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1.  ABSTRACT 
 
 Nitric oxide is a multifunctional signaling 
molecule, intricately involved with maintaining a host of 
physiological processes including but not limited to host 
defense, neuronal communication and the regulation of 
vascular tone.  Many of the physiological functions first 
ascribed to NO are mediated through its primary receptor, 
soluble guanylyl cyclase.  Endogenous production of NO is 
a highly complex and regulated process involving the 5-
electron oxidation of L-arginine requiring numerous 
substrates and cofactors.  The production of a highly 
reactive and diffusible free radical gas further complicates 
our established concept and model of specific and targeted 
receptor-ligand interaction to elicit cell signaling events.  
Hence there are many steps in the endogenous pathway for 
altered production of NO and subsequent activation of sGC 
that may be targets for drug development as well as other 
molecular targets for NO.  The following review will 
highlight the current state of the art of NO-sGC research 
and illustrate disease processes which may benefit from 
novel drug development exploiting the NO-sGC pathway 
as well as NOS & cGMP-independent pathways.   

 
 
 
 
2. INTRODUCTION 
 
 The free radical NO is a common air pollutant, a 
constituent of cigarette smoke, and a toxic gas, which 
appears in the exhaust of motor cars, causes acid rain, and 
destroys the ozone layer.  The realization of such a 
molecule acting as an endogenous signaling molecule in 
biology and normal physiology has revolutionized 
conceptual reasoning in science and medicine over the past 
30 years.  Since the identification of endothelial derived 
relaxing factor as nitric oxide (1, 2), an enormous amount 
of research has been devoted to unraveling the complex 
chemistry and biochemistry of this simple molecule.  At 
normal atmospheric pressure and temperature, NO is a gas 
that is moderately stable in aqueous media and functions as 
a biological messenger in physiological solutions.  Several 
research fields converged to show that NO functions as a 
signaling molecule in endothelial and nerve cells and as a 
killer molecule, released from activated immune cells.  
Furthermore, NO is also implicated in the pathophysiology 
of many diseases, whereby either there is decreased 
bioavailability or production of NO, or there is an 
enormous prolonged over-production that exposes its toxic, 
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noxious properties (3).  NO is one of the most important 
signaling molecules in mammalian physiology.  To date 
there are over 86,000 published papers on NO with greater 
than 99% coming after the seminal discovery by Ferid 
Murad in 1977 (4).  There are over 3000 publications on 
the NO and sGC, the primary molecular target or receptor 
of NO.  A substantial knowledge of the NO signaling 
pathway has been gained during the past three decades.  It 
is now appreciated that there are many physiological effects 
of NO that occur independent of activation of sGC or even 
independent of nitric oxide synthase, including post-
translational modification of proteins, lipids and other 
biomolecules.  We will discuss the current state of the art of 
NO based research and some of the potential molecular 
targets for drug development.     
  
 3.  DISCOVERY OF NO 
 
3.1. Nitric oxide and the nobel prize  

On October 12, 1998, the Nobel Assembly 
awarded the Nobel Prize in Medicine or Physiology to 
scientists Robert Furchgott, Louis Ignarro, and Ferid Murad 
for their discoveries concerning nitric oxide as a signaling 
molecule in the cardiovascular system.  In the 1970s, Ferid 
Murad and his colleagues demonstrated that soluble 
guanylate cyclase was stimulated by nitrogen-containing 
compounds, causing an increase in cGMP, which in turn 
brought about vascular relaxation (4, 5).  Murad first 
showed that the activation of soluble guanylate cyclase by 
nitrovasodilators could occur via the formation of NO.  He 
was fascinated by the idea that a gas and free radical could 
regulate smooth muscle function and proposed that 
hormones and other endogenous factors may also act 
through NO.  Nitric oxide function as a messenger was 
proposed for first the time (6, 7).  

 
In 1980, Furchgott and his colleagues published 

an article (8) underlining the obligatory role of endothelial 
cells in the acetylcholine-induced relaxation of arterial 
smooth muscle and recognized that vasodilation by 
bradykinin, histamine and ATP was due to the same 
relaxing substance, which they named endothelial derived 
relaxing factor (EDRF).  It was Ignarro (1) who went on to 
conclude that EDRF from the artery and vein is either NO 
or a chemically related radical species in 1987 after Murad 
suggested (9) that EDRF was an “endogenous 
nitrovasodilator”.  Subsequently, Salvador Moncada’s 
group revealed that NO release accounts for the biological 
activity of EDRF (2).  In 1982, prior to the identification of 
EDRF, the endogenous activator of sGC in neuroblastoma 
cells was identified as L-arginine (10) and later it was 
recognized that NO is formed from L-arginine in the 
central nervous system (11).  Even earlier however, 
nitrogen oxides were emerging as a central participant in 
the immune response.  The investigations of NO as an 
immunoreactive compound began with the observation that 
high concentrations of urinary nitrates were excreted from a 
patient with infectious diarrhea (12).  The source of these 
nitrogen compounds remained unclear until Stuehr and 
Marletta (13) demonstrated that serum and urinary nitrates 
were increased in normal mice after immunostimulation, 
but not in C3H/HeJ mice, which have a genetic alteration 

rendering their macrophages resistant to endotoxin.  It was 
through this model that NO was identified as the 
intermediate compound in the L-arginine to nitrite/nitrate 
pathway.  These observations, together with the discovery 
of the L-arginine:NO pathway in the vasculature, led to the 
investigations and subsequent discovery of the existence of 
this ubiquitous pathway in mammalian physiology.  It was 
really the collective efforts of many research groups 
working in completely different fields that converged on a 
single pathway in multiple systems.    

 
3.2. NO generation and Nitric Oxide Synthase  

The demonstration of NO formation by an 
enzyme in vascular endothelial cells in 1987 has since had 
profound implications in research and medicine.  NO was 
shown to be a potent vasodilator, inhibitor of platelet 
aggregation, and active species of nitroglycerin (4, 5) 
before the discovery of EDRF in 1980.  Nitric oxide 
synthase (NOS) enzymes produce ·NO by catalyzing a five 
electron oxidation of a guanidino nitrogen of L-arginine (L-
Arg). Oxidation of L-Arg to L-citrulline occurs via two 
successive mono-oxygenation reactions producing 
NGhydroxy L-arginine as an intermediate. Two moles of O2 
and 1.5. moles of NADPH are consumed per mole of ·NO 
formed (14) (Figure 1).  NOS enzymes are the only 
enzymes known to simultaneously require five bound 
cofactors/prosthetic groups: FAD, FMN, heme, 
tetrahydrobiopterin and Ca2+-calmodulin.  There are three 
isoforms of NOS, the genetic sequence of each residing on 
three distinct chromosomes.   One type is constitutive, 
cytosolic, Ca2+/calmodulin dependent and releases NO for 
short time periods in response to receptor or physical 
stimulation.  The NO released by this enzyme acts as a 
transduction mechanism underlying several physiological 
responses.  The other enzyme type is induced after 
activation of macrophages, endothelial cells and a number 
of other cells by cytokines and once expressed, synthesizes 
NO for long periods of time.  Furthermore, this enzyme is 
cytosolic, Ca2+ independent since calmodulin is already 
bound to the enzyme, and its induction is inhibited by 
glucocorticoids (15).  Endothelial NOS/eNOS, neuronal 
NOS/nNOS which are both constitutively expressed in 
mammalian cells have now been well characterized in the 
cardiovascular system and nervous system respectively, 
and an inducible NOS/iNOS which was first believed to be 
expressed only when activated by an immune response.  
Now it is appreciated that eNOS is found in other cells and 
tissues besides the endothelium, iNOS is found 
constitutively in some tissues, and there are inducible forms 
of both eNOS and nNOS, adding confusion to the 
nomenclature as it was first described.  In an attempt to 
clarify the nomenclature, the three different isoforms are 
now commonly referred to as NOSI, NOSII, and NOSIII 
for neuronal, inducible and endothelial isoforms, 
respectively, based on the order in which they were first 
purified and cloned.   

 
All three isoforms of the enzyme function as a 

homodimer consisting of two identical monomers, which 
can be functionally and structurally divided into two major 
domains: a C-terminal reductase-carboxy domain, and an 
N-terminal oxygenase-amino domain (14, 16). The 
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Figure 1.  The L-arginine-nitric oxide pathway. 
 

catalytically active isoforms exist as homodimers with 
tetrahydrobiopterin and heme serving to facilitate dimer 
formation (17, 18). The carboxy terminal domain has 
considerable homology between the isoforms, and is 
homologous to cytochrome P450 (19). However, the 
amino terminal domain has less homology. The 
homology of the three isoforms is about 50 to 60% 
while the homology of a given isoform between species 
can be as great as 85 to 92%.  All isoforms are 
catalytically self-sufficient provided all required 
substrates and co-factors are available.  Enzyme-bound 
calmodulin facilitates the transfer of electrons from 
NADPH to the flavoprotein domain of NOS and also 
from the flavins to the heme domain of NOS (20).  
These electrons are used to reduce the iron to the ferrous 
state so that it can bind oxygen, which is incorporated 
into the substrate, arginine, to generate NO plus 
citrulline.  CaM also facilitates NADPH dependent 
reduction of cytochrome c and ferricyanide in BH4 and 
heme depleted nNOS (20, 21).   If any of the co-factors 
become limiting, then NO production from NOS shuts 
down, and in many cases NOS then produces superoxide 
instead.  This is indeed a very complex and coordinated 
effort to enzymatically produce NO which normally 
proceeds very efficiently.  However, in disease 
characterized by oxidative stress where cofactors 
become oxidized, NOS uncoupling, or conditions of 
hypoxia where oxygen is limiting, or increased 
formation of asymmetric dimethyl arginine occurs this 
process can no longer maintain NO production.  One 

consequence is endothelial dysfunction where blood 
vessels make too little NO. 
 
3.2.1.eNOS 

NO is perhaps best characterized for its actions in 
the vasculature.  In the vascular endothelium, agonists such 
as acetylcholine and bradykinin stimulate inositol 1,4,5-
triphosphate or IP3 production by activating the 
phosphoinositide second messenger system.  IP3 binds to 
receptors on the endoplasmic reticulum and causes Ca2+ 
release from intracellular stores (22).  This transient 
elevation of intracellular Ca2+ promotes calcium binding to 
calmodulin, forming a complex that is a crucial cofactor for 
constitutive NOS activity (23).  eNOS produces modest 
amounts of NO until the calcium concentration decreases.  
This rapid and transient production of NO by eNOS allows 
NO to function in maintaining basal vascular tone (22).  
NO, once produced, then diffuses into nearby target cells to 
interact with specific molecular targets.  NO regulates 
protein activity by reversibly binding to available acceptor 
functionalities, including heme iron and thiols (24).  The 
interaction between NO and the enzyme guanylyl cyclase, 
which mediates target cell responses such as vascular 
smooth muscle relaxation and platelet inhibition, has been 
well characterized (25, 26).  After entering the target cell, 
NO binds to the heme moiety of guanylyl cyclase and 
activates the enzyme by inducing a conformational change 
that displaces iron out of the plane of the porphoryrin ring 
(27).  Guanylyl cyclase then catalyzes the production of 
cyclic GMP from GTP to elevate cyclic GMP.  Cyclic 
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GMP then triggers a cascade of intracellular events that 
culminate in a reduction in calcium-dependent vascular 
smooth muscle tone by inactivating myosin light chain 
kinase or MLCK (28, 29).  MLCK normally phosphorylates 
the regulatory set of myosin light chain.  This 
phosphorylation event activates cross-bridge cycling and 
initiates contraction (30).  cGMP modulates MLCK activity 
by activating a cGMP-dependent protein kinase that 
phosphorylates MLCK (31).  Phosphorylation of MLCK 
diminishes its affinity for calmodulin and, as a 
consequence, decreases the phosphorylation of myosin 
light chain, which in turn stabilizes the inactive form of 
myosin.  In this manner, cGMP may induce vasorelaxation 
by indirectly decreasing myosin light chain-dependent 
myosin activation.  Infusion of a NOS inhibitor causes a 
sustained hypertension that is reversible by administration 
of excess L-arginine (32, 33).  NO is now considered the 
endogenous nitrovasodilator.  However, the physiological 
effects of NO extend well beyond the vascular 
endothelium.  Radomski et al (34) has shown that human 
platelets contain a NOS that is activated when platelets are 
stimulated to aggregate.  Thus, platelets themselves also 
have the enzymatic capacity to synthesize NO with both a 
constitutive and inducible form of NOS identified in human 
megakaryoblasts (35).  NOS activity increases with platelet 
activation, and this response appears to modulate platelet 
aggregation, thereby potentially limiting the self-
amplification of platelet thrombus formation in vivo.  It was 
also reported early on that human neutrophils inhibit 
platelet aggregation by releasing an NO-like factor (36).  
These anti-thrombotic properties of the endothelium may 
be a consequence of the synergistic action of NO and 
prostacyclin.  Radomski et al (37) has shown the 
synergistic antiaggregatory effects of NO and prostacyclin 
on platelets.  NO and prostacyclin may act in concert to 
oppose local vasospasm or thrombus formation at sites 
where platelets aggregate and the coagulation cascade is 
activated.  It has also been proposed that the antiplatelet 
effects of endothelial-derived NO may prevent 
thromboembolic events during administration of potent 
prostacyclin inhibitors such as aspirin (38).  In this regard 
NO acts as an anti-inflammatory molecule.   
  
3.2.2. iNOS 

It is the inducible isoform of NOS that is 
responsible for macrophage NO production.  Inducible 
NOS has been found in many cell types including 
macrophages (39), and neutrophils (40) and is 
immunologically activated by exposure to bacterial 
endotoxin or pro-inflammatory cytokines such as 
interleukin-1, or interferon-gamma (41, 42) and tumor 
necrosis factor.   Inducible NOS activity is regulated at the 
transcriptional level (43) and is not affected by changes in 
intracellular calcium concentrations nor is dependent on the 
cofactors NADPH and tetrahydrobiopterin.  iNOS 
induction after cytokine exposure requires several hours 
and once induced, can generate far greater amounts of NO 
per mole of enzyme than the constitutive NOS (44).  
Macrophages stimulated with interferon gamma, and 
lipopolysaccharide have NOS messenger ribonucleic acid 
present by 2 hours, and NOS protein by 4 hours.  The 
presence of NOS-2 message or protein can serve as 

biomarker for inflammation in tissues.  The NOS protein 
may remain present for several days (45).  The expression 
of the inducible form of NOS, but not nNOS or eNOS is 
specifically inhibited by glucocorticoids (46).  Although 
cultured macrophages can produce large amounts of NO, 
multiple cytokines are required to achieve maximal 
induction.  Interferon gamma or LPS alone can induce 
noncytotoxic levels of NO. However, when cytokines work 
synergistically, they can induce cytotoxic levels of NO.  
Priming cell cultures with IFN-gamm prior to exposure to 
other agents result in enhanced NO production.  The 
synergistic activity between IFN-gamma and microbial 
products is mediated by tumor necrosis factor-alpha.  At 
these high concentrations and flux rates, NO is cytotoxic 
and plays a key role in the immune response of 
macrophages to bacteria and other pathogens.  Tumor 
necrosis factor acts in an autocrine fashion to amplify the 
synthesis and release of NO by primed macrophages; 
however, it cannot stimulate NO synthesis by itself.  
Antimicrobial activity and NO production parallel tumor 
necrosis factor activity (47).  A strong correlation exists 
between antimicrobial activity and production of L-Arg-
derived NO by cytokine-activated cells observed during in 
vitro studies (47, 48).  The precise mechanism of NO-
mediated bactericidal and tumoricidal activity is unknown, 
but these observations suggest that macrophage NO 
production contributes to nonspecific immunity (49).  NO 
from activated macrophages may be responsible for the 
profound loss of vascular tone seen in septic patients.  It is 
this relative overproduction of NO and the subsequent 
vasodilation that are thought to mediate NO’s 
pathophysiologic role during sepsis and multiorgan failure 
during hypovolemia and hypoxia.  Because NO is known to 
directly or indirectly modulate the inflammatory response 
as well as to play an important role in pain perception, there 
is also an increasing interest in defining the role that NO 
may play in the pathogenesis of chronic inflammation and 
the associated chronic pain (50).  Despite the rapid progress 
in our understanding of the complex physiological and 
pathophysiological processes involving NO, uncertainties 
remain with regard to the critical cellular targets of NO 
cytotoxicity, the relative importance of different NO redox 
states and carrier molecules, and the importance of the NO 
antimicrobial system in human phagocytes.  Ultimately, the 
immunoregulatory and vasoregulatory activities of NO may 
prove to be just as important as its antimicrobial properties 
during infection.   
  
3.2.3. nNOS 

In the central nervous system, NO is a 
neurotransmitter that underpins several functions, including 
the formation of memory.  Recurrent as in other organ 
systems, this NO pathway may also play a role in the 
pathology of the central nervous system.  The NOS isoform 
in the nervous system is activated by glutamate acting on 
N-methyl-D-aspartate receptors.  In a matter of seconds the 
glutamate-induced increase in intracellular calcium 
concentration activates NOS via the calcium/calmodulin 
interaction as previously described.  Under most 
circumstances, eNOS and nNOS are constitutive in the 
sense that their activation does not require new enzyme 
synthesis.  However, both forms of NOS are inducible in 
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that new enzyme synthesis occurs primarily under 
conditions of traumatic or pathological insult.  The calcium 
influx that accompanies prolonged NMDA receptor 
activation is associated with degeneration of the neurons 
(51).  It is likely that excessive NMDA receptor activation, 
with the consequent increase in calcium, contributes to 
glutamate neurotoxicity by enhancing NO which reacts 
with superoxide and then performs its nitrosative chemistry 
(52).  The dichotomy of both the protective and deleterious 
actions of NO is again revealed in the nervous system.    

 
In the periphery, there is a widespread network of 

nerves, previously recognized as nonadrenergic and non 
cholinergic, that operate through a NO-dependent mechanism 
to mediate some forms of neurogenic vasodilation and regulate 
various gastrointestinal, respiratory, and genitourinary tract 
functions as well as autonomic innervation of smooth muscle 
in the gastrointestinal tract, the pelvic viscera, the airways, and 
other systems (53).  In the stomach, a decrease in gastric 
mucosal blood flow has been identified as a prerequisite to the 
development of acute erosions and stress ulcers (54, 55).  NOS 
has been detected in the gastric mucosa, and NO appears to 
play a role in protecting the gastric mucosa during physiologic 
stress by acting as an endogenous vasodilator and thus 
supporting mucosal blood flow (56).  The exact mechanism of 
NO’s protective effect is unclear, but may relate to 
vasodilation, inhibition of platelet aggregation in the gastric 
microvasculature, or a protective effect on the epithelial cells 
themselves (57).   
 
3.3. Nitrovasodilators 

In contrast with the short research history of the 
enzymatic synthesis of NO, the introduction of nitrate-
containing compounds for medicinal purposes marked its 
150th anniversary in 1997. Organic nitrates are simple nitric 
and nitrous acid esters of alcohols. Clinically used RONO2 
compounds include nitroglycerin or GTN, pentaerythrityl 
tetranitrate, isosorbide dinitrate, and triethanolamine 
trinitrate biphosphate. GTN is the most common organic 
nitrate used clinically and was synthesized by Sombrero in 
1847 (58).  After his discovery of dynamite, Alfred Nobel 
routinely suffered from angina pectoris and was prescribed 
nitroglycerin for his chest pain in 1895 (58). Almost a 
century later, organic nitrates and their gaseous metabolic 
end product, NO, were implicated in a vast array of 
biologically diverse activities (6, 7). GTN has been used for 
well over a century to treat angina pectoris, myocardial 
infarction, and heart failure, and continues to remain a 
mainstay of therapy in the management of these conditions. 
In 2001, GTN was prescribed for the treatment of angina 
more than 2 million times in the United States alone (59). 
In addition to its anti-anginal benefits, GTN has been found 
to induce ischemic preconditioning (60) a physiologic 
phenomenon that can protect the heart from lethal 
ischemia. Recently, GTN has also been demonstrated to be 
beneficial in noncardiovascular contexts, including pain 
management (61, 62), treatment of chronic anal fissure 
(63), preservation of organs for transplantation (64, 65), 
and overall response and time to progression in patients 
with inoperable small cell cancer (66).  Collectively these 
reports highlight the multitude of therapeutic applications 
of NO and the subsequent cell signaling pathways.    

It has been suggested that multiple pathways 
contribute to NO formation from organic nitrates in vivo; 
however, the metabolic mechanism is still poorly 
understood.  Many different enzyme systems have been 
proposed including cytochrome P450, glutathione S-
transferase and other glutathione and NADH/NADPH-
dependent activities (67-69).  It is not until recently, that 
researchers at Duke University Medical Center have been 
able to make significant progress in the identification of the 
enzymatic mechanism of GTN bioactivation, even though 
the compound’s discovery occurred over 150 years ago. 
Chen et al (70) purified a nitrate reductase known as 
mitochodrial aldehyde dehydrogenase that specifically 
catalyzes GTN to form 1,2-glyceryl dinitrate and nitrite, 
which are eventually converted to NO. This finding 
demonstrates that the biotransformation of GTN occurs 
predominantly in mitochondria and indicates that 
attenuated biotransformation of GTN by mtALDH 
underlies the induction of nitrate tolerance. Although the 
study has not clarified every aspect of the pathway, patients 
taking organic nitrates esters for the treatment of acute 
ischemic syndromes and congestive heart failure will 
benefit from awareness of the contraindicated effect of 
certain classes of drugs that inhibit mtALDH activity, such 
as sulfonylurea antidiabetics, chloral hydrate, and 
acetaminophen.  In addition to the many enzymatic 
pathways, organic nitrates may also undergo non-
enzymatic metabolism reacting with thiol-containing 
molecules, including cysteine, glutathione, and sulfhydryl 
proteins (71, 72).   
 
4.  NO BASED CELL SIGNALING 
 
4.1. cGMP dependent signaling  
 Many of the physiological functions of NO in the 
cardiovascular, neuronal, gastrointestinal and other systems 
are mediated through its primary receptor, soluble guanylyl 
cyclase. sGC is a heme-containing, heterodimeric NO 
receptor. Soluble GC consists of two subunits, α and β, 
which make up the active enzyme. Four sGC isoforms, 
products of four genes, have been identified so far: α1, α2, 
β1 and β2. Only α1/β1 and α2/β1 heterodimers are activated 
by NO (73). The α1/β1 sGC is the most abundant isoform 
and is distributed ubiquitously in mammalian tissues with 
the highest levels of mRNA in brain, lung, heart, kidney, 
spleen and muscle (74). Vascular smooth muscle and 
endothelial cells express predominantly α1 and β1 subunits 
(75). The functional importance of α1/β1 sGC was 
demonstrated by the significantly decreased relaxing effects 
of major vasodilators such as acetylcholine, NO, YC-1 and 
BAY 41-2272 in the α1 sGC knockout mice of both 
genders. (76).  The heme-containing heterodimer sGC 
converts guanosine triphosphate into the secondary 
messenger guanosine 3’:5’-cyclic monophosphate. Through 
the production of cGMP, sGC can exert many 
physiological effects such as mediating vascular smooth 
muscle tone and motility, phototransduction, and 
maintaining fluid and electrolyte homeostasis. To do this, 
cGMP acts directly with downstream effectors such as the 
family of cGMP-dependent protein kinases, cyclic 
nucleotide-gated channels, and cGMP-regulated 
phosphodiesterases (77-79). The sGC activity increases 
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more than 200 fold in response to NO (80, 81).  This signal 
is quickly removed by the action of phosphodiesterase 5A 
enzyme.   
 
4.2. PDE inhibitors   
 Phosphodiesterases (PDEs) are intracellular 
enzymes that specifically catalyze the hydrolysis of the 
second messengers cAMP and cGMP to the inactive 
metabolites AMP and GMP. Among the 11 families of 
PDEs a number are able to hydrolyze cGMP, but only 
PDE5 exclusively catalyses the breakdown of cGMP (82). 
By counterbalancing cGMP production by guanylate 
cyclases, PDE5 is able to decrease cGMP levels very 
effectively. Thus PDE5 inhibition increases intracellular 
cGMP levels and initiates a cGMP-driven cascade of 
reactions. Ultimately, these pathways decrease intracellular 
calcium levels, thereby promoting relaxation of smooth 
muscle cells and a variety of other calcium-dependent 
processes (77). Since inhibitors of PDE5 raise intracellular 
cGMP levels, the effects will be much more pronounced 
under conditions when cGMP formation is already 
increased. Strong evidence to support this concept is the 
highly efficacious treatment of erectile dysfunction with 
PDE5 inhibitors (83). Phosphodiesterase type 5A 
selectively hydrolyzes cyclic GMP. Inhibitors of PDE5A 
such as sildenafil are widely used to treat erectile 
dysfunction, but growing evidence supports important roles 
for the enzyme in both the vasculature and heart.  These 
agents may also be beneficial in other disorders such as 
pulmonary hypertension, Raynaud’s syndrome, etc. 
 
4.3. Splice forms as novel genetic regulators of sGC   
 Recently, the vital importance of sGC for 
mammalian physiology was directly confirmed by 
generation of sGC knockout mice (76, 84, 85).  The 
absence of sGC protein resulted in a significant increase in 
blood pressure, complete loss of NO-dependant aortic 
relaxation and platelet aggregation in knockout animals, 
which died prematurely at the age of 4 weeks due to severe 
gastrointestinal disorders (84).  sGC function is affected not 
only by NO, but also by regulation of the expression of 
sGC subunits at transcriptional and post-transcriptional 
levels. The steady state mRNA levels of α1 and β1 subunits 
decrease with hypertension, ageing and vary during 
embryonic development (86). The expression of sGC 
subunits is regulated by estrogen (87), cAMP-elevating 
compounds (88, 89), cytokines (90) and NO donors (91). 
Subcellular localization of sGC and its activity can also be 
affected in proliferating tissue (92) by protein interactions 
and phosphorylation (86). In mammals, the alternative 
splicing for α2 subunit generates a dominant negative 
variant (93). Existence of splice forms for β1 and β2 
subunits has been also demonstrated (95-97). Recently, a 
shortened α1 sGC transcript, which lacks the predicted 
translation site in exon 4, has been found and its expression 
was correlated with lower sGC activity in several cell lines 
(97).  Gene therapy with α1 β1 subunits may provide future 
therapeutic utility.   
 
4.4. Allosteric effectors of sGC  
 There are also many allosteric regulators of sGC 
which provide NO independent activation.  Impaired 

bioavailability and/or responsiveness to endogenous NO 
has been implicated in the pathogenesis of cardiovascular 
and other diseases. Current therapies that involve the use of 
organic nitrates and other NO donors have limitations, 
including non-specific interactions of NO with various 
biomolecules, lack of response and the development of 
tolerance following prolonged administration. Compounds 
that activate sGC in an NO-independent manner might 
therefore provide considerable therapeutic advantages (98). 
The recent discoveries of compounds that stimulate or 
activate sGC independently of NO release allow this 
venerable pharmacological target to be approached from a 
completely different perspective. NO-independent but 
heme-dependent stimulators of sGC, as well as NO- and 
heme-independent sGC activators, are emerging as 
valuable tools that could help to elucidate the physiology 
and pathophysiology of the NO–sGC–cGMP pathway in 
more detail. The first group of these compounds comprises 
the heme-dependent sGC stimulators including YC-1, BAY 
41-2272, BAY 41-8543, A-350619 and CFM-1571. These 
compounds show a strong synergy with NO and a loss of 
activation after oxidation or removal of the prosthetic heme 
moiety of sGC. The mechanism of YC-1-dependent 
activation of sGC is not completely understood because 
some aspects of it are unsettled. YC-1 alone activates the 
enzyme only 10-fold, but it potentiates the CO- and NO-
dependent activation of sGC, resulting in stimulation of the 
highly purified enzyme that may be several hundred- to 
several thousandfold.  More recent studies reveal that YC-1 
can activate sGC with both heme-dependent and heme-
independent mechanisms (99).  The second group 
comprises the sGC activators, including BAY 58-2667 and 
HMR-1766, which have been found to require neither NO 
nor heme, and demonstrate even more pronounced action 
on the oxidized form of sGC (98).   
 
5. cGMP INDEPENDENT SIGNALING 
 
5.1. Nitrite and nitrate 

Inorganic nitrite (NO2
-) and nitrate (NO3

-) are 
known predominantly as undesired residues in the food 
chain or as inert oxidative end products of endogenous NO 
metabolism.  However, from research performed over the 
past decade, it is now apparent that nitrate and nitrite are 
physiologically recycled in blood and tissues to form NO 
and other bioactive nitrogen oxides (100-104). As a result, 
they should now be viewed as storage pools for NO-like 
bioactivity to be acted upon when enzymatic NO 
production from NOS is insufficient. The recognition of 
this mammalian nitrogen cycle has led researchers to 
explore the role of nitrate and nitrite in physiological 
processes that are known to be regulated by NO (105).  
Inorganic nitrite and nitrate should not be confused with 
organic nitrites and nitrates described above.  Inorganic 
nitrite and nitrate are naturally occurring salts, whereas 
organic nitrites and nitrates are synthetic compounds with 
an ONO and ONO2 functional group respectively to a 
parent molecule.  Inorganic nitrite and nitrate are simply 
referred to as nitrite and nitrate.  Nitrite is an oxidative 
breakdown product of NO that has been shown to serve as 
an acute marker of NO flux/formation (106). Nitrite has 
recently moved to the forefront of NO biology (107), as it 
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represents a major storage form of NO in blood and tissues 
(108).  In addition to the oxidation of NO, nitrite is also 
derived from reduction of salivary nitrate by commensal  
bacteria in the mouth and gastrointestinal tract (109, 110) 
as well as from dietary sources such as meat, vegetables 
and drinking water.  Much of the recent focus on nitrite 
physiology is due to its ability to be reduced to NO during 
ischemic or hypoxic events (108, 111-113).  Nitrite reductase 
activity in mammalian tissues has been linked to the 
mitochondrial electron transport system (114-116), protonation 
(112), deoxyhemoglobin (117), deoxymyoglobin (118) and 
xanthine oxidase (119-121). Nitrite can also transiently form 
nitrosothiols (RSNOs) under both normoxic and hypoxic 
conditions (111) and a recent study by Bryan et al 
demonstrates that steady state concentrations of tissue nitrite 
and nitroso are affected by changes in dietary nitrite and nitrate 
intake (101).  Furthermore enriching dietary intake of nitrite 
and nitrate translates into significantly less injury from heart 
attack (100).  Previous studies demonstrated that nitrite therapy 
given intravenously prior to reperfusion protects against 
hepatic and myocardial I/R injury (121, 122).  Additionally, 
experiments in primates revealed a beneficial effect of long-
term application of nitrite on cerebral vasospasm (123).  
Moreover, inhalation of nitrite selectively dilates the 
pulmonary circulation under hypoxic conditions in vivo in 
sheep (124). Topical application of nitrite improves skin 
infections and ulcerations (125). Furthermore, in the stomach, 
nitrite-derived NO seems to play an important role in host 
defense (126, 127) and in regulation of gastric mucosal 
integrity (128). All of these studies together along with the 
observation that nitrite can act as a marker of NOS activity 
(106) opened a new avenue for the diagnostic and therapeutic 
application of nitrite, especially in cardiovascular diseases, 
using nitrite as marker as well as an active agent.  Oral nitrite 
has also been shown to reverse L-NAME induced 
hypertension and serve as an alternate source of NO in vivo 
(129).   In fact a recent report by Kleinbongard et al. (130) 
demonstrates that plasma nitrite levels progressively decrease 
with increasing cardiovascular risk.  Since a substantial portion 
of steady state nitrite concentrations in blood and tissue are 
derived from dietary sources (101), modulation of nitrite 
and/or nitrate intake may provide a first line of defense for 
conditions associated with NO insufficiency (108).   

 
The bioactivation of nitrate from dietary or 

endogenous sources requires its initial reduction to nitrite, 
and because mammals lack specific and effective nitrate 
reductase enzymes, this conversion is mainly carried out by 
commensal bacteria in the gastrointestinal tract and on 
body surfaces (131, 132). Dietary nitrate is rapidly 
absorbed in the upper gastrointestinal tract. In the blood, it 
mixes with the nitrate formed from the oxidation of 
endogenous NO produced from the NOS enzymes. After a 
meal rich in nitrate, the levels in plasma increase greatly 
and remain high for a prolonged period of time (plasma 
half-life of nitrate is 5–6 hours). The nitrite levels in plasma 
also increase after nitrate ingestion (133). Although much 
of the nitrate is eventually excreted in the urine, up to 25% 
is actively taken up by the salivary glands and is 
concentrated up to 20-fold in saliva (131, 133).  One in the 
mouth, commensal facultative anaerobic bacteria reduce 
nitrate to nitrite during respiration by the action of nitrate 

reductases (132, 134).  Human nitrate reduction requires 
the presence of these bacteria — suggesting a functional 
symbiosis relationship — as mammalian cells cannot 
effectively metabolize this anion (Figure 2). The salivary 
nitrate levels can approach 10 mM and nitrite levels 1–2 
mM after a dietary nitrate load (131). When saliva enters the 
acidic stomach (1–1.5 liter per day) much of the nitrite is 
rapidly protonated to form nitrous acid, HNO2; pKa 3.3., 
which decomposes further to form NO and other nitrogen 
oxides (103, 104).  Most recently it has been reported that 
dietary nitrate reduces blood pressure in healthy volunteers 
(135, 136).  For a comprehensive review on this pathway, 
please see Lundberg et al (105).  Nitrite and nitrate therapy 
or supplementation may restore NO homeostasis from 
endothelial dysfunction and provide benefit in a number of 
diseases characterized by NO insufficiency.  If so, this will 
provide the basis for new preventive or therapeutic strategies 
and new dietary guidelines for optimal health.  From a public 
health perspective, we may be able to make better 
recommendations on diet and dramatically affect the incidence 
and severity of cardiovascular disease and the subsequent 
clinical events.   

 
 The juxtaposition of the physiologic requirement 
for NO or nitrite as a pleiotropic signaling molecule and the 
toxic effects of either excessive local NO overproduction or 
formation of carcinogenic nitrosamines necessitate defining 
the contexts of these actions.  The ascription of risk to 
excessive nitrate and nitrite consumption, as observed with 
nitrate/nitrite contaminated water from agricultural sources 
or from nitrate-preserved meats, presumes enhanced risk at 
normal dietary consumption levels.  However, 
consideration of dietary sources of nitrates and nitrites 
indicates that humans may consume amounts in greater 
concentrations than those considered to increase risk of 
carcinogenic nitrosamine formation, >500 ppm.   
The primary dietary sources of nitrates and nitrites include 
plants, vegetables and a few fruits, processed and cured 
meat, fish and poultry to which nitrites have been added.  
Plant foods are the primary sources of nitrate, 
while processed and cured meats are the primary sources 
of nitrites (137).   While estimates of daily nitrate and 
nitrite intake are reported to vary between 53 and 350 
mg/day and between 0 and 20 mg/day, respectively, 
unpublished analyses (Bryan, NS, Hord, N) indicate these 
may dramatically underestimate intakes of nitrates from 
specific fruit and vegetable juices and food supplements. 
 As such, reconsideration of normal or "usual" nitrate and 
nitrite consumption levels is warranted.  In light of these 
findings, the risks associated with these intake levels 
should be balanced against the potential preventive and 
therapeutic benefits of nitrates and nitrites from plant and 
human food sources.  The potential benefits and risks of 
these dietary components should be understood within 
specific healthy and at-risk populations rather than 
relegating these essential substrates for physiologic 
signaling to categorically toxic compounds.  Careful 
consideration of the physiologic contexts in which these 
certain foodstuff produce NOx metabolites will yield a 
more enlightened view of their essentiality for 
cardiovascular function and potential risks of 
carcinogenicity due to nitrosamine formation.  Although 
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Figure 2. Ingested inorganic nitrate from dietary sources is rapidly absorbed in the small intestine. Although much of the 
circulating nitrate is eventually excreted in the urine, up to 25% is actively extracted by the salivary glands and concentrated in 
saliva. In the mouth, commensal facultative anaerobic bacteria effectively reduce nitrate to nitrite by the action of nitrate 
reductase enzymes. Nitrate reduction to nitrite requires the presence of these bacteria, as mammalian cells cannot effectively 
metabolize this anion. In the acidic stomach, nitrite is spontaneously decomposed to form nitric oxide and other bioactive 
nitrogen oxides, which regulate important physiological functions. Nitrate and remaining nitrite is absorbed from the intestine 
into the circulation and can convert to bioactive NO in blood and tissues under physiological hypoxia. Reproduced with 
permission from 105. 
 
there have been numerous reports on the association of 
N-nitrosamines and human cancers (138, 139) a 
causative link between nitrite exposure and cancer is 
still missing (140).  Furthermore, a two years study on 

the carcinogenicity of nitrite by NIH has conclusively 
found that there was no evidence of carcinogenic 
activity by sodium nitrite in male or female rats or mice 
(141).  In fact increasing steady state nitrite and nitrate 
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concentrations in blood is a natural, adaptive, physiological 
response in humans (142). 

5.2. S-nitrosothiols   
S-nitrosothiols are thio-esters of nitrite with the general 
structure R-S-N=O; naturally occurring examples include 
S-nitrosocysteine, S-nitrosoglutathione and S-
nitrosoalbumin, in which R is an amino acid, polypeptide 
and protein respectively. S-nitrosothiols can be synthesized 
from the reaction between thiols and nitrous acid in 
extremely acidic condition.  S-nitrosation is a ubiquitous 
redox-related modification of cysteine thiol which 
transduces NO bioactivity (143).  As early as 1981, 
Ignarro’s group demonstrated that the bioactivities of 
certain pharmacological nitrogen oxide donors were 
attributed to reactions with cellular thiols (144), which is 
several years before making the observation that NO is 
actually synthesized endogenously in mammalian cells. 
There is now a large body of literature that implicates S-
nitrosothiol as an intermediate in nitric oxide–dependent 
and guanylyl cyclase–independent signaling processes.  
Reactive protein thiols are becoming regarded as major 
intracellular target of nitric oxide (145).  Nitrite is in steady 
state equilibrium with S-nitrosothiols (101, 146).  
Dysregulation of protein S-nitrosation is associated with a 
growing list of pathophysiological conditions (145) and 
altered blood levels of RSNO have been associated with 
impaired clinical outcome in patients with CVD (147, 148).  
Although RSNOs such as S-nitroso-N-acetyl-
penicillamine and S-nitrosoglutathione are commercially 
available but none of them has been used therapeutically 
due to the unpredictable rate of decomposition in the 
body. In contrast, an increasing number of proteins have 
been found to undergo S-nitrosylation in vivo. These S-
nitrosothiol proteins have demonstrated an important role 
in many physiological as well as pathological processes 
(149).  
 Reaction of NO, or more correctly, any of several 
NO-derived species with Cys residues in target proteins is 
termed s-nitrosation. This post-translational protein 
modification was already recognized 10 years ago for 
albumin, by authors who portended its potential generality 
and importance in cell-signaling (150). S-nitrosation has 
since been implicated in the control of a wide array of 

protein functions and cell activities (145, 151), Among the 
growing list of proteins whose activities are regulated by s-
nitrosation are included, ion channel proteins, kinases, 
proteolytic enzymes, transcription factors and proteins 
involved in energy transduction (145).  Through s-
nitrosation of these proteins, nitric oxide has been shown to 
regulate apoptosis, G-protein-coupled receptor based 
signaling, vascular tone and inflammatory responses (151-
154).  However cellular signaling events are dictated by 
specificity and a transient modification that can quickly and 
specifically be inactivated to turn off the signal.  Whereas 
s-nitrosation produces the effects of nitric oxide inside the 
body, denitrosation pathways inside the cells terminate the 
cellular effects of nitric oxide.   Denitrosation of S-NO-
proteins in cells can be accomplished by simple chemistry, 
wherein intracellular glutathione or other intracellular 
thiols, including other protein Cys residues, act as acceptors 
and effectively remove nitrosyl or nitroso groups via 

transnitrosation reactions. Decomposition can also be 
enhanced through heat, UV light and metal ion, particularly 
copper, dependent, which results in the formation of NO or 
NO+ and the corresponding disulphide. The reaction can be 
enhanced by the presence of ascorbate, thiols, high oxygen 
tension and pH > 3. Additionally, ascorbate, and metal ions 
(155) can promote S-NO-protein decomposition (156, 157). 
In this system, the rate of S-NO-protein decomposition 

would be modulated by changing levels of intracellular 
thiols; in other words, conditions that promote glutathione 
oxidation in cells would enhance steady-state levels of 
protein S-nitrosation. This mechanism would put protein S-
nitrosation under the control of environmental changes that 
affect the intracellular redox milieu (149).  
  
 New knowledge and recent discoveries in the NO 
field provide insights as to how specificity for S-nitrosation 
of mammalian cell proteins is achieved through formation 
to degradation by S-nitrosoglutathione reductase (158).  S-
nitrosoglutathione reductase or GSNOR, a member of 
alcohol dehydrogenase family, has been shown to be the 
primary pathway through which cells denitrosate 
intracellular proteins (158). This enzyme that is 
evolutionarily conserved in bacteria and humans and has 
been shown to catalyze the selective reduction of GSNO at 
the expense of reduced nicotinamide adenine dinucleotide, 
forming glutathione disulfide and ammonia. Deletion of the 
gene encoding GSNOR in both mice and yeast resulted in 
increased levels of both intracellular GSNO and S-NO-
proteins. This finding identifies the first biologically 
relevant mammalian denitrosase and confirms that levels of 
GSNO determine intracellular levels of S-NO-proteins. 
GSNOR brings about denitrosation of intracellular proteins 
by the reduction of s-nitrosoglutathione, a nitric oxide 
metabolite arising from the reaction of glutathione with s-
nitrosated proteins or nitric oxide (159-161).  Owing to its 
ability to regulate the s-nitrosation of intracellular proteins, 
GSNOR has become an important target for developing 
agents that modulate nitric oxide bioactivity inside the 
cells.  The therapeutic potential of preventing the 
breakdown of s-nitrosothiols via inhibition of GSNOR has 
been demonstrated in the mice model of asthma.  Mice 
lacking GSNOR were found to resist airway 
hyperresponsivity owing to higher GSNO concentrations in 
bronchial fluid and diminished tachyphylaxis to β-agonists 
owing to s-nitrosation of G-protein coupled receptor kinase 
(153, 162).  Development of specific drugs which modulate 
the steady state levels of RSNO will likely have therapeutic 
benefit. 
 
5.3. Nitrotyrosine   
 Vertebrates constantly generate reactive oxygen 
species which include superoxide anion, hydroxyl radicals 
and hydrogen peroxide as a consequence of aerobic 
metabolism. The overproduced ROS have detrimental 
effects on cellular function in large part through the 
oxidation of proteins. The discovery of nitric oxide (163) 
focused attention on reactive nitrogen species, which 
includes NO that can under go interconversion to form NO+ 
or  nitrosonium and NO- or nitroxyl anion. NO reacts with 
O2

•- to form peroxynitrite that can further form 
peroxynitrous acid, a very unstable and reactive oxidizing 
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species.  Involvement of ONOO is the most widely studied 
mechanism of protein nitration (164), and the formation of 
NO2-Tyr has been detected in various pathological 
conditions including atherosclerosis, myocardial infarction, 
myocarditis, heart failure, shock, diabetic complication and 
neurodegenerative and inflammatory disorders (165). 
Approximately 80 key proteins have been reported to be 
modified by peroxynitrite with potential relevance to 
various human diseases.  Peroxynitrite may also be an 
important trigger of cell death, both apoptotic and necrotic 
(164).  Substantial evidence has emerged which revealed a 
very close association between the formation of NO2-Tyr 
and the presence of activated granulocytes containing 
peroxidases, such as MPO (166-169). MPO-generated 
oxidants enhance selective cleavage of plasmalogens, a 
predominant membrane constituent in many cells of the 
cardiovascular system, and result in the release of both -
chloro fatty aldehyde species, such as 2-chlorohexadecanal 

that may act as a phagocyte chemoattractant, and 
unsaturated lysophosphatidylcholine, an as-yet 
unrecognized proatherogenic molecule because it elicits 
increased surface expression of P-selectin on human 

coronary arteries (170). MPO-generated reactive species 
participate in the induction of foam cell formation, 
endothelial dysfunction, and development of vulnerable 
plaque. 

 
Involvement of ONOO- in inflammatory diseases 

has been determined by detection of nitrotyrosine 
formation in various inflamed tissues (171, 172).  Nitrite is 
another major oxidation product derived from NO, and can 
be oxidized by peroxidase to form a reactive nitrogen 
intermediates such as nitrogen dioxide that is capable of 
nitrating tyrosine (173).  MPO and MPO derived 
hypochlorous acid have been implicated in the 
pathogenesis of atherosclerosis (174).  Carr and Frei have 
revealed that physiological concentrations of nitrite inhibit 
MPO mediated modification of LDL (175) providing a 
means to interrupt the process.  These data also 
demonstrate the first line of evidence of nitrite acting in an 
“antioxidant” capacity in atherosclerosis.  Nitrite dependent 
decrease in oxidative modification of LDL may translate 
into decreased LDL uptake by macrophages, thus 
attenuating the formation of lipid-laden foam cells, the 
hallmark of atherosclerotic lesions.  This may represent a 
novel mechanism by which metabolites of NO may exert 
an antiatherogenic effect (175).  MPO and other peroxidase 
are also able to use halides and pseudohalides as co-
substrates to generate the reactive intermediate 
hypochlorous acid, which further forms nitryl chloride that 
results in formation of NO2-Tyr (169). Thus, it is likely that 
multiple pathways participate in tyrosine nitration.   

 
The average adult human body contains ~3-4 g of 

iron, and 65% of it is bound to hemoglobin. Ten percent is 
a constituent of myoglobin, cytochromes, and iron-
containing enzymes, and the rest is bound to the iron 
storage proteins (176). The higher contents of heme iron in 
certain tissues such as heart and vascular smooth muscle 
cells could serve as a biological base for iron toxicity on 
free radical-mediated tissue damage, including formation of 
nitrotyrosine. The first evidence (177) that muscle 

contraction can be altered by nitration of key proteins is 
suggested by the study of skeletal muscle sarcoplasmic-
reticulum Ca2+-ATPase isoforms 2, which suggests that 
tyrosine nitration may affect Ca2+-ATPase activity. We 
have tested the hypothesis that both free heme and iron play 
a key role in NO2-Tyr formation and demonstrated that 
isolated heme and free metals are capable of tyrosine 
nitration in the presence of hydrogen peroxide and nitrite 
(178).  Summarizing current information briefly, hemin or 
chelated iron reacts with H2O2 to form the ferryl -cation 
radical complex, which then oxidizes both nitrite and 
tyrosine to form nitric dioxide radical and tyrosine radical, 
respectively.  These nitrating species nitrate tyrosyl 
residues in proteins to form NO2-Tyr.  In the presence of 
heme, H2O2 and NO2

-, considerable protein nitration was 
observed in homogenates of heart and skeletal muscle but 
not in the brain, liver, and kidney. Increasing the exogenous 
heme concentration, however, promoted nitration in the 
brain, liver, and kidney. To further elucidate the role of 
endogenous heme in NO2-Tyr formation, we compared 
protein nitration in homogenates of heart under conditions 
of with or without exogenous heme. A significant protein 
nitration could be induced by application of NO2

- and H2O2 
alone into the heart homogenate, and the addition of 
exogenous heme did not further increase the level of NO2-
Tyr formation. Thus, hemoprotein rich tissues such as 
cardiac muscle are vulnerable to protein nitration in 
pathological conditions characterized by the 
overproduction of H2O2 and NO2

- or nitric oxide. Our 
understanding of this molecular process is allowing us to 
adopt principles of anti-oxidation therapy that may be more 
beneficial for patients with cardiovascular disorders. 
Recognizing and isolating specific molecular targets for 
drug development against protein nitration will require a 
better understanding of more specific mechanisms in 
individual disease processes.   
 
6.  RATIONALE DESIGN AND DEVELOPMENT OF 
THERAPEUTICS 
 
6.1. Endothelium Centered healthy environment for 
vasculature 

Our understanding of the process leading to 
cardiovascular diseases is allowing us to adopt principles of 
therapy that may be more beneficial for patients. For 
instance, hypertension, particularly in high-risk patients, is 
a result of loss of balance and the absence of the ability to 
vasodilate normally. The interaction between the 
endothelial cell and the smooth muscle cell is very 
important in this process. The endothelium is a group of 
cells that produce compounds that are important in 
regulating vascular homeostasis by elaborating factors such 
as angiotensin II, NO, endothelin, and prostaglandins. 
Specifically, NO is found in endothelial cells responsible 
for smooth muscle relaxation. Normal endothelium 
maintains vascular tone and blood viscosity, prevents 
abnormal blood clotting and bleeding, limits inflammation 
of the vasculature, and suppresses smooth muscle cell 
proliferation. Abnormal endothelium causes increased 
inflammation and hypertrophy of the smooth muscle cells, 
promotes thrombosis and vasoconstriction, leading to the 
rapid growth of atherosclerotic plaques. Therefore, 
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understanding endothelial function will be imperative as 
researchers develop newer compounds that may enhance 
NO bioavailability within the vasculature.  These may 
include compounds that promote the production of or 
extend the biological half life of NO or enhancing the 
cellular targets of NO. 
 
6.2. NO-cGMP dependent vasodilator extracted from 
plants 

There are hundreds of chemical substances that 
have been derived from plants for use as drugs and 
traditional medicines. During the past several years, the 
Murad Research Center in Shanghai has focused its 
efforts on identification of some plant extracts with 
antihypertensive and vasodilator effects. The strategy 
adopted by the Murad Research Center is to review the 
literature and use of plant extracts that were commonly 
used in Traditional Chinese Medicine for improving 
circulation. After the effective ingredients are extracted, 
the cell signaling pathways are analyzed with cultured 
cells and platelets and isolated tissues as well as whole 
animals (179, 180).  The Center has been functioning for 
three years and to date more than 20 ethanol or water 
extracts from various plants demonstrate endothelium 
dependent or independent vasodilatory effects, and some 
exhibit inhibition of platelet aggregation or nitrite/nitrate 
production via conditioned cell culture media. More 
interestingly, the extracts exert different inhibitory 
effects on vasoconstriction by phenylephrine, serotonin, 
dopamine and prostaglandin F2α, which further suggest 
that multiple components are present in the extracts 
(181). These preliminary studies are encouraging and 
additional studies are necessary to fully characterize the 
active materials and their mechanisms of action to 
develop novel cardiovascular agents acting via the 
NO/cGMP signaling pathway and illustrate the 
importance of natural substances that may be found in 
the diet.   
 
6.3. Inflammatory diseases & NOS-2 selective inhibition  

The activation of NOS-2 and the subsequent 
production of large amounts of free radical gas NO is an 
important anti-infectious and anti-tumor mechanism of 
innate immunity. However, overproduction of NO has been 
implicated in several inflammation centered pathological 
conditions that include but are not limited to: 1) Tissue 
injury and various inflammatory disorders (182-184); 2) 
Neuronal disease (185, 186); 3) Auto-immune diseases 
(187-189); 4) Cancer or tumor cell proliferation (190-192); 
5) Angiogenesis and related pathological changes (193, 
194); and 6) Diabetes mellitus (195, 196). Thus, selective 
inhibition of NOS-2 may have therapeutic potential for 
treatment of diseases mediated by the overproduction of 
NO. It is not surprising that non-selective inhibition of 
NOS, which blocks constitutive isoforms of NOS as well as 
NOS-2, has deleterious effects. It follows then that 
selective inhibitors of NOS-2 will have considerable 
therapeutic potential. So far, two major categories of NOS-2 
inhibitors have been developed: 1) L-arginine analogues, 
which show limited isoform selectivity and affect the substrate 
for all NOS enzyme and 2) guanidine inhibitor which has some 
selectivity towards NOS-2 inhibition, but has low efficacy and 

causes severe side effects. The recent discovery made by us 
indicates that an alternative approach is possible (197, 198). 
We have found NOS-2 expression can be selectively down 
regulated by Trichinella spiralis infection and the features of 
this inhibition include: a) Systemic: local jejunal infection by 
T. spiralis induces systemic inhibition of NOS-2 expression in 
the ileum, colon, kidney, lung and uterus. b) mRNA level 
inhibition: inhibition of NOS-2 expression appears to be 
regulated at gene transcriptional level. This serves as a very 
attractive mechanism by which we can develop a novel and 
selective NOS-2 inhibitor since expression of NOS-2 requires 
de novo synthesis in most cells and is primarily regulated at the 
transcriptional level. c) Potent: the effect of inhibition can 
override endotoxin-stimulated NOS-2 expression that is the 
major cause of septic shock and multiple organ failure. d) 
Selective: the inhibition does not extend to the expression 
of other isoforms of NOS; to paxillin, a housekeeper protein; 
or to cyclo-oxygenase-2, another inducible protein by 
proinflammatory cytokines. Our work with a variety of 
genetically modified mice has demonstrated that inhibition of 
NOS-2 expression by T. sprialis infection is dependent on the 
signaling pathway that includes the IL-4 receptor alpha 
subunit, receptor-associated kinases, Janus tyrosine kinase, and 
Stat6 in the suppression of NOS-2. Furthermore, the serum 
levels of IL-13 during infection are not consistent with the 
change of NOS-2. Thus, we propose that a yet undefined 
signal or alternative IL4Rα ligand could be involved in the IL-
4Rα/Stat6 stimulating pathway which plays an important role 
in helminth provoked host immunoresponses. Further 
elucidation of this pathway could lead to the development of 
new therapies for inflammatory conditions characterized by 
overproduction of nitric oxide, but could also offer more 
information to the hygiene hypothesis that has been very 
influential in directing strategies to prevent allergic diseases. 
 
7. SUMMARY AND PERSPECTIVE 
  Nitric oxide research has expanded 
rapidly in the past 30 years and the roles of NO in 
physiology and pathology have been extensively studied.  
The pathways of NO synthesis, signaling and metabolism 
in vascular biological systems have been a major area of 
research resulting in the 1998 Nobel Prize in Medicine or 
Physiology. As a gas and free radical with an unshared 
electron, NO participates in various biological processes. 
The rapid growth of NO research has generated more than 
80,000 publications in the field of NO signaling. The 
interaction between NO and proteins may be roughly 
divided into two categories. In many instances, NO 
mediates its biological effects by activating guanylyl 
cyclase and increases intracellular cyclic GMP synthesis 
from GTP. However, the list of cGMP-independent 
effects of NO is also growing at a rapid rate. In this 
review, a brief history of the medical usage of nitric 
oxide is introduced. The importance and relevance of 
overproduction of NO in cardiovascular pathology has 
been stressed. The utilization of intact cell cultures, 
tissues and cell-free preparations with the use of 
pharmacological, biochemical and molecular biological 
approaches to characterize, purify and reconstitute these 
NO regulatory pathways should lead to the development 
of new therapies for various pathological conditions 
characterized by an un-balanced production of NO. 
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