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1. ABSTRACT 

 
Growth of solid tumors depends largely on the 

development of a functional vasculature, which has been 
the focus in anti-tumor therapy since Folkman in 1971 
proposed that prohibiting the formation of new vessels 
could inhibit tumor growth. The recognition of the tumor 
vascular bed as an important target led to the development 
of 3 vascular-targeted strategies. I) The anti-angiogenesis 
strategy that prevents the formation of new blood vessels 
and normalizes the remaining vessels. II) Applying 
vasculo-destructive agents to induce apoptosis in the 
endothelium of the tumor-associated vasculature that 
results in vascular collapse and tumor necrosis. III) 
Promoting further abnormalization of the already abnormal 
features of the tumor-associated vasculature with vaso-
active agents to enhance vessel permeability. Tumor 
necrosis factor alpha (TNF) is a very promising vaso-active 
agent because of its anti-tumor effects but its severe 
systemic toxicity is a major drawback. Therefore a new 
setting, in which the optimal therapeutic benefit of TNF 
could be exploited, needed to be found. Through an 
isolated perfusion high dose of TNF can be administered in 
the blood circulation of the tumor-bearing extremity or 
organ. Alternatively, systemically low doses can be safely 
administered for several times. Importantly, TNF has no 
anti-tumor effect by itself and the combination with a 
conventional chemotherapeutic drug that targets the tumor 
cell is a prerequisite for a good tumor response. In this dual 
approach, TNF enhances intratumoral accumulation of the 
chemotherapeutic drug resulting in an impressive tumor 
response.  

 
 
 
 
 
 
2. INTRODUCTION 

 
At the end of the 19th century Dr. William Coley, 

a surgeon from New York, observed spontaneous tumor 
regression in patients suffering from a bacterial infection. 
Later, he developed a vaccine from two dead bacteria stains 
Streptococcus pyogenes and Serratia marcescens, the so-
called Coley’s Toxin, to successfully treat sarcoma 
patients. This toxin was also used for carcinomas, 
melanomas, lymphomas and myelomas and inducing a 
fever seemed the essential requirement for a good tumor 
response (1). It was not until 1975 that Dr. Carswell 
isolated tumor necrosis factor (TNF) in serum form mice 
treated with bacterial endotoxin and found it to induce 
identical haemorrhagic necrosis of methylcholanthrene A 
fibrosarcoma (Meth A) tumors as the endotoxin itself (2). 
With the development of new recombinant DNA 
techniques, human TNF became available for pre-clinical 
and clinical application (3, 4). However, TNF appeared to 
exert cytotoxic activity only towards some animal and 
human tumor cell lines (5) while the majority of malignant 
cells and most normal cells, including fibroblasts and 
endothelial cells are relative insensitive to TNF in vitro (6-
9). Also, systemic and intramuscular TNF therapy proved 
less successful than originally anticipated with ineffective 
tumor response and severe toxic effects including fever, 
fatigue, hypotension, shock and cachexia (10, 11).  

 
The development of chemotherapeutic agents, 

that would kill cancer cells, has long been the focus for the 
treatment of solid tumors. Agents may seem promising in a 
culture disk but when administered as a single agent in 
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patients the results are often disappointing. Insufficient 
delivery at the target site, the tumor cell, results often in 
failure of the therapy and development of alternative 
strategies to increase chemotherapeutic agents at the tumor 
site proved to be a major success in treatment of solid 
tumors. TNF induces a better delivery of these agents at the 
tumor site by manipulating the tumor-associated 
vasculature. The models used and the mechanism behind 
this effect will be further discussed.  
 
3. THE FORMATION OF NEW VESSELS 
 
3.1. Vessel development 

Angiogenesis, the process in which new blood 
vessels are formed form pre-existing blood vessels, is 
required for further growth and development of most 
tissues. Once the vasculature has been established, it 
remains mostly quiescent except in the ovary, uterus and 
the placenta during pregnancy. All other activation of the 
endothelium is found in processes during wound healing 
and inflammation and several other pathological 
conditions, like cancer, artherosclerosis, diabetic 
retinopathy and arthritis. There is a delicate balance 
between pro-angiogenic and anti-angiogenic molecules and 
in many pathological conditions the balance changes in 
favor of angiogenesis, the so-called angiogenic switch (12). 
Vascular endothelial growth factor (VEGF) and fibroblast 
growth factor (FGF) are among the initial factors involved 
in the angiogenic vessel growth. Mature blood vessels 
consist of endothelial cells (ECs), that form the luminal 
lining of the vessel wall, and perivascular cells (pericytes in 
capillaries and smooth muscle cells in larger vessels), 
which remain in close association with the ECs. These 
perivascular cells are responsible for vasoconstriction and 
dilation and prevent rupture due to blood flow pressure 
(13). Blood vessels are embedded in the extracellular 
matrix (ECM), existing of several proteins including 
fibronectin, vitronectine, collagen and laminin (14).  
 

One of the initial steps in the formation of a new 
blood vessel is weakening of contact between neighboring 
ECs, between ECs and underlying basal membrane (BM), 
detachment of pericytes and production of proteases that 
degrade the components of the ECM. The molecular 
mechanism involved in capillary sprouting has been 
extensively studied (15, 16). Pericytes have been shown to 
restrict the proliferation and migration of endothelial 
cells so loss of pericytes from the vessels is required in 
the initiation of endothelial sprouting (17-20). In the 
presence of VEGF, angiopoietin-2 (Ang2) binds to the 
Tie receptor tyrosine kinase, Tie-2, which is upregulated 
in angiogenic vessels and results in the loss of 
interaction between endothelial cells, pericytes and 
ECM (21). Next, for an EC to migrate and subsequently 
form a new blood vessel, the BM and the ECM have to be 
demodulated. Additionally, the ECM is a reservoir of 
several growth factors like VEGF, bFGF and transforming 
growth factor-1 (TGF-1), which are released during 
angiogenesis contributing to further migration, proliferation 
and survival of the cells. The rearrangement of the ECM is 
facilitated by matrix metalloproteinases (MMPs), zinc-
dependent endopeptidases capable of degrading and 

reorganizing the matrix proteins to suit better migration 
(22, 23).  
 

The leading EC in the angiogenic sprout is a non-
proliferating cell with long protrusions scanning the 
microenvironment and migrating towards the angiogenic 
stimulus. Second, the VEGF-A gradient also stimulates 
proliferation of the stalk cells forming a bipolar (basal-
luminal) cord (24). After an endothelial sprout is formed, 
perivascular cells are needed to stabilize the tubular 
structure. Platelet-derived growth factor B (PDGFB) is 
secreted by endothelial cells in the presence of VEGF and 
signals though the PDGF-β receptor, which is expressed on 
perivascular cells. Also, angiopoetin-1 (Ang1) is produced 
by perivascular cells and binds to the Tie-2 receptor at the 
EC membrane. The Ang1/Tie-2 association promotes 
interaction between ECs and perivascular cells and is 
therefore important in stabilization of newly formed vessels 
(25, 26). Maturation of the sprout is initiated by 
transforming growth factor-ß (TGF-ß), secreted by ECs and 
perivascular cells. In a dose-dependent manner, TGF-ß can 
promote proliferation in ECs but also maintains EC 
quiescence to induce maturation of the vessel by 
stimulating the migration and recruitment of perivascular 
cells to the endothelial tube (19, 27). Furthermore, TGF-ß 
stimulates synthesis and deposition of ECM proteins and 
prevents their degradation by inducing plasminogen 
activator inhibitor 1 in ECs (28, 29).  
 
3.2. The Tumor-associated vasculature 

The presence of blood vessels is essential for 
growth and survival of a tumor. Tumors start as avascular 
masses that depend on diffusion of oxygen from pre-
existing nearby vessels. When tumor cells starts to 
proliferate further growth will rely on the formation of 
blood vessels. In areas localized beyond the diffusion 
distance of 200 µm hypoxia will arise and will stimulate 
tumor cells to produce several pro-angiogenic factors, like 
VEGF-A and bFGF shifting the angiogenic balance in 
favor of angiogenesis (30). In contrast to the structurally 
precise organization of the vascular bed of the basic organs, 
the tumor-associated vasculature (TAV) is “abnormal”. 
They display a lack of hierarchical branching organization 
in which the recognizable features of arterioles, capillaries 
and venules is lost. They are tortuous and unevenly dilated. 
As a result, tumor blood flow is chaotic, might be 
stationary and can even change direction. This leads to 
hypoxia and acidosis in solid tumors (31). 
 

Tumor ECs are disorganized with irregular shape, 
sometime even overlapping each other or displaying 
fenestrae (32). These intracellular openings make the vessel 
highly permeable and allow passage of molecules across 
the vasculature. Dvorak et al. demonstrated that the leaky 
vessels are predominantly mature veins and venules lined 
by a continuous endothelium and that immature interface 
vessels and tumor penetrating vessels do not leak 
macromolecules (33). This leakage subsequently results in 
an increased interstitial pressure that is maintained by the 
absence of functional lymphatics. Tumor-associated 
pericytes also display phenotypic differences not found in 
normal conditions. They are loosely associated with the 
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ECs, display long extensions into the tumor stroma and are 
irregularly scattered (34). Also, ECs and pericytes are 
loosely associated with the basal membrane, which is 
irregular in thickness, matrix composition, assembly and 
structure (35). The TAV varies greatly among tumor types. 
Eberhard et al. quantified maturation in glioblastoma and 5 
different carcinoma’s and found that microvessel pericyte 
coverage ranges form 10 to 20 % in glioblastoma and renal 
cell carcinoma to approximately 65 % in mammary and 
colon carcinomas (36). Therefore, it seems logically that 
tumors that are less dependable on their vessel structure are 
less likely to react to tumor vessel therapy. In the K1735 
murine melanoma tumors angiogenic sprouts lacking 
pericytes are evolving into functional endothelial tubes. 
Coverage of pericytes comes later and these vessels are 
larger in size and lack proliferating ECs (37). In 
contradiction, in Lewis lung carcinoma and MCa-IV 
pericytes are present in practically all vessels undependably 
of size. Moreover, the endothelial sprouts were closely 
associated with pericytes and these even extended the 
endothelial tip cell (34).  
 
4. TREATMENT OF SOLID TUMORS BY USING 
THE TUMOR-ASSOCIATED VASCULATURE  
 

In 1971 Folkman proposed the hypothesis that 
prohibiting the development of newly formed tumor blood 
vessels would be an attractive new approach in cancer 
treatment (38). Starving the tumor to death through 
withdrawal of the inflow of nutrients using vascular 
targeting agents was in theory a strait forward approach. 
However, putting the theory in practice proved not so 
simple, but this idea led to several strategies focusing on 
the TAV. First, the anti-angiogenesis strategy interferes 
with the formation of new tumor blood vessel and deprives 
the tumor of oxygen and nutrients required for tumor 
development. Several growth factors are important in this 
process and VEGF is believed to be the most important. 
VEGF is an important mitogen for vascular endothelial 
cells, mediates secretion and activation of MMPs and 
increases vascular permeability (39-42). All these actions 
promote tumor vessel formation and it is not surprising that 
development of VEGF antagonists became the major focus 
in anti-angiogenic therapy. Besides preventing the 
development of new blood vessels, the anti-angiogenic 
therapy also normalizes the existing TAV. These 
normalized tumor vessels are believed to be more 
susceptible to conventional chemotherapy (43, 44). 
 

A second approach is the direct damage of the 
established tumor vasculature by vascular disrupting agents 
(VDAs) that will initiate vascular collapse, shutdown of 
tumor blood flow depriving the tumor of oxygen and 
nutrients leading to tumor necrosis (45). VDAs exploit the 
difference in tumor ECs, because these cells have a the 
higher proliferating status and dependence on a tubulin 
cytoskeleton to maintain their shape then ECs in normal 
vessel (46, 47).   
 

A third approach consists of further enhancing 
the abnormal features of the TAV to improve a more 
homogenous drug delivery. A chemotherapeutic agent may 

show promising anti-tumor effects in vitro, but in vivo the 
anti-tumor effect will be limited if insufficient amounts of 
the agents reach its target, the tumor cell. This inadequate 
drug delivery has always been a major problem in the 
treatment of solid tumors. After systemic injection the drug 
dilutes massively in the blood stream and is rapidly cleared 
by liver and kidney. Because of the severe side effects of 
most chemotherapeutic drugs simply increasing the injected 
dose is not an option. When reaching the tumor site, a 
homogeneous drug distribution is difficult to accomplice 
due to the irregular blood flow and inhomogeneous 
perfusion of tumors. Also, the drug has to leave the blood 
circulation across the endothelial lining into the tumor 
interstitial space. Although ECs in tumor vessels display 
fenestrae and mature veins appear to be permeable for 
macromolecules with a cut off around 400 nm (32, 33, 48, 
49), extravasation of drug is often limited to the rim of the 
tumor. The dense tumor microenvironment, rich in a 
variety of matrix components (i.e. collagen, laminins, 
trombospondin, fibronectin, hyaluronate) and multiple 
types of stromal cells (fibroblasts, myofibroblasts, 
inflammatory cells) accompanied with a high interstitial 
fluid pressure, provide a solid barrier. Therefore, a dual 
approach is required combining an agent with vaso-active 
properties with a conventional chemotherapeutic agent that 
target the tumor cell.  
 
5. MANIPULATING THE TUMOR-ASSOCIATED 
VASCULATURE  
 
5.1. The isolated limb perfusion 

The technique of the isolated limb perfusion 
(ILP) was first described in 1958 by Creech et al. and was 
used for the treatment of a patient with multiple in transit 
melanoma who refused amputation. With this technique, 
isolation of the blood circulation is achieved by clamping 
the major vein and artery, ligating the collateral vessels and 
application of a tourniquet around the basis of the limb to 
compress the remaining minor vessels. The main artery and 
vein is cannulated and connected to an oxygenated 
extracorporeal circuit. After isolation, chemotherapeutic 
agents can be injected into the circuit and regional 
concentrations 15 to 25 times higher can be reached 
compared to systemic administration (50). After the 
procedure a washout is performed to ensure minimal 
systemic exposure to the drug. Also, ILP can be performed 
with mild hyperthermia (38.5 – 40°C) that improves local 
drug uptake whereas true hyperthermia (>41°C) is 
associated with increased toxicity. The main advantage of 
this method is that locally very high concentrations of 
cytotoxic drugs can be accomplished with minimal 
systemic leakage and side effects. To use the anti-tumor 
properties of TNF, while limiting the side effects, Lejeune 
introduced TNF in the ILP (51, 52). The combination of 
TNF with the chemotherapeutic drug melphalan is now 
primarily used for the treatment of soft tissue sarcoma 
(STS) and melanoma in transit metastasis (IT-mets) of the 
extremities. STS are fast growing tumors and IT-mets exist 
of several large ulcerating lesions providing much painful 
discomfort for the patients and amputation was often the 
only option available. However, with the development of 
the ILP limb salvage and tumor control has replaced 
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amputation in managing STS and IT-mets (53-55). The 
excellent response rates and limb salvage of the TNF-based 
ILP with melphalan led to the approval of TNF by the 
European Medicine Evaluation Agency (56, 57). 
Angiograms taken from patients before perfusion show a 
well-developed tumor vasculature, which is selectively 
destroyed after TNF-based ILP while leaving the normal 
vessels intact (58-60).  

 
For pre-clinical studies a rat ILP is developed that 

resembles the clinical setting to further investigate the role 
of TNF in this model (61). Two different sarcomas are 
used: the rapidly growing and metastasizing high grade 
soft-tissue sarcoma BN175 and the rapidly growing and 
metastasizing intermediated grade osteosarcoma ROS-1. A 
perfusion of BN175-bearing rats with TNF alone has no 
effect on the tumor growth and treatment with only 
melphalan resulted in a stable disease. However, complete 
remission in 75% of the animals is found with the 
combination of TNF and melphalan (62). Also, in the ROS-
1 tumor, the combination TNF and melphalan results in an 
significant increased tumor response (63). In vitro, TNF has 
no direct cytotoxic effects in these cell lines and, more 
importantly, no synergistic effects between TNF and 
melphalan could be observed (63, 64). These observations 
indicate that the activity of TNF is most likely not directed 
towards the tumor cells but to the stromal compartment of 
the tumor. Histopathology of the tumors revealed that TNF 
induces edema, extravasation of erythrocytes and 
haemorrhagic necrosis suggestive of radical alteration in 
permeability and integrity of the tumor vasculature (65). 
Indeed, directly after perfusion with TNF plus melphalan, 
taking 30 minutes, vascular destruction was detected and 
erythrocyte extravasated into the surrounding tumor tissue 
from these damaged vessels (66). This endothelial damage, 
however, is not directly responsible for the tumor response 
since these effects are also observed with TNF alone and 
the combination with melphalan is necessary to obtain an 
efficient tumor response. Further studies revealed that 
immediately after TNF-based perfusion a six-fold increase 
of intratumoral melphalan concentration has been 
demonstrated compared to a perfusion with melphalan 
alone. This event is specific for the tumor environment as 
no increase was found in the skin and muscle (66, 67). 
Bauer et al. performed ILP on nude rats bearing a human 
melanoma xenograph and also reported high response rates 
with TNF and melphalan. Although they found no TNF-
induced increase in intratumoral melphalan concentration, 
they observed extensive erythrostasis in the tumor 
vasculature (68).   

 
After the success with the TNF-based ILP other 

chemotherapeutic drugs, like actinomycin D and 
doxorubicin were investigated. Actinomycin D is an 
anticancer antibiotic that has been used in patients with 
osteogenic sarcoma in combination with bleomycin and 
cyclophosphamide but this treatment is associated with 
severe nausea and anorexia (69). Martijn et al. showed that 
melphalan-based ILP with actinomycin D in patients with 
IT-mets offer no improved response rates compared to 
melphalan alone (70). However, actinomycin D increase 
the TNF sensitivity of tumor cells in vitro (71) and local 

administration of TNF in combination with actinomycin D 
in mice delays the growth of several tumors (72, 73). In the 
rat ILP model synergy between TNF and actinomycin D is 
observed but is accompanied with severe idiosyncratic 
locoregional toxicity to the normal tissue and therefore 
abandoned for further studies in this setting (74). However, 
the TNF-based ILP with doxorubicin is more promising. 
Doxorubicin is the agent of choice for the treatment of 
sarcoma but is also accompanied with rigorous toxicity (75-
77) and could therefore be a suitable agent for ILP. TNF-
based ILP with doxorubicin results in an impressive tumor 
response compared to ILP with doxorubicin alone in both 
tumor models (54 % versus 0% for the BN175 and 100% 
versus 0% in the ROS-1) without any side effects. In 
accordance with the melphalan treatment this tumor effect 
was also accompanied with enhanced intratumoral 
doxorubicin concentrations (78).  
 
5.2. Systemic liposomal treatment 

Another strategy to increase the amount of 
chemotherapy at the site of the tumor is the systemic use of 
liposomal-encapsulated drug. Liposomes are vesicular 
structures that exist of one or more phospholipid bilayers 
and have been developed to improve drug delivery at the 
tumor site and decrease toxicity normally associated with 
the conventional drug. However, development of liposomal 
chemotherapeutic agents has been hindered primarily by 
their rapid uptake by the mononuclear phagocyte system. 
Coating the liposomes with polyethylene glycol (PEG) 
increases the hydrophilic properties of the liposomal 
surface, thereby avoiding phagocytosis and prolonging 
blood circulation with a reserved or even improved tumor 
response (79-83). As a result several of these sterically 
stabilized liposomes are developed for clinical use and two 
pegylated liposomal antracyclines are commercially 
available: pegylated liposomal doxorubicin (Doxil in the 
US, Caelyx in Europe) and liposomal daunorubicin 
(DaunoXome). Doxil, encapsulated doxorubicin in small 
(100 nm) unilamellar liposomes, shows a decrease in toxic 
effect, as alopecia, nausea, vomiting and cardiotoxicity, 
associated with the use of free doxorubicin (84-86). 
Systemic treatment with low dose TNF in combination with 
Doxil of BN175-bearing rats and B16BL6 or Meth A-
bearing mice results in improved tumor response compared 
to treatment with Doxil alone (87-89). In agreement with 
the ILP, TNF-induced enhanced accumulation of the 
liposomes in the tumor appears to be crucial for the 
observed response. Also in vitro, no direct cytotoxic effect 
of TNF, or synergism with Doxil was observed indicating a 
TNF host-mediated effect. 

 
The use of intravital microscopy allows a better 

insight in the intratumoral location of the liposomes and 
enables longitudinal studies on the kinetics of intratumoral 
events. We used this technique to understand the effect of 
low dose TNF on intratumoral fate of liposomes. Mice, 
implanted with the B16BL6 melanoma tumor in a dorsal 
skin-fold chamber were injected i.v. with liposomes 
together with a low well-tolerated dose of TNF. Liposomes, 
without the addition of TNF, remain predominantly in the 
vessels and hardly any accumulation in the tumor tissue 
could be observed. In contradiction, co-administration of 



Tumor Manipulation: making chemo effective 

3038 

TNF and liposomes resulted in abundant extravasation of 
liposomes from the blood stream into the surrounding 
tissue. Even 24 hours later, a fluorescent marker 
extravasated at the same spot indicating that these tumor 
vessels remain leaky and functional. Additionally, we 
observed no effect of this low dose TNF on several 
microvessel parameters, like branching, density and 
diameter, indicating that the observed effect is not the result 
of vascular destruction but rather results from further 
enhancement of the already leaky properties if the tumor 
vasculature to allow passage of molecules with a certain 
size (90). Apparently to achieve vascular destruction higher 
levels of TNF, like those administered in the ILP, are 
needed. Further investigation into the exact mechanism of 
this TNF effect is ongoing.  

 
Also, encapsulating TNF into long circulating 

liposomes reduce the TNF associated side effects, shows 
similar biological activity and results in an increased 
localization of the cytokine in the tumor (91-93). Systemic 
injection with long circulating liposomal TNF in 
combination with Doxil resulted in an improved tumor 
response in soft tissue sarcoma bearing-rats (94) and 
enhanced the effects of radiation against human colon 
cancer xenographs due to increased lymphocyte infiltration 
(96,96).  
 
5.3. Sensitizers for TNF 

Intravenous administration of a low dose TNF (3 
– 5 µg) in Meth A bearing mice results in thrombosis, 
increased vessel permeability, leukostasis, and 
haemorrhage in the tumor vessels leading to necrosis and 
regression of the tumor. In vitro, Meth A cells are relative 
insensitive to TNF, further indicating a host-mediated 
effect (2). From the supernatant of Meth A culture medium 
several factors were isolated that modulate the endothelial 
properties; vascular permeability factor, nowadays known 
as VEGF, and endothelial monocyte activating 
polypeptides I and II (EMAP) (97-99). EMAP has the 
ability to induce tissue factor procoagulant activity in ECs 
and it was speculated that over-expression of EMAP-II 
might predispose the tumor vasculature to the procoagulant 
effects of TNF and increase sensitivity to the cytokine. 
B16BL6 melanoma and HT-1080 human fibrosarcoma-
bearing mice underwent hemorrhage after intratumoral 
EMAP-II administration followed by systemic injection of 
TNF (100). Also upregulation of EMAP-II using retroviral 
gene transfer shows that initially TNF-resistant tumors 
become sensitive to systemic TNF therapy (101) and 
therefore EMAP-II could be of additional benefit in the 
ILP. To investigate the role of EMAP-II in the ILP 
retroviral gene transfer was used to generate EMAP-II 
expressing BN175 and secondly wild-type tumor-bearing 
rats were pre-treated intravenously with recombinant 
EMAP-II. The results form these studies showed that 
EMAP II renders the otherwise resistant tumor responsive 
to TNF (102, 103).  

 
Tumor biopsies taken from patients with IT-mets 

revealed that the upregulation of EMAP-II strongly 
correlates with complete response. No correlation was 
found in the STS patients due to an overall low expression 

of proEMAP and EMAP-II in this type of tumor (104). 
Therefore EMAP-II could potentially be a prognostic factor 
for TNF-treatment of patients with IT-mets. In vitro 
experiments show that EMAP-II facilitates TNFR1 
apoptotic signaling in the ECs (105, 106). However, little is 
known about the TNFR1 expression profile within tumor 
tissue before and after ILP but co-staining for ECs and 
TNFR1 shows that TNFR1 is mainly expressed by cells 
closely associated with ECs but not by ECs themselves, in 
contradiction to EMAP-II that co-localizes with ECs (104). 
This is very surprising and suggests that another cell type 
beside the ECs in the tumor vasculature is responsible for 
the TNF-induced anti-tumor effects. This might be a first 
indication that ECs are indirectly involved in the TNF-
induced effect and could explain why ECs in vitro are 
resistant to TNF alone and need other cytokines like 
interferon-gamma (IFN), EMAP-II, interleukine-1beta (IL-
1ß) or blood cells to induce changes in macromolecule 
permeability, morphological changes and apoptosis (6, 
107). Apparently, the underlying mechanism of TNF-based 
therapy is more complicated then a simple binding of TNF 
to TNFR1 expressing ECs and is currently under 
investigation.  
 

5.4. Transformation of TNF 
Besides local treatment or drug encapsulation to 

reduce the toxicity or improve delivery, the chemical 
structure of the compound can be altered. Corti et al. 
coupled TNF with a cyclic CNGRC peptide, a CD13 
ligand, to better target the tumor vasculature (NGR-TNF). 
Mice bearing B16F3 melanoma or RMA-T lymphomas 
were pretreated with NGR-TNF intraperitoneal followed 2 
hours later by interperitoneal injection of doxorubicin or 
melphalan. Although the LD50 values of mTNF and NGR-
mTNF are similar, mTNF was inactive at doses lower than 
100 to 1,000 ng while NGR-mTNF inflicted anti-tumor 
effects with doses as low as 0.001 – 0.1 ng without any 
toxic side effects (108). This low dose is sufficient to 
improve the anti-tumor effects of doxorubicin or melphalan 
in lymphoma and B16F1-bearing mice as a result of a 
better penetration of the chemotherapeutic drug in the 
tumor tissue (108, 109).  Second, coupling TNF with RGD, 
also induced a delay in tumor growth without toxic effects 
(110). 

 
Mayumi and colleagues chemically modified 

TNF with water-soluble polymers like PEG or 
polyvinylpyrollidone (PVP). This increase of the steric 
hindrance and protection from proteolytic degradation 
resulted in an increased drug stability and circulation time. 
However, the increase in size limits the distribution from 
blood to target tissue and steric hindrance can inhibit 
binding to the receptor. Therefore an optimal modification 
was designed to find the balance between clearance, 
toxicity and anti-tumoral activity (111-113), which proved 
to be effective in treatment of S-180 tumor-bearing mice 
(114). Shibata et al. designed a pegylated lysine-deficient 
mutant TNF (sp-PEG-mTNF-K90R) with higher affinity 
for both TNF-receptors with an anti-tumor activity 60-fold 
higher than native TNF in the Meth A mouse model (115). 
Also binding of TNF at the surface of gold nanoparticles 
(cAu-TNF) improved the safety of TNF while retaining the 
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anti-tumor efficacy by selectively altering the permeability 
of the tumor vasculature (116).  
 

Another mutant, TNF-SAM2, with increased N-
terminal basicity has a higher biological activity and milder 
toxicity than conventional TNF (117, 118) and has similar 
anti-tumor activity in the melphalan- or doxorubicin-based 
ILP in BN175-rats (119). It is being tested in the clinical 
ILP because of its potential decreased toxicity and is 
potentially applicable in regional perfusions that are not 
leakage free.  
 
5.5. Alternatives for TNF  

As mentioned, TNF targets the tumor-associated 
vasculature and improves intratumoral drug delivery. So 
agents with identical vaso-active properties could 
potentially be an alternative for TNF-based therapy. 
Histamine is found to be a excellent candidate. It is an 
inflammatory modulator that is predominantly formed and 
stored in the granules of mast cells and basophils and 
causes edema by promoting gaps between ECs and in so 
doing increases the permeability in venules (120-122). 
Replacing TNF with histamine in the ILP in combination 
with either melphalan or doxorubicin results in a tumor 
response comparable to TNF-based ILP. Histopathology of 
the tumor showed vasodilatation of the tumor vasculature, 
damage to the ECs and extravasation of erythrocytes into 
the tumor interstitium. As a consequence edema and 
massive hemorrhage occurred. Similar to TNF-based ILP, 
the major anti-tumor effect could be explained by an 
indirect effect through a histamine-mediated accumulation 
of chemotherapeutic drug in the tumor tissue (64, 123). 
Although, histamine is only slight cytotoxic to ECs in vitro, 
within 15 minutes after histamine exposure gap-formation 
between the cells resulted in increased permeability (64). 
These histamine-induced changes are also found by others 
and are believed to act through changes in VE-cadherin 
expression (124-126).   

 
Second, interleukine-2 (IL-2) is a cytokine 

produced by activated T-cells to maintain their growth and 
cytotoxic response (127) and has been widely used in the 
treatment of solid tumors (128-130). A high dose of IL-2 
causes serious side effects, like hypotension and vascular 
leakage syndrome causing intravascular liquid entering the 
organ interstitial space (131). Because of its ability to 
induce vascular permeability this cytokine was speculated 
to be a good candidate for ILP. Indeed, we found a 
synergistic anti-tumor response in BN175-bearing rats after 
perfusion with IL-2 and melphalan correlating with an 
increased melphalan concentration in the tumor. However, 
in contradiction to TNF and histamine no apparent vascular 
damage is seen after ILP although scattered erythrocytes 
are observed between the tumor cells indicating an 
increased vascular leakage. Interestingly, no increased 
extravasation of macrophages was found in the tumor tissue 
after ILP but there was a clear difference in distribution of 
these cells. In control and melphalan-treated animals an 
even distribution of macrophages throughout the tumor 
tissue was observed, while a clear clustering of these cells 
was found in the IL-2 plus melphalan group (132). 

 

As histamine and IL-2 are tested in combination 
for the treatment of melanoma (133), we further 
investigated the triple combination histamine, IL-2 and 
melphalan. Histamine or IL-2-based melphalan perfusion 
resulted in an overall response of respectively 66% and 
67%. Surprisingly, histamine and IL-2 together with 
melphalan led to on overall response of only 29%. 
Immunohistology revealed that the histamine-induced 
haemorrhage and vascular destruction was abolished by the 
addition of IL-2. Because of these poor results investigation 
on the triple combination therapy was discontinued (134).  

 
Interaction and adhesion of sprouting endothelial 

cells with the ECM is mediated by endothelial 
transmembrane receptors or integrins like αVß3 and αVß5. 
Quiescent cells shown no luminal expression of these 
receptors while enhanced exposure of these integrins is 
found on tumor ECs making these integrins an potential 
target for anti-tumor therapy (135, 136). In preventing 
interaction between the integrins αVβ3 and αVβ5 and their 
ECM ligands apoptosis of ECs take place. Cilengitide 
(EMD 121974) is a cyclic RGD containing peptide with 
high affinity for αV-integrins. Intraperitoneal injection with 
cilengitide resulted in tumor growth arrest of glioblastoma, 
a highly vascularized invasive tumor, in mice (137) and 
improved, in combination with radioimmunotherapy, the 
treatment of breast cancer xenographs (138). The potential 
contribution of Cilengitide in the melphalan-based ILP to 
improve solid tumor response is currently under 
investigation in our laboratory.  
 
6. GENERAL CONCLUSION 
 

Although anti-angiogenic or vascular disrupting 
strategies are more generally known, manipulation of 
existing tumor vasculature, strategies to enhance vascular 
leakage and fluid flow into the tumor, also have been 
demonstrated to be useful. So, next to vascular 
normalization, as is shown with for instance anti-VEGF-
based therapy, we would like to propose vascular 
abnormalization as a powerful alternative in solid tumor 
combination chemotherapy. We and other demonstrated 
that vaso-active agents like TNF or histamine further 
enhance these abnormal features in the tumor-associated 
vessels and as such augments the accumulating of 
conventional chemotherapy into the tumor tissue, 
ultimately resulting in an enhanced tumor response.  
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