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1.  ABSTRACT 
 

The AIR-1 gene product CIITA is the master 
regulator of MHC class II gene expression. This makes 
CIITA a crucial element for triggering antigen presentation 
to CD4+ T cells and thus the cascade of events leading to 
an efficient adaptive immune response. Recently we 
discovered that CIITA is also endowed with the capacity to 
directly inhibit both HIV-1 and HTLV retroviruses in 
infected cells by blocking the function of the viral 
transactivators Tat and Tax. Thus CIITA exerts a dual role 
against human retroviruses. The first, classical role is the 
upregulation of MHC class II expression and thus the 
capacity to present viral antigens to CD4+ T cells. The 
other, evolutionary new and fundamental role is to inhibit 
directly viral replication and spreading. We will discuss the 
molecular mechanisms by which CIITA counteracts 
specifically viral transactivators.  These distinct properties 
of CIITA will shed new light on the molecular mechanisms 
of adaptive coevolution of hosts and pathogens and may be 
exploited to envisage novel therapeutic strategies aimed at 
counteracting retroviral infections and thus their oncogenic 
potential. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The human T-cell leukemia virus type 1 (HTLV-
1) and type 2 (HTLV-2) are related retroviruses with 
similar genomic organization, common modes of 
transmission but different disease manifestations (1, 2). 
HTLV-1 is the etiologic agent of adult T-cell 
leukemia/lymphoma (ATLL) and of the tropical spastic 
paraparesis/HTLV-1 associated myelopathy (TSP/HAM) 
(3-6). Conversely, HTLV-2 has not been epidemiologically 
linked to lymphoproliferative disorders. HTLV-1 and 
HTLV-2 show a preferential tropism for CD4+ and CD8+ 
T cells, respectively, but they can also infect other 
populations including monocytes and B cells (7-11). These 
different tropisms may reflect the preferential usage of 
distinct cell surface receptors (12). Both viruses encode 
homologous transcription activators, Tax-1 and Tax-2, 
respectively, that are important mediators of viral 
pathogenesis and essential for immortalization of T 
lymphocytes (13, 14). Tax-1 activates transcription of the 
HTLV-1 viral genome by interacting with the CREB/ATF 
family of transcription factors, which bind to the viral long 
terminal repeat (LTR) (15). This interaction facilitates the 
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recruitment of general transcription factors and 
coactivators, such as CBP, p300 and PCAF, resulting in the 
enhancement of transcription (16-18). Tax-1 also 
deregulates the expression of a variety of cellular genes and 
signaling pathways, involved in cell cycle, cell growth, 
DNA repair and apoptosis, favouring the initiation of 
leukemogenesis and maintenance of the malignant 
phenotype in ATLL (19).  

 
In contrast to Tax-1, very little is known on the 

cellular factors interacting with and/or utilized by Tax-2 to 
mediate its biological functions and although its 
mechanism of action is assumed to be similar to that of 
Tax-1, several reports have shown distinct biological 
properties (20-24).  

 
As HTLV viral products affect the function of 

several cellular factors modifying the homeostatic 
behaviour of infected cells, similarly host cell may have 
developed during evolution molecular mechanisms to 
counteract retrovirus actions. Recently, several mechanisms 
of innate resistance to retrovirus infection and spreading 
have been described, particularly for the lentivirus HIV 
infection (25-30). In particular, we found that the main 
transcriptional activator of HLA-II genes, CIITA, whose 
encoding locus AIR-1 and specific function were 
discovered in our laboratory (31) could strongly inhibit 
HIV replication in infected cells by inhibiting the viral 
transcriptional activator Tat (26). These findings prompted 
our group to investigate whether similar mechanisms are 
put in place by the host cells during HTLV infection. 
 
3. THE INVOLVEMENT OF THE HLA CLASS II 
MOLECULES AND OF THEIR TRANSCRIPTIONAL 
REGULATOR CIITA IN HUMAN RETROVIRUS –
HOST CELL INTERACTION 
 

The response of the immune system against virus-
infected cells is mainly controlled by cytolytic T 
lymphocytes (CTL) that require for their optimal function 
the help of CD4+ T helper cells (TH). TH cells recognize 
foreign antigens presented by MHC class II (HLA class II 
or HLA-II in human) molecules expressed on antigen 
presenting cells (APC), particularly dendritic cells (DC) 
and macrophages, as well as B cells (32). Thus HLA-II 
molecules are fundamental to trigger the immune effector 
mechanisms that will counteract viral infections, including 
retroviral infections.  

 
Moreover, HLA-II molecules may influence the 

biologic behaviour of the cells with which the HTLV 
retrovirus interacts. We originally observed that HTLV-2 
virus stemming from infected T cells is highly mitogenic 
for CD34+ hematopoietic precursors. In contrast, virus 
particles budding from B cells are not mitogenic. The 
envelope of  HTLV-2 virus derived from infected B cells is 
highly enriched in HLA-II molecules, and pre-treatment of 
the virus with antibodies against HLA-II molecules restores 
the mitogenic potential of the virus for the hematopoietic 
precursors. This indicated that host-derived HLA-II 
molecules present in the viral envelope could block an 

important biological effect of the retrovirus, potentially 
involved in the extrinsic control of cell proliferation (33).  

 
In an attempt to get further knowledge of the 

relationship between HLA-II molecules and retrovirus 
infection we investigated the role of HLA-II expression in 
infected cells.  

 
The expression of HLA-II genes is regulated 

primarily at the level of transcription (34). The elucidation 
of the molecular defects at the basis of HLA-II deficiency 
in mutant somatic cells generated in vitro and in patients 
affected by the Bare Lymphocytes Syndrome (BLS), an 
inherited severe form of combined immunodeficiency (35), 
allowed the identification of four transacting factors, 
namely, RFX5, RFXAP, RFXB/RFXANK, and CIITA 
controlling the transcription of HLA-II genes. Thus, BLS is 
a prototypical disease of gene regulation with four 
complementation groups defined by defects in either one of 
these factors (36). Among them, CIITA (31, 37) plays a 
prominent role as the master regulator of the expression of 
HLA-II genes (38). In this respect, CIITA is therefore a 
crucial factor for the regulation of antigen presentation and 
of the activation of the adaptive immune response.  

 
CIITA is a non DNA-binding transcriptional co-

activator recruited to HLA-II promoters via multiple 
interactions with DNA-bound transcription factors, 
including the RFX and the NF-Y complexes (39-42). 
CIITA contains 1130 aminoacids and its N-terminal acidic 
region forms the transcriptional activation domain which 
binds components of the general transcriptional machinery 
and other co-factors with HAT activity (CBP, p300, PCAF, 
SRC-1) to promote HLA-II genes transcription (43-46). 
Moreover CIITA interacts with CARM1, a histone 
metyltransferase (47), and with BRG1, an ATP-dependent 
chromatin remodelling factor (48),  favouring the 
accessibility of  HLA-II promoter to transcription factors. 
CIITA controls the transition from transcription initiation 
to elongation by recruiting to HLA-II promoter the kinase 
CDK7, involved in promoter clearance (49) and, then, the 
kinase CDK9 of the positive transcription elongation 
factor-b (P-TEFb), that enhances transcriptional 
processivity of RNAPolII. The recruitment of CDK9 is 
mediated by the direct interaction of CIITA with CyclinT1, 
the other subunit of P-TEFb complex (50). P-TEFb is also 
used by Tat to promote the elongation of HIV-1 viral 
transcripts (51) and we have shown that sequestration of 
Cyclin T1 is the major mechanism by which CIITA blocks 
the transactivating function of Tat (25, 26).   

 
HLA-II molecules are expressed constitutively on 

B cells and, after activation with a variety of stimuli, in 
other cell types including monocytes and T cells. All the 
above cell types may be targets of HTLV-2 infection. Thus, 
it seemed reasonable to investigate in more detail the role 
of both the HLA-II molecules and of their transcriptional 
regulator CIITA during the life cycle of the retrovirus. An 
experimental system was set up in which the initial 
reservoir for virus production was an isogenic cell system 
composed of the B-cell Raji, expressing large amounts of 
HLA-II molecules, and its HLA-II–negative derivative 
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RJ2.2.5, which has lost the expression of the entire 
repertoire of HLA-II genes because of a defect in the AIR-1 
locus (31, 52). We found that HTLV-2 productive infection 
was dramatically different in the two isogenic cells because 
Raji cells sustained very poorly viral replication, whereas 
RJ2.2.5 cells allowed a massive replication of the virus that 
resulted in extensive cell lysis (53), an event particularly 
rare in in vitro infection by HTLV-2. The cellular and 
molecular basis of this event was investigated by extending 
the HTLV-2 infection to other HLA-II-negative and HLA-
II–positive cells both of the B- and T-cell type. Among the 
HLA-II-negative cells we included the crucial BLS-1 B cell 
line (54), which has a defect in the RFXANK expression 
and a normal CIITA expression (55). The results showed 
that all HLA-II-negative cell lines, with the exception of 
BLS-1, supported efficient viral replication, strongly 
indicating that the inhibition of HTLV-2 replication in 
HLA-II-positive lymphoid cell lines correlated with the 
presence of CIITA and not of HLA-II molecules (53). 

 
Because CIITA targets the viral transactivator Tat 

to inhibit HIV-1 replication (26), we hypothesized that 
CIITA-mediated inhibition of HTLV-2 replication could be 
similarly due to the functional suppression of HTLV-2 Tax-
2.   
 
Indeed this was the case as CIITA strongly inhibits the 
Tax-2-mediated transactivation of the HTLV-2 LTR 
promoter,  suggesting that this is the major, if not the 
exclusive, mechanism involved in the reduction of HTLV-2 
productive infection in HLA-II-positive cells (53, 56).  
 
As previously mentioned, CIITA inhibits Tat function 
through the squelching of Cyclin T1 of P-TEFb complex 
(26). This prompted us to determine if a similar 
sequestration of a critical cellular factor  could account for 
the observed inhibition of Tax-2 by CIITA.  
 

Several lines of evidence suggested that the 
histone acetyltransferases CBP, p300 and PCAF could be 
attractive candidates. First, they are used by both CIITA 
and Tax-1, the Tax-2 homologue of the HTLV-1 retrovirus, 
to activate the corresponding target promoters; second, 
their squelching seems to be a common mechanism by 
which CIITA mediates gene suppression  (57-60). Our 
studies have shown for the first time that CBP and p300, 
but not PCAF, enhance Tax-2-directed LTR transactivation 
(56) and that direct sequestration of  these HATs is not the 
primary mechanism by which CIITA causes suppression of 
Tax-2 function. The fact that PCAF, p300 and CBP are all 
essential for optimal LTR transactivation by Tax-1 (17, 18), 
substantiates the existence of important differences 
between HTLV-2 Tax-2 and HTLV-1 Tax-1. The different 
requirement for PCAF between the two viral transactivators 
also implies that Tax-1, but not Tax-2, might influence 
nuclear PCAF-containing complexes, potentially 
contributing to the pleiotropic deregulated expression of 
cellular genes during leukemogenesis. Relevant to this 
aspect it should be noted that Tax-1 mutants interacting 
poorly with PCAF  exibit an impaired transactivation 
capacity and are defective for transformation (18, 61). The 
differential usage of co-activators with HAT activity 

between Tax-2 and Tax-1 is not unprecedented. Recently, it 
has been shown that while Tax-1 can use CBP or p300 for 
inhibiting p53, Tax-2 utilizes only CBP (62). In addition, it 
has been shown that Tax-1 transforms rat fibroblasts and 
inhibit p53 function more efficiently than Tax-2 (20, 21). 
These observations suggest that a selective usage of HATs 
in different transcriptional pathways could be responsible, 
at least in part, for the higher oncogenic potential of Tax-1 
with respect to Tax-2. 

 
Among the other cellular factors that are known 

to interact with both Tax-1 and CIITA, we focussed on the 
heterotrimeric NF-Y complex, whose B subunit has been 
shown to bind directly to Tax-1 both in vivo and in vitro 
(63). Our results demonstrated  that over-expression of NF-
Y inhibited Tax-2-dependent  HTLV-2 LTR 
transactivation, in a way similar to the inhibition induced 
by physiological levels of CIITA. Since physiologic levels 
of NF-Y did not prevent either Tax-2-mediated LTR-driven 
gene expression or the replication of HTLV-2 virus it was 
suggested that NF-Y complex requires CIITA to contribute 
its inhibitory activity on Tax-2 (56). 

 
This inhibitory action by CIITA and /or NF-Y 

could inhibit the recruitment of Tax-2 to the viral LTR 
promoter, or alternatively could still permit its recruitment 
to the LTR, but not its transcriptional activity, for example 
by masking the interacting surface for a transcription co-
activator. Both hypotheses are presently under scrutiny.   

 
Are the findings obtained in the HTLV-2 system 

applicable to HTLV-1 infection and, in particular, does 
CIITA inhibit Tax-1 function and HTLV-1 replication? 

 
Preliminary results of our group (Tosi et al., 

manuscript in preparation) indicate that CIITA inhibits 
Tax-1-mediated HTLV-1 LTR transactivation as well. 
Interestingly, the sequence of CIITA involved in the 
inhibition maps to the N-terminal region of the molecule 
and overlaps completely with the region responsible for the 
Tax-2 inhibition (56). A CIITA fragment encompassing the 
Tax-2 and Tax-1 inhibitory region is almost exclusively 
localized in the nucleus, suggesting a strict correlation 
between nuclear localization of CIITA and its capacity to 
inhibit Tax-1 and Tax-2  function. 

 
Nevertheless, it will be interesting to assess 

whether CIITA deletion mutants containing the region 
inhibiting Tax, but having cytoplasmic localization, still 
interfere with Tax activity. This will be particularly 
relevant for Tax-2 that, in contrast with Tax-1, shows a 
predominant cytoplasmic accumulation (64). In this regard, 
our previous results have shown that BLS2 cell line 
expressing a cytoplasmic mutant form of CIITA that 
contains the minimal region inhibiting Tax-2, is less 
permissive to HTLV-2 productive infection than CIITA-
negative RJ.2.2.5 (53). 

 
It is important to underline that the specific 

sequence involved in the inhibition of Tax-1 and Tax-2 is 
different from the sequence involved in the inhibition of 
HIV-1 Tat function (Tosi et al., unpublished data), further 
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Figure 1. Schematic representation of the dual function exerted by CIITA to counteract HIV-1/HTLV retroviral infections and 
spreading. From one side, CIITA induces (+) the expression of HLA-II molecules and, thus, increases the antigen presenting 
function of APC cells for viral antigens. From the other side, it suppresses (-) the viral replication by inhibiting the transcriptional 
activity of the viral activators Tat and Tax both in APC and TH cells. 

 
emphasizing that CIITA inhibits oncogenic retroviral Tax 
transactivators and HIV-1 Tat transactivator trough distinct 
molecular mechanisms. Moreover, distinct post-
translational modification of CIITA, such as dimerization, 
phosphorylation and acetylation (49, 65), could potentially 
affect its capacity to inhibit Tax and Tat transactivators. 
Experiments are now in progress to assess whether the 
CIITA-dependent Tax-1 inhibition may affect the HTLV-1 
viral replication as well. Additional preliminary 
experiments suggest that excess of NF-Y complex may also 
inhibit Tax-1-mediated HTLV-1 LTR transactivation, thus 
closely mimicking the situation observed in the control of 
HTLV-2 LTR transactivation. 

 
It has been shown that NF-Y-Tax-1 interaction 

activates transcription from HLA-II DQB promoter in gene 
reporter assays performed in Jurkat T cells (63). It must be 
stressed that NF-Y complex is necessary but not sufficient 
for HLA-II gene expression, which absolutely requires the 
presence of CIITA. The reasons for this Tax-1-mediated 
transcriptional activation of HLA-II genes in Jurkat T cells, 
which do not express constitutive CIITA (26), are presently 
unknown and require further investigations. 

 
Recently the Brady’s group reported the 

interesting finding that HTLV-1 Tax-1 interacts with the P-
TEFb complex via Cyclin T1, and recruits CDK9 to the 
viral LTR stimulating HTLV-1 transcription (66, 67). This 
finding suggests that the use of P-TEFb complex may be a 
common theme to facilitate processivity and elongation of 
viral genomes for both oncogenic retroviruses and 
lentiviruses. CIITA inhibits HIV-1 replication by 
competing with Tat for  Cyclin T1 of P-TEFb complex 
(26), although it inhibits HTLV-2 Tax-2 and HTLV-1 Tax-
1 by an apparently distinct mechanism. It will be interesting 

to assess whether part of CIITA inhibitory action on Tax 
transactivators may also be ascribed to its competitive 
recruitment of Cyclin T1. 

 
4. PERSPECTIVE 
 

The expression of HLA-II genes which is 
fundamental to trigger the adaptive immune effector 
mechanisms counteracting  retroviral infections is under the 
control of the transcriptional activator, CIITA.  

Besides its classical role, we have shown that 
CIITA plays also an important role against human 
retroviruses. It inhibits viral replication by blocking 
specifically the function of the viral transactivators, HIV-1 
Tat and  HTLV-2 Tax-2 (Figure 1). Since CIITA blocks 
also HTLV-1 Tax-1 activity, it is possible that it may 
interfere also with HTLV-1 replication. In this newly 
discovered and unexpected role, CIITA might represent an 
innate immunity mechanism of the host cells to counteract 
viral spreading.  

 
We do not know whether this innate role of 

CIITA is a more recent acquisition with respect to its 
transcriptional function, but it is suggestive that CIITA has 
been included as a member in the  NOD-
LRR/CATERPILLAR family of proteins that are involved 
in inflammation and innate immunity against bacteria, 
viruses and fungi (68, 69). 

 
Further investigation on the dual function of 

CIITA in retrovirus infection will shed new light on the 
molecular mechanisms of adaptive co-evolution of hosts 
and pathogens and will help substantially in tailoring new 
therapeutic strategies aimed at inhibiting retroviral 
replication. Within this frame, the importance of obtaining 
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a sustained and persistent expression of CIITA in retrovirus 
infected cells should stimulate the search for potential 
synthetic and natural mediators, drugs and bio-molecules 
that can act on CIITA expression.  
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