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1. ABSTRACT 
         

The early, delayed, and systemic effects of acute 
traumatic brain injury (TBI) are the result of inflammatory 
mediators which initiate systemic inflammatory response 
syndrome (SIRS), subsequent complement deficits and 
coagulopathy. Once SIRS is triggered by acute 
inflammation, it can detrimentally self-propagate. Systemic 
inflammation causes tissue damage leading to further 
inflammation and damage, leaving the body in a vicious 
cycle of hyperinflammation. Therefore, important 
inflammatory mediators like interleukin (IL)-1 beta, IL-6 
and tumour necrosis factor (TNF) alpha, are targeted in 
compensatory anti-inflammatory response syndrome 
(CARS) in an attempt to control the development of SIRS. 
The hypothalamus-pituitary (HPA)-axis and sympathetic 
nervous system (SNS) efferent limbs in CARS provide 
negative feedback for the production of inflammatory 
mediators. However, in the case of acute TBI, the 
activation of CARS often leads to the complication of 
immunosuppression which may result in multi-organ 
dysfunction syndrome (MODS) and mortality. In light of 
this, the activation of the SIRS following acute TBI does 
not bode well. If left uncontrolled, multiple systems will be 
implicated making it difficult to remedy. 

 
2. INTRODUCTION 
         

Traumatic brain injury (TBI) is one of the major 
causes of morbidity and mortality among young adults (1). 
It is damage to the brain from an external mechanical force 
causing temporary or permanent neurological dysfunction 
such as impairment of cognitive, physical and psychosocial 
functions (2). TBI can be subcategorised under immediate 
mechanical injury and delayed chemical injury. 
         

Primary injury involves direct mechanical tissue 
stretching and tearing from the traumatic event itself (3). 
Necrosis of torn and overstretched cells is also involved. 
Haemorrhage may also be included due to the vascular 
damage which would lead to increased intracranial pressure 
(ICP), and ischemia. Ischemia itself results from the 
increased pressure and distortion of microvasculature (4) 
from trauma.  

 
Delayed damage occurs a few hours to weeks 

after the initial injury and it involves biochemical and 
molecular changes in the immediate and distant tissues (5). 
It results from leukocyte migration to the wound area, their 
factor production, toxin release from blood breakdown 
products and necrosis, and activation of serum components. 
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Severe TBI also causes multiple organ 
dysfunction or failure. Therefore, the complications of TBI 
are not only restricted to neurological consequences, but 
also include gastrointestinal and cardiovascular 
complications such as hepatic dysfunction, bowel 
incontinence, dysphagia and gastroparesis, hypertension, 
deep venous thromboses and pulmonary emboli (6, 7). 
         

The inflammatory response elicited by trauma is 
a key component of TBI. Trauma causes not only 
neuroinflammation in the brain, but also leads to systemic 
inflammatory response. Inflammatory mediators such as 
cytokines, excitatory amino acids and free radicals, 
including nitric oxide (NO), appear to be implicated in 
secondary brain injury development (8). This review 
attempts to elucidate the mechanisms of systemic 
inflammatory response following TBI in the hope that they 
may lead to identifying some potential targets for 
therapeutic intervention. 
 
3. IS THE BRAIN AN IMMUNE PRIVILEGED 
ORGAN? 
         

The brain is immersed in the cerebrospinal fluid 
and is separated from other tissues by a natural brain-
blood-barrier (BBB). About ten years ago, most reseachers 
still regarded the brain as an 'immune privileged' organ, 
which was not largely affected by systemic inflammatory 
and immune responses (8). This view has since been 
challenged. 
         

It is evident that the brain differs significantly 
from other tissues in response to pathogenic stimulus. 
Infection or trauma elicits modest and delayed leukocyte 
recruitment in the brain, albeit this recruitment occurrs 
rapidly in many systemic organs. While leukocyte invasion 
may be delayed in response to inflammatory stimulus, brain 
microglia and macrophages can be activated and they 
release inflammatory mediators within minutes or hours (9, 
10). Most importantly, there is now extensive evidence that 
the brain does exhibit key features of inflammation such as 
glial activation, major histocompatibility complex (MHC) 
expression, synthesis of inflammatory mediators and 
complement activation (11, 12). Furthermore, the 
neuroinflammatory response after TBI contributes to the 
development of BBB breakdown, cerebral oedema and 
neuronal cell death (13, 14). An increasing number of 
studies have also shown that inflammation within the 
central nervous system (CNS) contributes to many acute 
and chronic degenerative disorders and possibly some 
psychiatric diseases. 
 
4. NEUROINFLAMMATORY RESPONSE IN CNS 
 

Inflammation is a complicated process which 
involves numerous damage signals, cellular responses (15) 
and alterations in the microenvironment (16). Its role in the 
central nervous system may be structure or region specific 
(17). Its local function is to protect tissues and organs from 
invading pathogens across epithelial barriers. The 
immunological defences involved can be grouped under 
adaptive or nonadaptive immune defences. Adaptive 

defences involve gene rearrangements that require time to 
mature for the production of highly specific T and B cells 
capable of recognising foreign antigens. Nonadaptive 
immune defences on the other hand are determined by the 
genome, rapidly activated and broadly microbicidal. Some 
require no modification while others require activation by 
foreign antigens (18). 
        

 In the process of local inflammation, an intrinsic 
defence is set up by cells surrounding the wound site 
immediately after injury. Leukocyte infiltration then 
occurs, filling the site with a plug of hematogenously 
derived material (15). Leukocyte factor release eventually 
results in reactive gliosis, neurite damage, necrosis and 
cavitation. 
         

Following a trauma to the adult mammalian CNS, 
a complex cellular response occurs. The wound becomes 
filled with haematogenous derived material, forming a 
plug, including monocytes, which migrate from the blood 
into the damaged neural tissue where they transform into 
macrophages. Reactive gliosis is initiated in the 
surrounding neural tissue, which spreads along the edges of 
the wound by the proliferation and migration of glial cells 
(19, 20). Some inflammatory mediators have shown to be 
locally released after injury and to interact to control the 
cellular changes that occur. The influx of inflammatory 
cells to the site of injury may be regulated by the levels and 
distribution of inflammatory factors expressed in the 
injured CNS (15). The CNS is suspected to mount an early 
intrinsic inflammatory response after injury as elevation of 
IL-1 and tumour necrosis factor (TNF)-alpha levels in and 
around the injury site has been detected before leukocyte 
infiltration (21). 
         

Microglia, which are residential cells in the CNS 
and a class of mononuclear phagocytes (22, 23), have been 
cited as the possible sensors of brain injury (24) and 
cytokine producers (25).  They are activated and increase in 
cell numbers upon injury and resemble blood macrophages 
in their ability to secrete factors (26), scavenge, engulf and 
clear cellular debris in and around the wound site (27). In 
pathophysiological conditions, microglia and blood-derived 
macrophages are activated by CNS trauma or concomitant 
infection, and are aggregated rapidly at the site of insult. 
The presence of damaged cells and debris causes ramified 
resting microglia to transform into rounded migratory 
macrophages, so-called reactive or activated microglia. 
Activated microglia produce both cytokines and trophic 
factors that can exert double effects on neighbouring cells. 
Its secretion of IL-1 (28), an immunomodulator, leads to 
the stimulation of astroglial growth in vitro, astrogliosis in 
vivo (29, 30), and neovascularisation at trauma sites (31). 
At least two other astroglia stimulating growth factors other 
than IL-1 are secreted by microglia (26). Chondroitin 
sulphate proteoglycan, an extracellular matrix molecule, is 
also included in the list of suspected microglia secreted 
factors (32).  
         

Following the peak production of IL-1, 
astrogliosis, involving cellular hypertrophy and 
hyperplasia, takes place, suggesting that the secretory 
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activity of mononuclear phagocytes affect the astrocytes 
(24). The increase in activated astrocytes may be beneficial 
for damaged neurons as they are involved in the mediation 
of neurotrophic effects (25), regulation of neurotransmitter 
levels, repair of the extracellular matrix, and control of the 
blood-CNS interface and transport processes. They also 
provide trophic support to damaged cells (15) by producing 
neurotrophins and pleiotrophins (33), and isolating the 
injury site. This isolation is achieved through conversion of 
normal basal lamina to ectopic basal lamina (34, 35) in 
order to protect surrounding tissue. The reactive astrocyte 
response is also accompanied by the induction and 
upregulation of many proteins like growth factors nerve 
growth factor (NGF) (36), fibroblast growth factor (FGF), 
neutotrophin-3 (NT-3), ciliary neurotrophic factor (CNTF), 
cytokines IL-1, IL-6, interferon (IFN), TNF and glial 
markers (37),  glial fibrillary acidic protein (GFAP) (15). It 
is also suggested that some astrocytes produce inhibitory 
extracellular matrix molecules like proteoglycan (38-40) 
which inhibit axonal regeneration (39). The heterogeneity 
of proteoglycan production in astrocytes may account for 
astrocyte migration and adhesive changes (41-43). 
         

Proteoglycan upregulation depends on the 
inflammatory response resulting from the injury and cannot 
be induced just by the presence of injured, dying or 
degenerating axons (44). It also takes place in a very 
restricted pattern, mirroring the distribution of hemorrhagic 
necrosis, astrocytes (38, 40), microglia, activated 
macrophages (45, 46), and BBB leakage. Proteoglycan also 
defines the borders of developing acellular cysts (32, 47) 
and interfaces between activated macrophages within 
developing necrotic cavities and surrounding astrocytes 
(32). 
         

Cavities are formed due to astrocyte migration, as 
their dramatic movements may lead to rapid dysfunction of 
axons, thereby leaving them vulnerable to inflammatory 
damage. Stretching forces generated by the displacement/ 
or distortion may also contribute directly to damage of 
axons (48). No axonal regeneration occurs as the cellular 
terrain of glial cell matrix molecules for growth vanishes 
(49). It has also been suggested that reactive astrocytes are 
a barrier to axonal regeneration and remyelation, and they 
may secrete toxic substances that destroy their 
neighbouring neurons (50, 51). Cavitation can furthermore 
result from extrinsic factors like macrophage infiltration 
and inflammation (24, 52) or extravasation of serum 
components (53) that cause progressive necrosis (54-56). 
Intense inflammatory responses may in addition, induce the 
expansion of the cavity to many times its original size. 
Experimental cavities were repopulated after 2 weeks with 
astrocytes and endothelial cells; however, no axon growth 
was observed (48).  
         

Extrinsic inflammatory cells infiltrate the central 
nervous system only after a significant delay, with the 
earliest being neutrophils and T-cells (24, 52, 57-59). 
Increased neutrophil adhesiveness, involving intercellular 
cell adhesion molecules (ICAM) and selectin upregulation 
(60) on endothelial cells, and cluster of differentiation-
11/cluster of differentiation-18 (CD11/CD18) (61) and 

integrins (62) on activated leukocytes, is a critical step in 
the permeability changes leading to neutrophil adherence to 
endothelial cells and extravasation across the BBB into the 
brain parenchymal tissue.  
         

Upon activation, neutrophils generate and release 
numerous active substances like proteolytic enzymes 
(elastase, cathepsin G), reactive oxygen species (oxygen 
radicals, lipid peroxidation products) and vasoactive 
substances (leukotrienes, eicosanoids, platelet activating 
factor), which have damaging effects (61). The cytokines 
TNF-alpha, IL-6 and IFN-gamma secreted by 
polymorphonuclear leukocytes (PML) may also play a role 
in the brain damage. 
         

Invading macrophages may also impair nervous 
system function through cytokine secretion and cytotoxin 
production (51, 63). They clear cellular debris and produce 
cytokines similar to that of microglia after costimulation of 
their macrophage mannose receptors and beta-glucan sites 
of the complement receptor 3 (CR3) integrin receptors (64). 
This coactivation can be achieved by substances like 
complement protein inactivated C3b (iC3b), erythrocytes, 
factor X, fibrinogen, lysosomal enzymes, pathogens and 
tissue plasminogen activator, which are potentially found in 
areas of trauma (65, 66). Its neurotrophic, proinflammatory 
cytokine and proteoglycan synthesis (45, 46) also results in 
astrogliosis (67, 68) and eventually cavitation (48). 
         

Extravasated serum components that are not 
normally present in the central nervous system may also 
induce cell reaction. Thrombin for example can trigger 
astrocyte gliosis (69, 70). The C-reactive protein, a 
component of the innate immune system, is able to 
recognise foreign pathogens and phospholipids of damaged 
cells (71), and activate the complement system by binding 
one of its ligands. It can also initiate the elimination of 
target cells through interaction with the humoral and 
cellular defence systems (71). Several acute phase proteins 
(APPs), of which some are classic complement 
components, can similarly initiate or sustain inflammation. 
         

The complement system may also cause tissue 
injury if activated inappropriately. It is an important innate 
defence mechanism that includes the attraction and 
activation of phagocytes, opsonisation, plasma protein 
exudation at the inflammatory site, lysis and phagocytosis 
of cells. The lysis of cells is achieved through the formation 
of the macromolecular complex (MAC) consisting of the 
complement proteins C5b to C9, which generates 
transmembrane pores through the cell membrane (72), 
allowing the escape of cellular contents. MAC may also 
contribute to the establishment of brain edema by inducing 
erythrocyte lysis and neurotoxic haemoglobin release (73). 
Neuronal injury and BBB disruption may also result from 
MAC insertion into neurons, astrocytes and endothelial 
cells. This damage to cell membranes induces an 
upregulation in tissue factor (factor III) activity, enhancing 
the extrinsic coagulation pathway and eventually increasing 
production of toxic thrombin (72). Cytokines can also cross 
the BBB through damaged endothelia or by active transport 
when the BBB is disrupted by a pathological condition (8). 
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Therefore TBI not only generates inflammatory response 
within the brain, but also leads to systemic inflammatory 
response through the action of mediators. 
         

Another one of the key mediators produced 
following TBI is NO. It is believed to play a dual role, 
depending on the type and level of NO synthase (NOS) 
isoform, from which it isproduced and its cellular 
environment (74). Endogenous NO is generated in 
physiological and pathophysiological conditions from L-
arginine by a family of three distinct isoforms of NO 
synthase: constitutive Ca2+-dependent NOS (cNOS), 
including neuronal NOS (nNOS) and endothelial NOS 
(eNOS), or inducible Ca2+-independent NOS (iNOS) (75). 
While NO normally functions as a physiological neuronal 
mediator, excess production of NO by inappropriate 
induction of NOS protein in the brain may be involved in 
glutamate neurotoxicity and is responsible for neuronal 
death (76). It is suggested that increased levels of NO may 
contribute to pathophysiology following TBI (77, 78). NO 
is inherently reactive and cytotoxic; its effect is exerted 
through multiple mechanisms. It is postulated that NO 
mediates cellular toxicity by modulating membrane fluidity 
or by attacking critical cellular targets, thereby causing 
cellular destruction. NO can directly damage DNA (79) and 
inhibit DNA replication by inactivating ribonucleotide 
reductase (80). Furthermore, NO can inhibit the glycolytic 
enzyme by ADP ribosylation (81). NO may also act to 
inhibit mitochondrial respiration by inactivating the iron-
sulfate centers of several essential enzymes and 
mitochondrial electron transport complex I and II (82, 83). 
It has been shown that NO reacts with superoxide to form a 
more deleterious oxidant, peroxynitrite (ONOO-) which is 
a powerful oxidant with a relatively long half-life and more 
toxic than NO (84). Peroxynitrite can mediate a variety of 
destructive interactions including oxidation, lipid 
peroxidation, DNA strand breakage, and nitration of 
cystine and tyrosine residues on proteins (84-87). 
Peroxynitrite has additionally been shown to induce 
cortical cell death in vitro, while the administration of 
peroxynitrite scavengers inhibited cell death (88). It has 
also been shown that inhibition of iNOS synthesis by NOS 
inhibitors significantly improved the outcomes of TBI (77, 
89), providing further support for the role of NO in cell 
death. 
 
5. SYSTEMIC INFLAMMATORY RESPONSE 
FOLLOWING ACUTE TRAUMATIC BRAIN 
INJURY 
 

Acute TBI causes the increase of inflammatory 
mediators in circulation, leading to activation of the 
systemic inflammatory response, which when deregulated 
leads to complications of hyperinflammation followed by 
immunosuppression, multi-organ dysfunction syndrome 
(MODS) and even death.  
         

The systemic response to trauma can be 
differentiated into the early and delayed phase. The early 
phase consists of the cardiovascular response, which is 
usually immediate, to compensate for haemodynamic 
changes from haemorrhage. The delayed phase on the other 

hand consists of immunological and metabolic changes, of 
which onset can take from hours to days. It is the delayed 
phase, which produces longer-lasting effects, plays an 
important role in secondary effects of acute traumatic brain 
injury. 
 
5.1. Systemic changes following acute TBI and SIRS 

The response of the whole body inflammation is 
designated the systemic inflammatory response. Ideally, 
inflammation should be contained locally, thus systemic 
inflammation is a sign of an ineffective immune response, 
producing the systemic inflammatory response syndrome 
(SIRS), which was introduced by the American College of 
Chest Physicians/Society of Critical Care Medicine 
Consensus Conference in 1992. The statement introduced 
hypothesized that SIRS is triggered by localized or 
generalized infection, trauma, thermal injury, or sterile 
inflammatory processes, e.g., acute pancreatitis. SIRS is 
considered to be present when patients have more than one 
of the following clinical findings: Body temperature higher 
than 38°C or lower than 36°C; Heart rate higher than 
90/min: Hyperventilation evidenced by respiratory rate 
higher than 20/min or PaCO2 lower than 32 mmHg; White 
blood cell count higher than 12,000 cells/ µl or lower than 
4,000/ µl (90). The specific criteria proposed in the 1992 
consensus definitions are widely considered to be too 
nonspecific in diagnosing a cause of the syndrome or in 
identifying a distinct pattern of host response (91). 
        

SIRS is an initial hyperinflammatory response to 
trauma, resulting in increased levels of inflammatory 
mediators in the circulation (92, 93). The entry of cytokines 
from the site of local injury into the circulation is a key 
initiator of SIRS. Firstly, the acute phase response (94), a 
normal event in inflammation, is activated. Cytokines, 
mediators of the immune response, are initially released to 
promote healing at the site of injury and combat invading 
foreign bodies; however, when deregulated, their action 
becomes destructive. The massive increase of such 
inflammatory mediators in the systemic circulation can 
cause damage to end organs, increasing the risk of MODS 
(94). 
         

From systemic inflammation, hyperinflammation 
develops, followed by immunodepression, which impairs 
host defences further. Other effects produced by systemic 
inflammation are the activation of the complement and 
coagulation systems.    
         

At present, investigators have found that some 
biochemical factors such as IL-6, macrophage 
inflammatory protein-1 (MIP-1) and C-reactive protein 
(CRP) were elevated in patients, meeting the 1992 SIRS 
criteria (95). After trauma, systemic levels of 
proinflammatory mediators are increased. There is an 
increase in IL-6 in plasma (96-98) and cerebrospinal fluid 
(CSF); it is the only cytokine consistently augmented in 
tissue damage and is linked to the severity of the injury 
(99).  It is furthermore correlated to the risk of post-trauma 
complications and infectious complications (100). 
Haemorrhage is also able to increase IL-6 levels, but it is 
not as strong a stimulus as tissue damage (101, 102).  
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TNF-alpha and IL-1 beta levels were also 

elevated after trauma but they were not correlated with IL-
6. TNF-alpha was only produced after haemorrhage (98, 
101). Although increased, IL-1 beta levels are not 
correlated with outcomes of complication (98). IL-8 and 
monocyte chemotactic protein (MCP-1) levels were also 
increased and they are associated with ischemia (103). 
Anti-inflammatory mediators, tumour growth factor-beta 
(TGF-beta) and IL-10, were similarly elevated post-trauma 
(93, 104). On the other hand, concentrations of IL-2 were 
found to be decreased post-injury (94, 105).  
         

Acute phase proteins (APP), such as CRP, 
increased after trauma. The increase in IL-6 precedes the 
increase in APP (97), suggesting that IL-6 stimulates APP 
release. APP is also increased by the stimulation of IL-1 
and TNF-alpha. They are produced by the liver in response 
to the above mentioned circulating inflammatory 
mediators. The roles of APPs are protective; they are 
involved in the inactivation of proteases, scavenging of 
free-radicals and also healing.  
         

With the support of further epidemiologic data, 
there is great potential to use purely biochemical and/or 
immunological, rather than clinical, criteria to identify the 
inflammatory response. This notion takes into 
consideration of the possibility that inflammation is present 
when the circulating concentrations of IL-6, procalcitonin, 
or CRP are increased (106). No large prospective studies 
currently support such a conclusion. 
         

The SIRS following intracerebral 
proinflammatory activity, is an important trigger of post-
traumatic cerebral damage and systemic complications 
according to the secondary injury concept. Regardless of 
TBI, severe trauma and multiple trauma are associated with 
BBB dysfunction and activation of peripheral neutrophils 
(107). Intracranial inflammatory responses following TBI 
may in turn cause the systemic proinflammatory response 
that can be explained by the diffusion of intracranially 
generated cytokines through the hyperpermeable BBB into 
the blood (108, 109). 
         

The BBB forms a border between blood 
circulation and brain tissue. It consists of three layers: the 
capillary endothelial cells, the underlying basal lamina, and 
astrocyte end-feet, forming a tight contact with the basal 
membrane of the microvascular endothelium. One of the 
BBB functions is to prevent overshooting inflammatory 
activity within the brain. The intact tight BBB normally 
cannot be easily penetrated by neutrophils or blood 
components. During inflammatory reactions, the neutrophil 
activity involving protease-mediated disruption of 
interendothelial cell contacts and secretion of oxygen 
radicals would lead to severe BBB dysfunction entailing 
cerebral complications (110). 
         

The mechanism underlying the inflammatory 
reaction following TBI, leading to SIRS is highly complex. 
However, the interaction between activated neutrophils and 
the vascular endothelium involving neutrophil adhesion and 

subsequent transendothelail migration plays a crucial role 
in the pathophysiology of SIRS, and is closely related to 
endothelial dysfunction associated with a loss of functional 
intercellular contact sites. In conjunction with neutrophil 
activation, a dramatic release of neutrophils from the third 
space, especially the bone marrow, occurs after trauma. 
The neutrophil activation process involves complement and 
complement-independent mechanisms. 
 
5.2. Hyperinflammation 

The priming of polymorphonuclear cells (PMNs) 
is important to producing hyperinflammation, as well as 
mediating the development of systemic inflammation from 
a local site of injury. This is achieved systemically by the 
increased levels of inflammatory mediators. IL-6 sensitises 
PMNs to mediators (111), strengthening the inflammatory 
processes. IL-6 increases PMN release of platelet activating 
factor (PAF), which is involved in the priming of PMNs 
(112). The combination of IL-6 and PAF primes PMNs, 
increasing their cytotoxic capabilities (113, 114). PMN-
elastase, proteases and oxygen radicals are the agents 
behind the PMN-mediated microvascular damage. TNF and 
eicosanoids in circulation also prime PMNs, increasing 
their free radical producing capacity, and hence the amount 
of tissue damage (60, 115).  
        

IL-6 has other roles in hyperinflammation. It 
delays the apoptosis of PMNs, extending their period of 
activity in addition to their increased cytotoxic potential. 
IL-6 may also be involved in the non-neutrophil-mediated 
inflammation, increasing endothelial injury without PMN 
action (116).    
 
5.3. Immunosuppression 

The brain and the immune system are 
functionally linked through neural and humoral pathways. 
Severe TBI can lead to immune system dysfunction. 
Decreased immune competence or immunosuppression 
with severe infection has been demonstrated in human 
following brain injury. The immunosuppression also has 
been called “immune paralysis” or a “window of 
immunodeficiency” or “the compensatory anti-
inflammatory response syndrome” by some researchers 
(117-119). It is the main factor which causes the increased 
susceptibility to infection of patients with severe TBI. The 
TBI patients with immunosuppression have increased 
numbers of monocytes with a persistent decrease in HLA-
DR and HLA-DQ antigen expression (120). These cells 
also are characterized by functional disorders such as 
decreased ability to generate reactive oxygen species and 
proinflammatory cytokines (121,122). The exact 
mechanism of immunosuppression following TBI is not 
fully understood. Inhibition of antigen-specific T-
lymphocyte proliferation and reduction of cytokine-induced 
macrophage activation by IL-10 and transforming growth 
factor have been suggested to cause immunosuppression 
following TBI (123, 124). The stress-induced 
glucocorticoid, catecholamine release and administration of 
exogenous catecholamines, such as vasopressors and 
inotropes can alter T- and B-lymphocyte activity (117, 
125).  
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5.4. Neuroimmune regulation of systemic inflammation 
Communication between the CNS and systemic 

immune systems is through the neuroimmune system, 
which provides coordination of the overall 
proinflammatory and anti-inflammatory immune responses, 
by the CARS (126).  

 
IL-1 beta, IL-6 and TNF-alpha, present in the 

circulation, are the major cytokines which stimulate CARS 
(126). The intracerebrovascular injection of prostaglandin 
E2 (PGE2) has shown to have neuroendocrine functions, 
increasing adrenocorticotropic hormone (ACTH) and 
glucocorticoid (GC) levels (127). Following trauma, PGE2 
levels are increased, by release from damaged skin cells 
and macrophages, which is associated with a decrease in T-
cell activity. Therefore, PGE2 has been suggested as a 
candidate for the induction of CARS. 

 
The organum vasculosum laminae terminalis in 

the brain lacks the BBB, and so can allow entry of 
inflammatory mediators from the circulation to the preoptic 
area (POA) (126). The levels of these mediators are sensed 
in the POA causing the release of corticotrophin-releasing 
factor (CRF), which then activates the effector limbs of the 
neuroimmune system.  

 
There are two efferent limbs of the neuroimmune 

system (126), the HPA-axis, involving the secretion of GC, 
and the SNS, which forms an anatomical link between the 
CNS and systemic lymphoid organs, leading ultimately to 
the increase in IL-10. These efferent pathways are anti-
inflammatory and act as negative feedback to control the 
strength of the systemic inflammatory response. 
  

Figure 1 summarizes CARS event following 
acute TBI. 
 
5.5. The HPA-axis 

CRF released stimulates the release of ACTH 
from the adenohypophysis, into the systemic circulation, 
which in turn activates the adrenal cortex, increasing the 
levels of immunosuppressive GCs (126). GCs can decrease 
the production of proinflammatory cytokines (128, 129), as 
well as increase the release of TGF-beta and IL-10 (107), 
which are anti-inflammatory. GCs also decrease the MHC 
class II expression on antigen presenting cells (APCs), 
decreasing the presentation of foreign antigens to activate 
the immune system. Other lymphocyte functions are also 
impaired, and the Th2 response is enhanced, changing the 
cytokine profile of the immune response, increasing IL-4 
and IL-10, to decreasing the cytotoxic activities of the 
lymphocytes, which may result in a deflection of the 
immune response (130-133). Studies have shown that GCs 
also increase the production of APPs (133), which are 
protective in inflammation.  
 
5.6. The sympathetic nervous system (SNS) 

The SNS, forming the second effector limb, is 
also activated by CRF, increasing the release of 
catecholamines from the spleen, pancreas, lungs and the 
diaphragm into the circulation (134, 135, 136). 
Catecholamines have direct effects on circulating monocyte 

activity, increasing their release of IL-10 and decreasing 
TNF-alpha release, so as to prevent hyperinflammation 
(137, 138, 139).  
 
5.7. Effect of CARS on monocytes 

Monocytes have a central role in inflammation 
and so are targeted in CARS. Both GC and beta-adrenergic 
receptors are expressed on the surface, which are linked to 
secondary signalling pathways within the cell. When GC is 
bound, the production of proinflammatory cytokines, such 
as IL-1, IL-6, IL-12, TNF-alpha (140, 141), is suppressed 
along with the expression of MHC class II (142, 143), 
reducing systemic inflammatory responses. When 
catecholamines bind to the beta-adrenergic receptor, 
production of the proinflammatory TNF-alpha is reduced, 
while those of anti-inflammatory IL-10 and TGF-beta are 
increased (143). Therefore, CARS leads to the deactivation 
of monocytes.  

 
Increased IL-6 levels are associated with 

decreased T-cell and B-cell populations. The increased 
production of TGF-beta by monocytes has been implicated 
as the mediator of this effect of IL-6 on lymphocyte 
proliferation, providing support for this neuroimmune 
system (144). 
 
5.8. Effects of acute TBI 

CARS is usually stimulated to prevent the 
progression to SIRS. In acute traumatic brain injury, the 
locally produced proinflammatory cytokines released into 
the brain parenchyma may diffuse to the POA and activate 
CARS prematurely, causing the compensatory events for 
hyperinflammation in an understimulated systemic 
environment, resulting in unnecessary immunosuppression. 
In addition to that, the increased ICP from trauma can lead 
to activation of the SNS (126), activating both efferent 
pathways of CARS. 
 

The BBB is a physiological and anatomical 
barrier between the brain and the rest of the body, 
protecting the local environment of the brain from systemic 
changes. However, the BBB is compromised in acute TBI 
(145), allowing the movement of locally produced 
proinflammatory mediators into the systemic circulation. 
This increases the levels of IL-1, IL-6 and TNF-alpha in the 
absence of systemic injury, and can generate SIRS. In the 
case where CARS is activated with a massive SIRS, mixed 
antagonistic response syndrome (MARS) develops (126). 
SIRS leads to hyperinflammation while CARS leads to 
immunosuppression, and unless a balance is achieved, the 
body experiences both syndromes in alternating phases. 
However, in cases of brain trauma, the local effects of 
CARS overwhelm SIRS, resulting in a dominant 
immunosuppression (126).    
 
5.9. Activation and reduction of complement 

The complement cascade is activated via the 
alternative pathway (61) after acute traumatic brain injury 
and contributes to brain oedema (72). Complement fixing 
of damaged tissue post-trauma (60) can activate 
neutrophils, possibly contributing to the activation of SIRS. 
The consumption of complement in acute inflammation can 
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Figure 1. Schematic diagram of CARS in acute TBI. Inflammatory mediators released following TBI initiate SIRS which causes 
systemic tissue damage. The HPA-axis and SNS efferent limbs in CARS provide negative feedback for the production of 
inflammatory mediators. However, the activation of CARS often leads to the complication of immunosuppression and may 
consequentially lead to MODS and mortality. 

 
deplete plasma complement systemically. The extent of 
complement reduction is dependent on the severity of tissue 
damage from trauma (146, 147). Systemic levels can return 
to normal in 4-6 days, if damage is moderate (148). If 
inflammation is prolonged, the depletion can lead to 
immunosuppression and deregulated systemic 
inflammation associated with complications of acute 
respiratory distress syndrome (ARDS) and MODS (149, 
150). In view of this, the degree of complement activation, 
the ratio of C3a to C3, can be used to predict mortality after 
trauma (150). 

5.10. Coagulation 
Pathophysiological changes in coagulation occur 

after trauma (151), due to the activation of tissue factors by 
inflammatory mediators such as TNF (152, 153). 
Reciprocally, the clustering of tissue factors induce the 
increase of TNF (154).  
         

TNF stimulates the procoagulant pathway of 
endothelial cells (155) by inhibiting the protein C 
anticoagulant pathway. Thrombomodulin (155, 156) and 
endothelial protein C receptor (EPCR) expression is down-
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regulated and EPCR shedding from the cell surface is 
increased (153), further inhibiting the anti-coagulation 
pathway. Thrombin itself also increases expression of P-
selectin and synthesis PAF by endothelial cells (157). 
         

Coagulopathy results from complicated 
interactions in the pathway. In systemic inflammation, 
tissue damage can activate the haemostatic process by 
damaging the endothelial surface, exposing the 
subendothelial surface, which activates coagulation, 
aggravating the procoagulative state produced by the 
inflammatory mediators. Apoptosis during inflammation 
causes externalization of phosphatidylserine on cells which 
also promotes coagulation (158). Intravascular coagulation 
can impede the delivery of oxygen through blood vessels, 
so hypoxia can result in severe cases, causing further 
inflammation (151).  Multiple thrombi can form depending 
on the severity of the damage, consuming platelets and 
coagulation factors. Consumption coaguloapathy may 
result and may even lead to disseminated intravascular 
coagulation (DIC) if there is serious deregulation of the 
coagulant pathway.   
 
5.11. Multiorgan dysfunction syndrome (MODS) 
         

MODS is a high mortality complication of 
trauma and systemic inflammation (159, 160). The causes 
may be infectious or non-infectious. It is the altered 
systemic inflammatory and immunological functions of that 
are causative of MODS. The initial phase is shock (161), 
followed by organ dysfunction, and the final phase is late 
organ dysfunction due to generalized inflammation of the 
organ. Generalized inflammation is associated with tissue 
damage and is a product of the excessive systemic response 
(162, 163). It is the overwhelming levels of inflammatory 
mediators that cause cellular dysfunction and ultimately 
organ failure. 
        

To better understand its pathogenesis, MODS has 
been described in the “two-hit” theory. The “first-hit” is the 
initial trauma that leads to the activation and priming of the 
immune system, which may be asymptomatic. The 
“second-hit”, is another insult that can be mild, but greater 
amounts of inflammatory mediators are released, due to the 
primed immune system causing hyperinflammation and 
further tissue damage. Plasma elastase concentrations are 
associated with increased tissue damage. It is positively 
correlated to the development and intensity of ARDS and 
MODS (61). However it has also been suggested that the 
immunosuppressed state rather than hyperinflammation 
leads to MODS (164). Similarly, DIC is a contributor to 
MODS (165). Therefore, the precise cause of MODS is still 
debatable. 
 
6. Role Of Mediators In Systemic Inflammatory 
Response Following TBI 

 
The initiation of SIRS is induced by mediators 

produced during local inflammation. These mediators have 
both local and systemic effects and are normal components 
of the immune system. Nevertheless, if control of their 

regulatory mechanisms is lost, they can switch from being 
protective to destructive. 
 
6.1. Cytokines 

Cytokines are one of the largest groups of 
mediators. Some cytokines that are involved in the 
inflammatory response are IL-1 beta, IL-2, IL-6, IL-8, IL-
10, IL-11 and TNF-alpha.  
         

IL-1 beta is proinflammatory and is released from 
macrophages and monocytes (166) and contributes to the 
initiation and control of the acute phase response (99, 167). 
It may be required to stimulate the production of IL-6 
(168). It also increases the expression of leukocyte 
adhesion molecules. IL-1 beta has furthermore been shown 
to mediate damage to the BBB. In contrast, IL-1 beta may 
also preserve the CNS by producing protective factors for 
neurones and glial cells (21).  Its other systemic responses 
include tachycardia, hypotension and the induction of 
fever. Anorexic behaviour and muscle wasting have also 
been associated with IL-1 beta (169). IL-1 beta may exhibit 
autoregulation of its own receptors (170).  
        

In brain injury, activated microglia release IL-1 
beta, which play diverse roles in inflammatory response 
following trauma through corresponding IL-1 receptor 
(type1). It can enhance activation of iNOS and generation 
of growth factors, modulate glutamate release and neuronal 
responses to N-methyl-D-aspartic acid and glycine, and 
strengthen gamma-aminobutyric acid inhibitory effects (9). 
It can additionally induce fever reaction through a change 
in hypothalamic thermoregulation. Until now, numerous 
regulatory effects of IL-1 beta on brain and systemic 
damage, infection and inflammation have been found. 
         

IL-2 is similarly immunostimulatory and is 
produced by activated T-cells and natural killer (NK) cells 
(167, 171). It causes the proliferation of T-cells and B-cells, 
and is involved in the diffuse inflammatory response. 
However its levels are rapidly depressed after trauma, 
hence it is rarely detected (172). 
         

Th2 cells also produce IL-6, which is also 
synthesised by antigen presenting cells and other somatic 
cells. Elevated levels may persist up to 21 days after trauma 
(100). IL-6 is one of the important mediators involved in 
post-trauma immunosuppression. It is also the dominant 
cytokine in inflammation, producing the acute phase 
response (173). It stimulates thrombocytosis in 
inflammation (71) and in brain trauma; it is associated with 
gliosis and parenchymal damage (174, 175). IL-6 is 
involved in regulating the levels of other cytokines. 
Furthermore, it contributes to the IL-1 beta-induced 
production of IL-1 receptor antagonist (176) and possibly 
inhibits expression of TNF-alpha (172). IL-11, produced by 
stromal cells, has similar effects as IL-6 (177).  
         

More and more research has demonstrated that 
IL-6 and IL-6 receptor levels are markedly upregulated in 
the brain tissue, in the CSF, and in the serum of patients 
with TBI (143). IL-6 may be generated in the brain, and 
then enters blood circulation through the damaged BBB, 
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affecting other organ functions (178). It has also been 
confirmed that IL-6 is an inducer of NGF. Thus IL-6 is 
regarded as a protective inflammatory cytokine. 
         

TNF-alpha is a proinflammatory and 
procoagulative cytokine (39, 60, 179), hence it is associated 
with the development of SIRS and DIC. It is released by 
macrophages and monocytes in damaged tissue (15, 166). 
Haemorrhage, not tissue damage, induces TNF-alpha 
release (101, 180), but without correlation with the severity 
of haemorrhage. However, patients who had septic 
complications after trauma had higher levels of TNF-alpha 
(181, 182). Together with IL-1 beta, it is associated with 
mediating BBB injury and the induction of iNOS mRNA 
(25). It also activates apoptosis of neurones and 
oligodendrocytes (24, 183, 184).  
         

In TBI, resident macrophages, astrocytes and 
microglia can produce TNF-alpha in the central nervous 
system. TNF-alpha plays both deleterious and protective 
roles through different TNF receptor (TNFR) in the 
pathogenesis of TBI. TNF-alpha induces neuronal 
apoptosis by activating TNFR1 to aggregate brain tissue 
damage (178). In contrast, TNF-alpha can also promote 
growth and proliferation of neurons and oligodendrocytes 
through TNFR2 (185).  
         

IL-8 is a chemoattractant and is associated with 
brain inflammation, damage and autoimmunity (186). It is 
upregulated in cerebral endothelial cells by IL-1 beta and 
has shown to have an effect on BBB permeability, infarct 
size and oedema after brain trauma (103). It is one of the 
important mediators in the transmigration of adhering 
leukocytes on the BBB (103). 
         

Lastly IL-10 is a pleiotropic cytokine produced 
by monocytes, macrophages, keratinocytes, B-cells and 
Th2-cells (187). It is immunosuppressive (126), playing a 
role in CARS, and has inhibitory effects on macrophages, 
cytotoxic T-cells and NK cells (187).  
         

The beneficial role of IL-10 has been confirmed 
in many inflammatory or trauma animal models. 
Administration of IL-10 in animals suffering from 
experimental TBI clearly demonstrated the suppressed 
synthesis of proinflammatory cytokines such as TNF and 
IL-1, reduced activation of glial cells and an improvement 
of the damage outcome (188). Some research also indicated 
that the level of IL-10 was elevated in the cerebrospinal 
fluid of patients with TBI (143). 
 
6.2. Coagulation Factors 

Mediators of the coagulation system are also 
affected after TBI, which can change the systemic balance 
between the procoagulant and anticoagulant states. 
Antithrombin III (ATIII), protein C (PC) and protein S (PS) 
are important serum components that are potent inhibitors 
of the clotting cascade (189). 
         

ATIII is produced by the liver and has the 
functions of inactivating thrombin and inhibiting certain 
serin-proteases like IXa, XA, XIa, XIIa, plasmin, kallikrein 

and trypsin. It is also rapidly depleted during DIC, 
signalling a defect in plasma anticoagulant activity (189) or 
in serious cases, chronic or acute acquired liver failure 
(190).  
         

PC is a vitamin K-dependant plasma protein that 
is also depleted during DIC (191). It contributes to the 
inactivation of factors Va and VIIIa, and fibrinolysis 
enhancement by neutralisation of plasminogen-activator-
inhibitor type 1 (PAI1). It is similarly synthesised in the 
liver and a drop in levels is observed only in liver failure or 
acute defribrination (192, 193). A drop in activity may also 
result from cytokine action on PC and thrombomodulin 
expression at endothelial sites (39, 194). 
         

PS is likewise vitamin-K dependant, facilitating 
the binding of activated PC to platelet membranes. Forty 
percent of its proteins circulate freely as cofactors of PC 
(192), while the rest are bound to C4b binding protein 
(C4bBP), an APP, and are rendered inactive (195). 
         

Thrombin and the coagulation cascade are major 
role players in early brain oedema formation after 
intercranial haemorrhage (196). The infiltration of 
thrombin into the brain parenchymal tissue results in BBB 
disruption (197) and inflammation (69). Production of 
thrombin may also result from interactions around the 
haematoma formed (72). Thrombin can furthermore 
increase the expression of endothelial P-selectin and 
activate synthesis of platelet activating factor (PAF) (153). 
         

Platelet activating factor is produced by 
endothelial cells from diverse vascular sources (198). It is 
then incorporated by the cellular membrane and carries out 
its functions on the cell surface (199). It activates attached 
leukocytes through P-selectin (114), which is also 
expressed on the cell surface, allowing further adhesion 
that is mediated by ICAM-1 (200). Neutrophil adhesion 
mediated by PAF is induced by hypoxia, and the tethered 
neutrophils are primed for increased production, and 
release of free radicals and arachidonic acid (114). Both 
free radicals and arachidonic acid eventually induce BBB 
breakdown.  
 
6.3. Complement components 

Anaphylatoxins that are generated after activation 
of the complement cascade are also important mediators of 
delayed injury. The C3a, C4a and C5a proteins produced 
may cause increased vascular permeability by 
degranulating mast cells and leukocytes. The proteins may 
additionally stimulate a dose dependant synthesis and 
release of TNF-alpha and IL-1 in inflammatory cells (201, 
186, 202). This release may lead to a positive feedback, 
resulting in more proinflammatory cytokine release by 
activated macrophages (203), and may contribute to an 
early activation of a complex cascade, ending up with 
further cell damage and organ failure. Inflammatory cells 
like reactive astrocytes, microglia and endothelial cells also 
react to extremely low concentrations of C5a 
(concentration in the nanomolar range), with chemotaxis, 
and an upregulation of adhesion molecules (72) and the 
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receptor for C5a itself (204), contributing to systemic 
injury. 
 
6.4. Growth factors 

Neurotrophin and pleiotrophin upregulation 
coincides with trauma (205) and aids in the maintenance of 
neuronal survival and rebuilding of central nervous system 
cytoarchitecture respectively. The release of these growth 
factors must be exact in order to induce tissue-specific 
responses (15). The factors include basic fibroblast growth 
factor (bFGF), CNTF, NGF, platelet-derived growth factor 
(PDGF) and TGF-beta (15, 206, 207). Many of these 
neurotrophic factors are able to prevent neuronal death after 
TBI (208) by injury response regulation (19). TGF-beta, an 
agonist of IL-1 and TNF-alpha is able to activate negative 
feedback to limit inflammatory reaction. It is upregulated in 
acute TBI and is released by macrophages and microglia 
(10). It has been shown to increase the expression of 
tenascin in cell cultures (209) and may have protective 
properties in certain types of trauma (210). It is also 
involved in enhancing the production of other cytokines, 
the formation of scar tissue and the pathogenesis of CNS 
dysfunction (15). bFGF, a pleiotrophin produced by 
astrocytes (211, 212), and extracellular matrix during 
injury, contributes to astrogliosis and may also be part of 
efforts to seal and revascularise wounds (213).  Lastly, 
CNTF is a survival factor that has potent effects on 
oligodendroglial cells and their progeny (21). It is required 
for the maturation of oligodendrocytes, promoting their 
synthesis of myelin proteins (184, 214) and protecting them 
from apoptosis (183, 184). It is suggested that IL-1 beta 
may be responsible for the regulation of CNTF (137) after 
injury. 
 
6.5. Chemokines 

Chemokines are also important mediators 
produced by leukocytes and endothelial cells during injury. 
They are highly basic and interact with acidic extracellular 
components, attracting inflammatory cells from circulation 
into the wound site (15). Some chemokines include growth-
related oncogene (GRO), macrophage inflammatory 
protein-2 (MIP-2), MCP-1 and MIP-1 beta. GRO and MIP2 
are both produced by activated and macrophages and are 
involved in neutrophils infiltration. Sources of MCP-1 are 
monocytes, microglia (215), astrocytes (216), perivascular 
mononuclear cells (217, 218) and its expression and 
production are modulated by TNF-alpha and TGF-beta 
(219, 220), and PDGF (221) respectively. MCP-1 is 
chemotactic for monocytes (222), and induces release of 
histamine from basophiles (223).  MIP-1 beta can be 
localised near injury and in necrotic tissue as it recruits 
inflammatory cells like neutrophils and macrophages to the 
site of injury (224). It is released by myeloid and lymphoid 
cells, and increases endothelial adherence of CD4+ T-cells 
(225).   
 
6.6. Nitric Oxide (NO) 

Following TBI, NOS is also activated by 
inflammation, which is initiated by both primary and 
secondary injuries. NO regulates the dilation of blood 
vessels and acts as chemotoxin during inflammatory 
processes. Proinflammatory cytokines can induce iNOS, 

thereby promoting persistent iNOS over-activation for 
several days after injury (78, 226). iNOS is mainly 
expressed in macrophages, microglia and infiltrating 
neutrophils recruited from the blood, and thus has a 
substantially greater capacity to synthesize NO (226). 
During the course of the pathophysiological process 
triggered by TBI, NO accumulates in the brain immediately 
after injury, as well as several hours or days later. NO and 
the NOS pathways are involved, both positively and 
negatively, in the secondary injury cascade following 
injury. 
 
7. CONCLUSIONS 
 

Trauma causes not only neuroinflammation in the 
brain, but also can initiate SIRS which causes systemic 
tissue damage. Subsequently, CARS can occur in attempt 
to control the development of SIRS. The HPA-axis and 
SNS efferent limbs in CARS provide negative feedback for 
the production of inflammatory mediators via the altered 
activity of monocytes. However, the activation of CARS 
often leads to the complication of immunosuppression. The 
persistent immunosuppression may result in MODS and 
high mortality rate. The various inflammatory mediators 
play a pivotal role in the activation, development and 
prognosis of the SIRS following acute TBI. A fuller 
understanding of the above pathophysiological processes 
will undoubtedly help to develop early diagnosis and 
potential therapeutic strategies and decrease the mortality 
rate for the TBI patients with the SIRS.  
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