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1. ABSTRACT 
 

Horizontal transfer of genetic material is a fact of 
microbial life and bacteria can obtain new DNA sequences 
through the processes of conjugation, transduction and 
transformation. This offers the bacterium the possibility of 
evolving rapidly by importing new genes that code for new 
traits that may assist in environmental adaptation. Research 
in this area has focused in particular on the role of 
horizontal transfer in the dissemination through bacterial 
populations of genes for resistance to antimicrobial agents, 
including antibiotics. It is becoming clear that many other 
phenotypic characteristics have been acquired through 
horizontal routes and that these include traits contributing 
to pathogenesis and symbiosis. An important corollary to 
the acquisition of new genes is the problem of how best to 
integrate them in the existing gene regulatory circuits of the 
recipient so that fitness is not compromised initially and 
can be enhanced in the future through optimal expression 
of the new genes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION  
 

A pioneering step in the discovery of horizontal 
gene transfer was made when Griffith described the lateral 
transfer of virulence traits between pneumococci (1). 
Subsequently it was shown that this process of 
'transformation' involved lateral movement of genetic 
material between bacterial strains (2). There are at least 
three mechanisms by which modern bacteria acquire DNA 
horizontally (3, 4) (Figure 1). The first is conjugation, a 
process in which a self-replicating extrachromosomal 
element (usually a plasmid) organizes its own transfer from 
one cell to another through a mating bridge consisting of a 
hollow contractible proteinaceous tube whose subunits are 
encoded by the mobile genetic element. In most cases, the 
recipient is also a bacterium. However, it should be pointed 
out that some conjugation processes involve transfer of 
bacterial DNA to eukaryotic cells (5, 6). The second lateral 
gene transfer mechanism is transduction, which involves 
genetic transfer via a bacterial virus or bacteriophage (7). 
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Figure 1. A summary of the principle mechanisms of horizontal gene transfer used by bacteria. Conjugation (A) involves the 
self-transmission of a plasmid from one bacterial cell to another through a contractible mating pilus. In transduction (B), a 
bacteriophage acts as the vehicle for DNA transmission. The genetic material stored in the phage head is injected into the 
bacterium through a contractible tail structure in the virus. The process of transformation (C) involves no vehicle. Here the 
genetic material is taken up by the bacterium directly from the external environment. Not to scale. 

 
Here DNA is packaged within the phage head and injected 
into a new bacterial host following receptor-mediated 
absorption of the virus onto the outer surface of the 
recipient cell. The third process is transformation, in which 
naked DNA is taken up by the bacterium directly from the 
external environment (3, 4). Some bacteria are proficient 
for uptake (i.e. are transformable) all of the time while 
others require particular circumstances to make them 
susceptible.  
 
 The fate of the newly-acquired DNA is partly 
determined by its relationship to the DNA of the new host. 
Restriction systems exist to protect bacteria from foreign 
DNA and if the new genetic material lacks the pattern of 
chemical modification (usually methylation) that is a 
characteristic of its own DNA, the restriction enzymes will 
cut it up. However, this protection has been described as both 
limited and short lived (8, 9). Restriction systems require that 
the invading DNA is double-stranded; single stranded DNA 
will not be cleaved (10). Some plasmids can defeat restriction 
systems in their new hosts using a function known as ARD 
(alleviation of restriction of DNA) (11). Many phage lack 
recognition sites for restriction enzymes or have evolved ways 
of masking them; they may also alter the activities of 
restriction systems to render them harmless to the virus (8, 12). 
For these and other reasons, some foreign DNA will survive 
and any genes associated with it may become expressed. 
However, if these genes are to be inherited by future 
generations of the bacterium, they must be replicated. As 
autonomously-replicating genetic entities, plasmids are at an 
advantage here. Some phage can replicate autonomously 
too, and have plasmid-like characteristics. The phages P1 
and P7 represent examples of viruses of this type and they 
have been studied intensively (13, 14, 15). Other phage 
integrate into the chromosome and replicate as a part of the 
bacterial genome. Bacteriophage lambda is a familiar 
example of a temperate phage that displays this type of 

behavior. Here entry into the chromosome involves 
recombination between specific sites on the bacterial 
chromosome and on the viral genome (16, 17, 18). The 
integrated form of the virus is called a prophage and 
microbial genome sequencing projects have revealed that 
prophage are common components of many bacterial 
genomes (19-22). In many cases the phage discovered by 
genome sequencing are vestigial, having lost the potential 
to form infectious virus particles. Nevertheless, many 
contain genes that contribute to the lifestyles of their 
modern bacterial hosts. In some cases these include genes 
with roles in bacterial virulence (19, 23, 24). 
 
 DNA that arrives in the cytoplasm following 
transformation is likely to be degraded quickly if it does not 
become part of a replicon (4). Some measure of DNA 
sequence homology with part of the genetic complement of 
the new host is an aid to recombination. However, even an 
unrelated sequence may be integrated by illegitimate 
recombination, albeit at a low frequency (25, 26). 
 
 Plasmids and bacteriophage are classed as mobile 
genetic elements, a term that is also applied to genetic 
entities such as insertion sequences, transposons and 
integrons. Interestingly, the restriction-modification 
systems that offer protection from laterally transferred 
DNA sequences have themselves been classified as selfish 
mobile genetic elements (27, 28) that have been distributed 
among bacterial populations by horizontal gene transfer 
(29). The boundaries between different types of mobile 
element often appear to be arbitrary and reflect the history 
of their discovery and characterization.  For this reason, 
individual mobile elements may possess features normally 
associated with elements from other groups. There are 
many well-known examples of this in the literature. For 
example, some phage, such as the P1 and P7 viruses 
referred to above, replicate as low-copy number 
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plasmid/prophage (30); some transposons are conjugative 
and so share this property with self-transmissible plasmids 
(31); others, such as transposon Tn7, have a site-specific 
transposition mechanism for integration into the bacterial 
chromosome that superficially resembles the strategy used by 
some temperate phage when forming prophage (32); there are 
phage, for example Mu, that replicate through a transposition 
mechanism (33) and plasmids, such as the F plasmid, that can 
integrate into the chromosome (34). It is now clear that 
significant proportions of the genomes of many bacteria are 
related to mobile genetic elements and have been acquired via 
lateral transfer. 
 
3. ISLANDS OF HORIZONATALLY-ACQUIRED 
DNA  
 

Escherichia coli K-12 has played a central role in 
the development of molecular biology. Once the sequence 
of its chromosome was deduced in 1997 (35) comparisons 
with those of related but pathogenic Gram-negative 
enterobacteria became possible as more and more of their 
genome sequences became available. These comparisons 
revealed the presence in the pathogens of large blocks of 
DNA that E. coli K-12 lacks (36). For example, Salmonella 
enterica, serovar Typhimurium (S. Typhimurium) has a 
number of these blocks that contain genes that are essential 
for invasive disease and intracellular survival (37, 38). 
Known as 'pathogenicity islands', these clusters of 
contiguous genes have a higher A+T content than the 
flanking recipient chromosome, suggesting that they have 
been acquired horizontally from a source outside the enteric 
group, and many contain insertion sequences, genes coding 
for site-specific recombinases and other features that are 
reminiscent of mobile genetic elements (39-45). Most 
genomic islands are likely to be former (or even current) 
mobile genetic elements that have become installed in the 
genome through the recombination mechanisms related to 
those used by transposons, phage, integrons or integrating 
plasmids. It is now clear that very many bacteria apart from 
E. coli and Salmonella also possess blocks of laterally-
acquired DNA that confer new traits (46-54). In the context 
of the discussion about the relationship between genomic 
islands and mobile elements, it is interesting to note that 
transposon Tn7, an active mobile genetic element that is 
widely distributed among bacterial species, has itself been 
described as forming a genomic island (55).  
 
4. REGULATING THE EXPRESSION OF 
LATERALLY-ACQUIRED GENES  
 

In many cases, the genes within laterally-
acquired islands are subject to complex regulation, often 
through a combination of controls that involves regulatory 
genes within the island and those located in the recipient 
chromosome. How has this complicated control pattern 
arisen and what is its value? This is a focus of much current 
research in the field of microbial evolution, and some 
interesting insights have been gained recently. It is helpful 
to begin by considering some new data concerning H-NS, a 
global repressor of transcription that is encoded by a gene 
in the ancestral chromosome of Escherichia coli and related 
bacteria. 

4.1. Repression of horizontally-acquired genes 
During 2006, it was discovered that the A+T-rich 

genes within the pathogenicity islands of S. Typhimurium 
are targeted for repression by the H-NS nucleoid-associated 
protein (56-58) (Figure 2). This small abundant DNA-
binding protein has a preference for binding to A+T-rich 
DNA sequences and a correlation has been described 
between H-NS binding sites and intrinsic curvature in DNA 
(59, 60). Since these features are commonly associated with 
bacterial promoters (61-63), H-NS can act as a global 
regulator of gene expression. In all cases where detailed 
molecular investigations have been carried out, H-NS has 
been found to act as a transcription repressor (64). The 
wholesale repression of horizontally-acquired genes by H-
NS that has been described in S. Typhimurium is now 
known to occur in other bacteria that express this protein 
(59, 60). This has led to the attractive hypothesis in which 
the H-NS protein is proposed to protect the cell from the 
deleterious consequences of unregulated expression of 
genes that arrive from outside sources through the 
processes of lateral transfer (56, 65). In particular, it may 
be important to store the new genes in an inert state to 
avoid negative effects on competitive fitness. 
 
 H-NS certainly has the properties that one might 
associate with a protein involved in transcription silencing 
and the formation of bacterial heterochromatin (66, 67). It 
is now known to have a preferred (A+T-rich) DNA 
sequence for high-affinity interaction with DNA and this 
binding site can serve as a locus from which the protein can 
oligomerize along the DNA (68). This process has the 
potential to down regulate, or even completely silence, 
transcription of many genes. However, the bacterium will 
require mechanisms to reverse gene silencing if the 
repressed transcription units are to be expressed for the 
benefit of the DNA sequences that encode them (by 
ensuring their transmission to future generations) and the 
bacterium that houses them (by enhancing its competitive 
fitness) (Figure 2). It is becoming clear that in the case of 
H-NS, a variety of mechanisms lead to the containment 
and/or reversal of its silencing activity. 
 
4.2. Activating H-NS-repressed genes 

Studies with the LysR-like protein LeuO show 
that it has the ability to block H-NS oligomerization 
along DNA, preserving downstream promoters in an 
active state (66). The work that established this was 
conducted in the ilvIH-leuO-leuABCD region of the S. 
Typhimurium chromosome where an interesting 
promoter relay mechanism operates to link the activities of 
the main promoters of the three resident operons (ilvIH, 
leuO, and leuABCD) via changes in local DNA 
supercoiling (69, 70). However, the LeuO protein has 
now emerged as a much more general regulator of gene 
expression that affects several genes where a role for H-
NS has been established, including the hns gene itself 
(71-74). LeuO is a particularly interesting example 
because the protein has such wide-ranging effects on gene 
expression. It can even influence the expression of the stress 
and stationary phase sigma factor, RpoS, which is involved in 
the expression of scores of genes (72, 74). Other H-NS 
antagonists are somewhat more local in their effects.
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Figure 2. Negative and positive regulation of transcription in a horizontally-acquired genomic island. The incoming island 
consisting of A+T-rich DNA is represented by the black bar with white arrowheads and this becomes integrated into the 
chromosome (A). Genes in the integrated island are bound and silenced by the H-NS repressor (B) and silencing is antagonized 
by anti-repressors (C) that can be encoded by genes in the ancestral genome (1) or by genes located within the genomic island 
itself (2). Here the anti-repressors are shown displacing H-NS from the DNA. (Not to scale.) 

 
The VirB positive regulator plays a central role 

in antagonizing H-NS mediated transcription repression in 
the virulence regulon of the causative agent of bacillary 
dysentery, Shigella flexneri (75-78). These genes are 
expressed under conditions of temperature, osmolarity and 
pH that are characteristic of the lower human gut (79). The 
VirB protein is closely related to plasmid partition proteins 
of the ParB family and it binds to a sequence that is related 
to parS, the cis-acting sites used by ParB proteins to drive 
plasmid partitioning at cell division, including partitioning 
of the P1/P7 phage/plasmids (80, 81). VirB works by 
remodeling the DNA at the target promoter in ways that 
result in the dislodgement of the H-NS protein. This results 
in free access to the promoter for RNA polymerase and 
leads to the initiation of transcription. VirB does not act as 
a conventional transcription factor because it does not 
recruit RNA polymerase to the promoter nor does it assist 
in the isomerization of the closed transcription complex to 
an open one. Instead it acts as an anti-repressor through its 
ability to displace the H-NS protein (81). 

 
The SlyA protein is related to MarR-like winged-

helix transcription factors (82, 83) and it has a role in 
opposing H-NS in several Gram-negative bacteria (84-86). 

In E. coli, the SlyA protein acts to regulate the transcription 
of the hlyE haemolysin gene by opposing the repressive 
activity of H-NS (87). The intracellular concentrations of 
the SlyA and H-NS proteins play a pivotal role in 
determining whether the hlyE gene is expressed or 
repressed. This mutual antagonism allows the haemolysin 
gene to oscillate between active and inactive states 
depending on the relative abundances of the two regulators 
(87). 

 
The VirB protein described above is an example 

of an H-NS antagonist that is encoded by a gene that has 
been acquired by lateral transfer and that regulates other 
genes that have been acquired by the same route (88). This 
is emerging as a common theme among horizontally 
acquired genes subject to H-NS silencing. Other examples 
include the VirF and MxiE AraC-like proteins, also 
involved in positive regulation of virulence gene expression 
in S. flexneri (89, 90), the HilC and HilD AraC-like 
proteins that up-regulate virulence genes in the SPI1 
pathogenicity island of S. Typhimurium (91) and SsrB 
which is a response regulator protein that opposes H-NS 
repression of transcription in the SPI2 pathogenicity island 
of S. Typhimurium (92). Other examples include the AraC-
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like protein ToxT that is involved in up-regulation of H-
NS-repressed virulence genes, including the phi-ctx 
bacteriophage-encoded cholera toxin genes, in Vibrio 
cholerae (93, 94) and the MarR-like regulator RovA, a 
SlyA orthologue that positively controls H-NS-repressed 
virulence genes in Yersinia (85, 95-97). 

 
From the foregoing discussion it can be seen that 

H-NS-mediated repression of horizontally-acquired genes 
is emerging as a common feature of many Gram-negative 
bacteria. It can now be seen that the problem of how to 
express these repressed genes for the benefit of bacterium 
has been solved in a variety of ways. Other illustrations of 
the close relationship between H-NS and horizontally 
acquired genes include the example of an enzyme encoded 
by bacteriophage T7 that is specific for the cleavage and 
inactivation of H-NS (98). Presumably, this is an aid to 
avoiding wholesale repression of repression of the phage 
genes following injection of the viral genome into a new 
bacterial host. 

 
Another example concerns the H-NS paralogue, 

StpA. This protein is closely-related to H-NS but has a 
number of distinct properties (99-101). Chief among these 
is an ability to drive RNA annealing between RNA 
molecules possessing regions of complementary sequence 
and an ability to catalyze RNA duplex strand unpairing 
(102). These activities reveal StpA to be an efficient RNA 
chaperone. In the context of the present discussion, it is 
interesting to note that StpA was discovered as a 
component in the splicing of the td intron of bacteriophage 
T4, itself a horizontally acquired genetic entity (103, 104). 
In addition to appreciating the influence of H-NS on the 
expression of genes within laterally-acquired genetic 
elements, it is interesting to note that several such elements 
have themselves been found to encode H-NS-like proteins. 
 
5. H-NS-LIKE PROTEINS ENCODED BY 
HORIZONTALLY-TRANSMITTED GENETIC 
ELEMENTS  
 

It should also be pointed out that several 
plasmids capable of self-transmission through conjugation 
(one of the principal routes for horizontal gene transfer) 
encode H-NS-like proteins (105, 106). Much of this 
information has come from bioinformatic analysis; few of 
the genes coding for such proteins have been examined in 
detail at the molecular level. One exception is the Ler 
protein that is encoded by the LEE pathogenicity island in 
enteropathogenic E. coli and another is the Sfh protein that 
is encoded by the IncHI1self-transmissible plasmid pSf-
R27, both of which have now been studied in some depth.  

 
Ler acts to antagonize the negative influence of 

H-NS on the expression of the virulence genes encoded by 
the LEE pathogenicity island in enteropathogenic E. coli 
(107-110). Sfh assists the horizontal transfer of the pSf-R27 
plasmid by minimizing the impact of the newly arrived 
plasmid DNA on the H-NS-DNA balance in the recipient a 
concomitant impact on competitive fitness (111-114). The 
carriage by mobile elements, or by genetic elements that 
were probably once mobile, of genes coding for 

homologues of H-NS that can influence the activity of the 
host-encoded H-NS protein raises interesting questions 
about the evolution of gene regulation in the fluid microbial 
genome. For example it would be interesting to know when 
these genes were acquired and what difference has their 
acquisition made to the success the mobile elements in their 
lifestyle? Might such genes be acquired by other mobile 
elements in the future, and if so, what impact might this 
have on the horizontal transmissibility of those elements – 
for example might it influence the host range of the element 
by allowing it to enter and replicate in bacteria from which 
it is currently excluded? 

 
6. PERSPECTIVE 
 

Investigations of gene regulatory matters relating 
to horizontally-acquired genes are providing important 
insights into the possibilities for bacteria to expand their 
repertoire of genetic traits without compromising 
competitive fitness. Embedding the newly acquired genes 
in existing gene regulatory circuits is a critical step in the 
process of integrating new genetic material. Global 
regulators of transcription are being identified as important 
contributors to this process, as has been discussed in this 
article in the case of the H-NS protein. This is a relatively 
straightforward case because the host-encoded regulatory 
protein simply silences (or at least down-regulates) the 
incoming genes, preventing undesirable influences on fitness. 
The sophistication lies in the methods used by the bacterium to 
overcome H-NS-mediated repression so that the new genes 
can be expressed. It is now clear that the cell has a very wide 
range of options at its disposable. This is an important insight 
when contemplating routes for intervention in the gene 
regulatory network to cure or prevent disease, or to manipulate 
the microbe for some other purpose, such as one related to 
biotechnology. Information from studies of the regulation of 
horizontally transferred genes can also inform the development 
of techniques and the framing of policies aimed at curbing the 
undesirable consequences of gene dissemination within and 
between bacterial populations that contribute to the spread of 
virulence traits and resistance to antimicrobial agents. 
Although studies of the integration of horizontally transferred 
genes into host regulatory circuits are still at an early stage of 
development, it is already becoming clear that bacteria possess 
remarkable abilities to remodel their gene regulatory circuits to 
integrate new traits without loss of competitiveness in their 
environment, showing them to be formidable foes in the global 
battle for improved human health.  
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