
transplantation survival rates, long-term patient and graft 
survival have remained poor, due in large part to the vexing 
problem of chronic allograft rejection.  Attempts to combat 
this problem with intensification of immunosuppression 
have led to concomitant increases in the rates of fatal 
malignancies and infections.  In cardiac transplantation, 
chronic rejection is manifested primarily by a disease entity 
known as cardiac allograft vasculopathy, an occlusive 
narrowing of the coronary vessels.  In lung transplantation, 
chronic rejection is typified by obliterative bronchiolitis, an 
airflow limiting narrowing of the bronchioles.  From an 
immunologic standpoint, chronic rejection is believed to be 
the end result of repeated immune and non-immune insults 
to the graft.  This review examines the pathophysiology of 
heart and lung chronic, with emphasis on both immune and 
non-immune causes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

With the advent of modern immunosuppression, 
early post-transplantation graft and patient survival rates 
have improved dramatically over the last quarter of a 
century.  However, long-term graft survival remains poor, 
with overall graft half-lives currently being 9.9 years for 
hearts, and 5 years for lungs (1,2).  The majority of post-
transplant deaths can be attributed to either chronic 
rejection (CR) or malignancy.  The clinical impact of CR is 
most evident in the field of cardiothoracic transplantation, 
where re-transplantation for failed grafts is usually not 
possible because of the relatively small donor pool.  Data 
from the International Society for Heart and Lung 
Transplantation (ISHLT) demonstrate a linear decrement in 
both patient and allograft survival for recipients of 
cardiothoracic organs after the first post-transplant year, 
which continues for at least 15 years.  By the fifth post-
transplant year, cardiac allograft vasculopathy (CAV) and 
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subsequent graft failure account for 30% of deaths in heart 
transplant recipients (1).  For lungs, the bronchiolitis 
obliterans syndrome (BOS) is the predominant cause of 
death after the first post-transplant year (2).  Mortality not 
withstanding, the morbidity of those that survive with BOS 
is considerable.  Given the clear toll that CR takes on heart 
and lung graft recipients, research is currently underway to 
understand the pathogenesis of CR in the hope of 
developing both preventive and therapeutic strategies.  This 
chapter examines the pathophysiology of heart and lung 
CR, with emphasis on both immune and non-immune 
causes. 
 
3. HISTOLOGY AND PATHOPHYSIOLOGY OF 
CHRONIC REJECTION 
 

The diagnosis of CR has historically relied on 
invasive procedures to obtain graft biopsies for histological 
evaluation.  Regardless of the type of vascularized 
allograft, organs undergoing CR manifest similar 
pathological findings: obliterative vasculopathy, infiltration 
of leukocytes, luminal occlusion, and a marked fibrotic 
response.  These histologic findings are the final result of a 
complex, multi-stage process of repeated immune- and 
non-immune-mediated cellular injury and inflammation.  
Repetitive insults exhaust the recipient’s natural repair 
mechanisms and result in fibrotic replacement and organ 
failure.  The fibrosis appears to preferentially narrow and 
obliterate the endothelial- and epithelial-lined tubular 
structures in the graft.   

 
In heart allografts, the principal histological and 

clinical manifestations of CR consist of concentric 
vasculopathy with smooth muscle cell proliferation, 
together known as cardiac CAV.  These intimal changes 
can be detected by intravascular ultrasound, which is 
becoming the gold standard for early diagnosis (3).  As the 
disease progresses, myointimal proliferation eventually 
occludes coronary vessels, resulting in infarction and 
ischemic cardiomyopathy.  Although it is believed that 
antigen-independent (4) and autoimmune (5,6) factors can 
contribute to CAV, CAV is predominately incited by an 
antigen-dependent stimulus (4,7). 

 
In the lung, CR leads to histologic lesions of 

obliterative bronchiolitis (OB), which presents clinically as 
BOS.  OB is a concentric fibrosis of the membranous and 
respiratory bronchioles that results in an obstructive defect 
to airflow.  The histopathologic features of OB include 
inflammation of the epithelial cells and subepithelial 
structures, believed to result from aberrant tissue repair (8).  
In severe chronically rejecting lung allografts, fibrosis can 
extend into the interstitium and may involve the pulmonary 
vasculature in a process similar to CAV.  
 
4. ALLOIMMUNITY 
 

Most investigators currently believe that that 
immune-mediated injuries to the graft are the fundamental 
cause of CR (9).  The immune response to an allograft is 
initiated by T cells, which, when activated, can orchestrate 
a cytotoxic cellular response, as well as providing help for 

antibody production by B cells.  Understanding antigen 
targets and mechanisms by which T cells respond to 
allogeneic material is crucial to the elucidation of the 
pathogenesis of solid-organ CR. 

 
Alloantigens are able to activate T cells via two 

pathways.  “Direct allorecognition” refers to the process by 
which intact donor major histocompatibility complex 
(MHC)-peptide complexes are recognized on donor antigen 
presenting cells (APCs) by host T cells. This type of 
recognition is unique to transplantation.  Alternatively, the 
“indirect allorecognition” pathway occurs when donor 
MHC molecules or minor antigens are processed into 
peptides and presented to host T cells by host APCs.  Many 
scientists believe that early acute rejection is predominantly 
mediated by the direct pathway.  As time passes, the donor-
derived passenger APCs that were transplanted with the 
graft are depleted and indirect allorecognition 
predominates.  Swine studies have demonstrated that pre-
transplant immunization with donor-derived MHC peptides 
accelerates rejection in both heart (10) and lung allografts 
(13).  Furthermore, the immunodominance of various donor 
antigens changes over time during the rejection process, as 
has been shown in human recipients (11-13).  These 
findings emphasize that indirect allorecognition likely plays 
a critical role in the development of CR. 
 
4.1. HLA matching 
 The degree of immune disparity between the host 
and donor is the dominant predictor of the incidence and 
vigor of CR.  Early clinical observations have now been 
confirmed in experimental studies that show that isografts 
remain free of CR, while recipients intentionally sensitized 
to donor antigen develop accelerated chronic and acute 
rejection (14).  In renal transplantation, organ allocation is 
partially driven by human leukocyte antigen (HLA) 
matching because of the significantly improved graft 
survival seen with higher degrees of HLA matching 
(15,16).  In contrast, allocation based on HLA matching for 
thoracic organs has been problematic due to shorter 
permissible ischemic times and a relatively smaller donor 
pool.  Nonetheless, retrospective data has emerged that 
demonstrates a significant improvement in cardiac graft 
survival when recipients are HLA matched.  Hosenpud and 
colleagues performed a retrospective review of the United 
Network for Organ Sharing (UNOS)/ISHLT registry and 
demonstrated that HLA matching would be beneficial in 
cardiac transplantation (17).  Opelz and colleagues showed 
that the extent of HLA compatibility influences graft 
survival, independent of other variables (18).  Kaczmarek 
and colleagues found that HLA-DR matching improves 
survival after heart transplantation by as much as 25% 
within 3 years (19).  Finally, data from the ISHLT registry 
indicate that, in addition to HLA-DR, mismatches at the 
HLA-B locus predict reduced survival, as measured 10 
years following transplantation (1).  These findings, 
coupled with the advent of more precise and rapid tissue 
typing techniques, may soon refine the way in which 
cardiac allografts are allocated. 
 
 For lung allografts, there is currently insufficient 
data to draw definitive conclusions on HLA matching.  
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Some studies report no association (20,21).  However, three 
studies initially suggested a significant positive association 
exists between mismatching at the HLA-A locus and the 
development of BOS (22-24). More recently, HLA matching 
was shown to independently impact survival in single-lung 
transplantation (17).  The most recent report from the registry 
of the ISHLT clearly demonstrates a detrimental effect of 
mismatches at the HLA-A and HLA-B loci (2).  More 
information regarding HLA typing for lung transplantation 
should be forthcoming, as the total number of lung transplants 
performed with known HLA haplotypes increases. 
 
4.2. Acute cellular rejection 
 Acute rejection (AR) has been clearly 
demonstrated to be a harbinger of future CR in most solid 
organ transplants.  For lung transplantation, it is widely 
accepted that AR is a risk factor for both OB and BOS, and 
this relationship is believed to be causal (25).  Several 
studies have identified severe AR, recurrent episodes of 
rejection, the cumulative burden of AR, and late AR as risk 
factors for BOS (20,24,26-29).  More recently, a single 
episode of mild AR was found to be an independent risk 
factor for the development of BOS (30). 
 

The association between AR and CR in cardiac 
transplantation was debated for years because early studies 
had relatively low statistical power and produced equivocal 
findings (31).  However, in recent years, the link between 
AR and CAV has been further defined for AR episodes 
both within the first postoperative year (32-34) and later 
years (35,36).  Jimenez and colleagues showed that the 
biopsy rejection score correlated with the rate of CAV 
progression as measured by intravascular ultrasound (33).  
The mechanism is likely one of inflammation and failed 
repair, but whether it is the frequency and/or the severity of 
the AR episodes that influences the development of CAV 
remains to be determined. 
 
4.3. Humoral alloimmunity 

The role of B cells and alloantibody formation in 
the rejection of allografts has been underappreciated.  
Emerging evidence suggests that alloreactive B cells and 
anti-HLA antibodies are seminal components of the 
rejection process (37).  Importantly, memory alloreactive B 
cells can persist for years after the initial immunizing event 
and therefore have the potential to initiate CR at any time, 
even years after the initial inciting event.  In heart grafts, 
the development of anti-HLA antibodies is known to 
correlate with CAV development (38).  B cells have been 
identified in lung tissue during rejection episodes, and anti-
HLA antibodies also correlate with the development of OB 
(39,40).  However, the mechanism by which humoral 
alloimmunity leads to CR is not well understood, and 
whether the presence of antibody is an initiating event or 
merely a response to tissue damage remains to be 
determined.  However, the principal target of humoral 
immunity appears to be the graft endothelium, which can 
be activated and injured by alloreactive antibodies. 

 
4.4. Progenitor cells and CAV 
 There is emerging evidence that extracardiac 
progenitor cells may also contribute to both beneficial and 

deleterious repair after graft injury.  In fact, by studying 
sex-mismatched heart transplants, investigators now 
believe that as much as 0.04% of cardiomyocytes in 
transplanted hearts may actually be of extracardiac 
recipient origin (41).  In addition, animal data on both 
aortic and cardiac allografts suggest a role for circulating 
progenitor cells in neointimal proliferation and CAV (42-
44).  The implication is that these progenitor cells migrate 
to areas of vascular damage and differentiate into the 
smooth muscle cells seen in the neointimal proliferation of 
CAV.  However, the data on the contribution of 
extracardiac progenitor cells to CAV development is 
conflicting and remains an active area of research today. 
 
4.5. Innate immunity 
 Recent studies, suggest that the adaptive immune 
system is not always solely responsible for CAV formation, 
as mice with T and B cells rendered fully unresponsive to 
donor antigens through the induction of neonatal tolerance 
or mixed chimerism still developed CAV (45). We utilized 
a novel system of semi-allogeneic cardiac transplants 
between parental donors and F1 hybrid recipients to 
provide the first evidence that natural killer (NK) cells, 
members of the innate immune system, also contribute to 
the generation of CAV in mice. Since NK cells are not 
targeted by current immunosuppressive therapy, including 
cyclosporine (46), these findings may explain why CAV, a 
primarily MHC-driven alloimmune process, still occurs in 
heavily immunosuppressed recipients. Indeed, the apparent 
resistance of NK cells to the modulating effects of 
conventional immunosuppression is compatible with the 
hypothesis that innate immunity may be an important part 
of the complex set of events that result in this vexing 
problem. 
 
4.6. Organ procurement and implantation 

A large number of clinical studies have 
demonstrated a deleterious effect of prolonged ischemic 
times on transplant outcomes, and thoracic grafts appear to 
be particularly sensitive to prolonged ischemia.  Data from 
the ISHLT registry historically demonstrates that prolonged 
ischemic time (>7h) confers an increased risk of BOS 
development three years after transplantation (47), and 
ischemic times greater than 7 h for donor hearts increases 
the risk of both one- and five-year mortality (48).  
Prolonged ischemia time as a risk factor for decreased graft 
survival has also been confirmed in more recent registry 
data (49,50). Ischemic injury not only causes direct acute 
injury to the graft, but also probably increases the 
antigenicity of the graft by inducing inflammatory 
mediators (51), adhesion molecules, and MHC antigens on 
the graft endothelium (52).  As a result, it is likely that 
ischemia-reperfusion can lead to chronic rejection by 
actually initiating an immune response.  This immune 
response could be alloimmune or even autoimmune, as can 
be seen when normally cryptic antigens such as cardiac 
myosin or type-5 collagen become exposed (see below). 
 
5. AUTOIMMUNITY 
 

Itzutani and colleagues showed that chronic 
rejection was not abrogated by transplanting heart grafts 
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into syngeneic mice (53), suggesting that CR can occur in 
the absence of alloantigen.  Just as a cellular insult to the 
graft could initiate an alloimmune response, emerging 
evidence suggests that certain injuries can expose self-
antigens that the recipient’s immune system does not 
normally encounter.  Since these normally cryptic non-
MHC antigens also exist in normal host tissue, this mode of 
graft rejection can be considered to be autoimmune 
mediated.  

 
Cardiac myosin is an autologous contractile 

protein found in cardiac tissue that is recognized by both T 
and B cells during a cardiac rejection process (54).  
Fedoseyeva and colleagues showed that anti-cardiac 
myosin reactivity persists long after transplantation and 
hypothesized that it may play a role in CAV pathogenesis.  
They later supported this data with a murine study, which 
showed that in the absence of alloimmunity, chronic 
rejection was associated with a T cell response to cardiac 
myosin (6).  Another tissue specific antigen that has been 
implicated in the formation of CAV is the endothelial 
antigen vimentin (55). 

 
Analogous to cardiac myosin, researchers have 

found that immunity during lung allograft rejection 
involves the development of a response to collagen V (56), 
which is a component of the perivascular and peribronchial 
connective tissue.  Collagen V reactive lymphocytes are 
known to express the pro-inflammatory cytokines IL-17 
and IL-23 (57), and Wilkes and colleagues have 
demonstrated that oral tolerance induction to collagen V 
can prevent BOS development in murine models (58).   
 
6. INFECTION  
 

Another mechanism of tissue injury and 
inflammation that plays a role in the development of CR is 
infection.  It has been suggested by several studies that 
viral respiratory infections, including the common 
community acquired infections of parainfluenza virus, 
respiratory syncytial virus, influenza, and adenovirus, are 
associated with the development of BOS (29,59,60).  
Cytomegalovirus (CMV) also seems to promote chronic 
vascular rejection of most solid organ transplants including 
heart and lung grafts.  CMV can invade the endothelium of 
organs; and therefore, it is not surprising that its presence is 
associated with perivascular inflammation.  Sequence 
homologies between the immediate early-2 region of CMV, 
and a conserved domain of HLA-DR (61) and the heavy 
chain of the MHC class I antigen can lead to immunologic 
cross-reactivity (61).  Schulman and colleagues also found 
a clear role for CMV pneumonitis in the development of 
BOS, while studying HLA mismatching (62). Thankfully, 
the use of sensitive and quantitative assays to detect CMV 
antigenemia and appropriate prophylaxis with antiviral 
agents now seems to be reducing the impact of CMV 
infection in BOS development (63). 

 
 The most frequently studied infections related to 
CAV development are C. pneumoniae and CMV.  Patients 
with PCR positivity and antibody formation for C. 
pneumoniae were found to have more severe CAV (64).  

Likewise, CMV has been associated with a 28% rate of 
obstructive CAV five years after heart transplantation; 
almost triple the rate for non-infected patients (65).  More 
importantly, CMV prophylaxis with ganciclovir decreases 
the prevalence of CAV (66). 
 
7. GASTROESOPHAGEAL REFLUX DISEASE AND 
BRONCHIOLITIS OBLITERANS SYNDROME 
 

It has been suggested that GERD, as an 
inflammatory condition, may contribute to the development 
of BOS (67,68).  A review of lung transplant recipients at 
Duke University revealed that the presence of GERD is 
associated with decreased survival and higher rejection 
rates (68).  Interestingly, prophylactic anti-reflux surgery 
successfully reduced the incidence of allograft dysfunction.  
The association between GERD and lung allograft 
dysfunction was confirmed in a rat model by the same 
group (69).  The hypothesis is that a non-alloimmune injury 
caused by the exposure of bronchial epithelium to caustic 
gastric fluid precipitates an alloimmune injury.  Although 
the mechanism may only be due to direct toxicity, it may 
also involve stimulation of the innate and adaptive immune 
responses.  The mechanisms responsible for GERD induced 
BOS remain elusive. 
 
8. DONOR FACTORS 
 
 There is little doubt that the quality of grafted 
organ can influence late outcomes.  This is particularly true 
when donor organs are relatively undersized or when older 
donors with co-morbidities are utilized.  Some have 
suggested that a combination of both immune and non-
immune mediated injuries to the graft prior to 
transplantation leads to insults in the graft that exhaust its 
repair capacity (70). 
 
8.1. Brain death 
 Increasing data are accumulating that indicate 
that brain death induces the expression of inflammatory 
mediators in peripheral organs, eventually making these 
organs more susceptible to MHC-driven processes (71).  
Compared to controls in a rat transplant model, organs 
harvested from brain-dead donors seem to induce a more 
intense and accelerated recipient immune response (72).  
Implicated in this increased alloreactivity were 
macrophage-associated cytokines and upregulated 
adhesion molecules (72).  More recently, a rat model 
was used to show that brain death induces an 
inflammatory response in donor lung grafts and 
subsequently aggravates chronic rejection (73). A 
similar increase in inflammatory mediators has been 
demonstrated in kidneys and livers from brain-dead 
donor rats.  Anyanwu and colleagues also reported a 
favorable difference in CAV between living and 
cadaveric donors in an experimental heart transplant 
model (74).  Segel and colleagues have shown that 
endothelial inflammation and dysfunction occurs as a 
consequence of brain death even in the absence of 
hemodynamic instability (75).  In the clinical arena, it 
has been observed that pediatric lung transplant 
recipients of living donors had a much lower incidence 
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of CR than those from cadaveric donors (76).  Studies are 
now underway evaluating the role of different forms of 
brain death on the development of CAV in hopes of 
developing pre-transplant modalities to limit brain-death 
induced vascular injury to allografts (77). 
 
9. CONCLUSION 
 

CR is a very complex problem that continues to 
limit the long-term success of solid organ transplantation, 
particularly cardiothoracic organs.  This chapter highlights 
new findings that contribute to our current knowledge of 
the mechanisms of chronic rejection in cardiothoracic 
organs.  Pathologically, CR represents the end result of 
repeated injury, leading to parenchymal fibrosis and 
luminal obliteration.  The causes of CR resulting from 
graft tissue injury are multifactorial.  Both immunologic 
and non-immunologic factors contribute to graft injury, 
which fuels the alloimmune response, predisposing the 
development of CR.  Significant progress has occurred 
over the past decade to understand the mechanisms of 
CR development.  We now know that in addition to 
cellular alloimmune responses, autoimmunity may play 
a role.  Recently, the role of humoral alloimmunity has 
also become apparent.  In addition, tissue injury from 
ischemia/reperfusion, infections, and brain death 
appears to render the graft more antigenic and 
susceptible to CR.  Further study of all the contributing 
factors is crucial for understanding the mechanisms by 
which CR rejection develops in cardiothoracic 
allografts.  All of these factors are potential therapeutic 
targets.   
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