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1. ABSTRACT  
 

This review presents an account of the recent 
developments in the use of atomistic simulations to predict 
vibrational spectra of biomolecules. I give an overview of 
the concepts used in the various theoretical vibrational 
models and discuss their relative merits and weaknesses. 
The issue of anharmonicity in vibrational dynamics is 
examined in particular detail, owing to its crucial influence 
on simulations of vibrational spectra for flexible 
biosystems. The performance of each technique is 
illustrated by typical applications that show the latest work 
in this field on systems of biological interest, with a 
particular focus on the vibrational dynamics of the amide 
group in peptides.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION  
 

Molecular vibrations open a window on the 
intricate oscillatory dynamics caused by the subtle 
relationship between inter- and intra-molecular forces in 
biological molecules. Indeed, vibrational spectra not only 
provide information on the nature of the chemical groups 
present in a biomolecule, but are also sensitive to the 
strength of the various chemical bonds occurring between 
atoms and to the molecular conformation. 

 
There have been considerable efforts in the last 

decade to record high-resolution spectra of biologically 
relevant molecules both in the gas phase and in loosely 
solvated environments[1–4]. The measured vibrational 
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spectra are a mine of information on the actual dynamics of 
the biomolecule observed. However, due to the complexity 
of the measured vibrational spectra arising from the large 
number of close-lying transitions, theoretical models are 
often necessary to understand and rationalise the observed 
data. 

 
Parallel to these developments, advances in the 

field of theoretical vibrational spectroscopy over a similar 
period have allowed a more accurate interpretation of 
vibrational spectra of biomolecules and provided an 
understanding of their structural and dynamic features. 
Such insights have only been possible by moving away 
from assignations based on empirical group frequencies 
and using accurate atomistic simulation methods such as 
quantum-chemical calculations and molecular-dynamics 
simulations. 

 
The application of atomistic simulations to 

compute the vibrational spectra of biological molecules 
requires an input from two different fields of computational 
chemistry. On the one hand, there can be no simulation 
without an accurate description of the forces at play 
between each of the atoms that make up the biomolecule. 
These forces shape the energetic landscape of the 
biosystem, and the roughness of the energetic landscape, or 
potential energy surface (PES), dictates the ease with which 
the molecule can vibrate in a given direction. On the other 
hand, the actual simulation of the vibrational motion of a 
biomolecule requires a physical model of vibrations, be it a 
classical model akin to a set of balls and springs, or a 
quantum model of nuclear motion. 

 
In this review, I will concentrate on the recent 

advances in theoretical vibrational spectroscopy with a 
particular focus on biomolecular applications, since this is 
an area that is rarely investigated in mainstream 
computational chemistry of large systems. However, I will 
begin by presenting a very brief perspective on some of the 
challenges involved in the calculation of PES for 
biomolecules.  

 
2.1. Potential energy surfaces for biomolecules 

Due to the size of the systems usually studied in 
atomistic simulations of biological matter, the most 
common approach used to describe the PES of the 
biomolecules studied is to describe the atom–atom 
interaction potential using a classical force field. These 
force fields neglect the electronic degrees of freedom and 
use a set of fitted parameters to describe the various 
stretching, bending and out-of-plane terms of the intra-
molecular part of the PES and the non-bonded interaction 
terms of the inter-molecular part of the PES. There are a 
number of very successful atomic force fields that are 
routinely used to perform molecular-dynamics simulations 
of biological systems, such as AMBER[5] or 
CHARMM[6]. For very large systems where a full 
atomistic description is not possible, coarser-grained 
models can be used, for example Scheraga’s united residue 
model (UNRES)[7]. 

 

In recent years, however, the development of 
efficient quantum-mechanical methods such as density-
fitting density functional theory (df-DFT), local ab initio 
methods (LMP2, LCCSD(T))[8], divide-and-conquer 
schemes[9, 10] and linear-scaling semi-empirical 
methods[11] has led to an increasing number of studies that 
use a quantum-mechanical description of the atom–atom 
interactions in biomolecules. This trend towards taking 
explicit account of the electronic degrees of freedom of the 
system has led to a higher level of accuracy for the PES and 
has been nurtured by the constant advances in the field of 
computer science offering ever increasing computational 
power. Nonetheless, a high-level quantum-mechanical 
description is still confined to medium-sized biomolecules 
(about 500–1000 atoms). In order to bridge the system-size 
gap between the force-field approach and a quantum-
chemical treatment, Warshel and Karplus[12] first 
introduced in 1972 a mixed quantum-
mechanical/molecular-mechanics (QM/MM) method, 
which has been extended over the years to allow a reliable 
investigation of biosystems. In the QM/MM approach, one 
part of the biomolecule (the catalytic active site or any 
other region of interest) is described using quantum-
mechanical electronic-structure theory while the rest of the 
biosystem is efficiently described using a classical force 
field. For example, Cui and Karplus[13] have implemented 
an efficient method to compute vibrational frequencies of 
the active site of myoglobin within the QM/MM 
framework. 

 
Simulation of the vibrational spectrum of a 

biomolecule offers a particularly attractive way of 
assessing the quality of the computed PES. Indeed, 
vibrational frequencies are very sensitive to the shape of 
the PES around the minimum region and in particular to its 
curvature, which is related to the strength of the chemical 
bond. This fact is used experimentally to provide, for 
example, an empirical measure of hydrogen-bond strength 
by observing the relative shift of the OH-stretch frequency 
in the complex compared to that of the free molecule[14]. 
Assuming an exact vibrational calculation for a given PES, 
the availability of experimental vibrational spectra of 
biomolecules enables a one-to-one comparison with the 
predicted values and any deviation can thus be traced back 
to imperfections of the PES used. For this reason, 
vibrational calculations are often used to benchmark or help 
in adjusting the parameters of potential energy surfaces. 
For example, Bowman and Xantheas[15] have used 
accurate vibrational calculations to adjust a model potential 
for the Cl− H2O complex and showed that the PES obtained 
is of equivalent quality to a PES derived from high-level ab 
initio MP4 calculations. 

 
Therefore, the purpose of computing accurate 

vibrational spectra of biomolecules using atomistic 
simulations is twofold: Firstly, the predictions help 
disentangle the observed spectra and, secondly, the 
comparison between simulated and measured spectra 
provides a powerful tool to evaluate the quality of the 
computed PES for the biosystem studied.  
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3. HARMONIC APPROXIMATION FOR LARGE 
MOLECULAR SYSTEMS 
 

The approximation of harmonic motion is 
conceptually simple and offers a convenient framework to 
describe the small-amplitude vibrations of molecules. Due 
to this simplicity, the harmonic model is often the first step 
of any vibrational treatment of molecular vibrations and, in 
the case of large biomolecules, the most used method for 
routine rationalisation of the observed IR and Raman 
spectra.  

 
3.1. Harmonic model  

The basic assumption of this model is that the 
potential energy surface, V(q), can be accurately described 
by a second-order expansion around the energy minimum 
(equilibrium structure, denoted by 0), that is 

  (1) 

 
where q is a displacement vector from the point 0. For most 
applications, the structure is at a stationary point and 
therefore (�V)0 = 0; note however that this is not a 
requirement of the model (see, for example, the 
instantaneous normal-mode analysis[16, 17] or derived 
formalisms[18], which are often performed at (�V)0 ≠ 0). 
The remaining second-order derivative of the potential 
energy surface is known as the force-constant matrix or 
Hessian matrix. The vibrational frequencies for the 
resulting quadratic PES can then be obtained from the 
classical equation of motion, or by solving the nuclear 
Schrödinger equation analytically. The solutions of the 
classical equations of motion are usually obtained by 
diagonalisation of the mass-weighted Hessian matrix, 
leading to a series of eigenvalues (the fundamental 
vibrational frequencies) and corresponding eigenvectors, 
which are also called normal modes of vibration[19, 20]. 
Alternatively, the analytical solutions of the nuclear 
Schrödinger equation for the same potential lead to the 
harmonic vibrational-energy levels and corresponding 
harmonic vibrational wave functions. 

 
The main difficulty involved in these calculations 

revolves around the evaluation of the Hessian matrix and 
its diagonalisation. For a system containing N atoms, the 
Hessian matrix requires 3N × 3N second derivatives, which 
can either be evaluated by numerical differences[21] or 
differentiation of energy gradients[22, 23], or computed 
analytically[24]. However, since the computational scaling 
of a Hessian matrix calculation is at least N2, it can quickly 
become very time consuming to compute the full Hessian 
matrix for large biomolecules.  

 
In this case, the cost of computing a large number 

of numerical steps (3N at least) has to be weighed against 
the computational effort needed to perform an analytical 
calculation of the Hessian matrix. For classical force fields 
the analytical route to the Hessian matrix is the most 
straightforward since all potential energy terms have an 
analytical expression. However, for a given ab initio or 
semi-empirical approach, the computation of analytical 
second derivatives is not always simple. Recent advances 

in the coupled–perturbed Hartree–Fock (CPHF) 
methodology[25] enable more efficient ways of computing 
analytical Hessians for Hartree–Fock-based methods (all 
traditional semi-empirical methods, simple HF and some 
DFT implementations). Some ab initio packages also offer 
efficient implementations of second derivatives for MP2 
(for example in CADPAC[26] or Gaussian03[27]), but the 
vast majority of ab initio programs rely on numerical-
difference techniques to obtain the Hessian matrix due to 
their general applicability and straightforward 
implementation[22, 23]. Moreover, the recent advent of 
computational clustering and the efficient realisation of 
persistent computational grids[28] have led to a series of 
successful parallel approaches to the numerical 
computation of the Hessian matrix for large systems[29], 
exploiting the fact that each energy point needed for the 
numerical derivative calculation is independent of the other 
and thus very well suited to a distributed approach. 

 
The diagonalisation of large Hessian matrices, 

which is necessary in order to obtain the harmonic 
fundamental frequencies and normal modes of a biosystem, 
can be a considerable computational burden. Indeed, in 
spite of being symmetrical, the size of such matrices for 
systems of tens of thousands of atoms often requires 
specially designed algorithms, such as iterative 
diagonalisation[30, 31] or a divide-and-conquer 
approach[32, 33], to cope with the size of the problem. 
Consequently, a number of schemes have been derived to 
either bypass the computation of the full Hessian matrix 
using subspace iterations[34] and/or normal-mode 
selection[34, 35], or compute only part of the Hessian 
matrix[36, 37]. In practice, the computation of Hessian 
matrices for moderately sized molecules is now 
commonplace for most quantum-chemistry programs.  

 
3.2. Scaling procedures  

From an empirical point of view, the harmonic 
model often leads to a large discrepancy between the 
predicted and observed fundamental vibrational frequencies 
(sometimes over 200 cm−1 for a single frequency). 
Moreover, the degree of agreement varies greatly with the 
nature of the underlying PES used, whether computed 
using high-level ab initio methods or a classical force field. 

 
One marked difference between the harmonic 

model and the real vibrational transition is the asymmetry 
of the underlying potential energy surface. For example, a 
simple diatomic molecule (as shown in Figure 1) is 
reasonably described by a symmetric harmonic potential 
around its energy minimum, but the approximation worsens 
as the molecule deviates from its minimum geometry. An 
analysis of the potential energy curve for such a diatomic 
molecule, which is well described by a Morse 
oscillator[38], leads to the following conclusions. The 
vibrational-energy levels predicted by a harmonic 
approximation to the PES are equally spaced by hν, while 
in a real system (or for a Morse oscillator) the energy-level 
separation decreases as the vibrational quantum number 
increases, until the dissociation limit is reached. Moreover, 
the harmonic model always leads to symmetric wave 
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Figure 1. Harmonic and realistic potential energy curve 
around the energy minimum (re) of a diatomic molecule. 
Note that in this particular case the harmonic vibrational-
energy levels (horizontal red lines, numbered in italics from 
0 to 4) overestimate the realistic vibrational-energy levels 
(dashed black lines, numbered from 0 to 5). 

 
functions, which do not always correspond to the real wave 
functions. The separation between the first two energy 
levels of a Morse oscillator is given by: 

 
  (2) 

 
where ωexe is the anharmonicity constant, and is in most 
cases a positive number. We see from expression (2) that 
the fundamental vibrational frequencies predicted by the 
more realistic Morse model are in general lower than the 
harmonic prediction ωe. This observation has led to the 
introduction of scaling factors in order to improve the 
agreement between predicted harmonic frequencies and the 
observed fundamental value. These scaling factors vary 
according to the level of theory used to compute the PES 
and range typically from 0.8 to 1.0 (see Reference[39] for a 
comprehensive list). Note that this analysis does not 
constitute a theoretical justification for the use of scaling 
factors but merely tries to give an understanding of the 
difference between harmonic and anharmonic treatments of 
vibrations. This approach, also called the global scaling 
factor method, has the advantage of being very 
straightforward, albeit requiring a pre-existing calibration 
for the level of theory used, and is currently applied in the 
G2 and G3 thermochemistry models to account for 
anharmonicity in the vibrational partition function[40, 41].  

 
However, we need to be aware that this scaling 

analysis is based on the potential energy curve of a generic 
diatomic molecule, which has mostly positive ωexe. 
Negative anharmonicity constants can occur in polyatomic 
molecules, particularly for vibrational modes that describe 
non-dissociative motion, such as bending vibrations. In this 
case, the “real” vibrational frequency (or 1 ← 0 level 
separation) is likely to be greater than the harmonic results 
and thus invalidates the global scaling hypothesis. In 
general, a careful investigation of the nature of the 
vibrational motion is therefore needed and the scaling 
factor needs to be adapted accordingly.  

 

One of the main approximations of the global 
scaling factor technique is the use of a common degree of 
anharmonicity for all oscillators in a polyatomic molecule. 
This approximation becomes more severe as the size of the 
molecule increases. Indeed, a single global scaling factor 
applied to the computed harmonic frequencies does not 
always lead to the best agreement for all types of 
frequency, and several authors have suggested the use of 
multiple scaling factors to remedy this problem[42]. The 
most successful method to date is the scaled quantum-
mechanical (SQM) force-field technique suggested by 
Pulay et al.[43, 44]. In this technique, the elements of the 
force-constant matrix F (or mass-weighted Hessian matrix), 
rather than the final frequencies, are scaled using:  

 
  (3) 

 
where λi and λj are the scaling factors for each coordinate. 
However, instead of having a single scaling factor for all 
coordinates or a separate factor for each coordinate, the 
coordinates that correspond to similar types of vibration are 
scaled jointly. Rauhut and Pulay report that about 10 
different factors give enough flexibility to correct Hartree–
Fock harmonic spectra for most organic molecules[44]. 

 
Lin et al.[45] have taken a step in the opposite 

direction and used experimental harmonic frequencies to 
adjust computed DFT harmonic frequencies. They have 
developed an empirical exchange and correlation 
functional, named EDF2, that attempts to reproduce the 
correct curvature of the potential energy surface around the 
minimum. They perform a multi-functional fitting of the 
computed harmonic frequencies calculated using both local 
and gradient-corrected (GGA) exchange and correlation 
functionals. The procedure yields a re-parametrised 
functional that leads to computed harmonic frequencies 
close to those obtained using high-level ab initio methods, 
such as coupled cluster (CCSD(T)), but at a much lower 
computational cost.  
 
4. BEYOND THE HARMONIC APPROXIMATION 
 

While there is no doubt that the harmonic 
approximation is a very valuable tool to understand the 
vibrational spectra of biomolecules, deviations from the 
harmonic model occur frequently due to the size and 
intrinsic complexity of biosystems. Several authors[46–48] 
have highlighted the importance of anharmonicity in 
biomolecules using techniques that go beyond the harmonic 
approximation. 
 
4.1. Molecular-dynamics simulations  

A direct way of going beyond the harmonic 
approximation is to extract the vibrational spectrum from 
molecular-dynamics (MD) simulations. During such 
simulations, the motion of each atom at a given temperature 
is integrated using Newton’s laws, leading to a simulation 
of the time evolution of the system, and thus particle–
particle correlation functions can be easily recorded. The 
fluctuation–dissipation theorem (or Green–Kubo relations) 
connects auto-correlation functions to macroscopic 
observables such as diffusion coefficients or vibrational 
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spectra. Two correlation functions are of interest for the 
simulation of vibrational spectra, namely the velocity auto-
correlation function (VACF) and the electric dipole auto-
correlation function (DACF). It is easy to understand that a 
Fourier transform of the DACF is related to the vibrational 
spectrum since the selection rules of infrared absorption are 
linked to electric dipole-moment fluctuations. The VACF is 
also connected to vibrational motion, and a Taylor 
expansion shows that this correlation function can be 
expressed as: 

 

 (4)  

 
where �. . .� is an ensemble average over the MD 
simulation, vi(t) is the velocity of particle i at time t, and ωi 
is the vibrational frequency associated with particle i 
oscillating in the mean force field of the other particles. The 
main advantage of this approach is that the MD protocol 
can be applied to a very large number of systems, using 
either classical force fields or ab initio potentials, and offers 
a direct approach to simulate solvent effects for vibrational 
properties. Moreover, since no assumption is made about 
the harmonic nature of the PES, the vibrational spectra 
computed using MD correlation functions are intrinsically 
anharmonic and can also be computed at different system 
temperatures. Since the time-correlation method relies on 
signal-processing techniques, there are some constraints on 
the nature of the MD trajectory. The length of the 
simulation has a direct influence on the spectral resolution 
of the obtained spectrum and a 30 ps-long trajectory is 
usually necessary to obtain a 1 cm−1 resolution[49]. 
Additionally, due to the nature of the procedure generally 
used in MD to integrate Newton’s equations of motion, the 
size of the integration time step can cause an 
overestimation of the vibrational frequencies obtained with 
the Fourier transform methods. For example, Schmitz and 
Tavan estimated that a time step of 0.5 fs can lead to a shift 
close to 12 cm−1 for C–H stretches[50]. 

 
There are also drawbacks to the time-correlation 

approach, mainly stemming from the statistical nature of 
this vibrational treatment. The vibrational wave function is 
not available, and vibrational overtones and combination 
bands cannot be simulated using this approach; moreover 
normal modes of vibration are absent. To remedy this issue, 
another method associated with MD simulations is the 
instantaneous normal mode (INM) approach of Seeley and 
Keyes[16]. With this technique, a harmonic analysis is 
performed at regular intervals in the course of a molecular-
dynamics simulation of the time evolution of the 
biosystem. This leads to a set of harmonic frequencies and 
normal modes for each selected time step that are then used 
to produce a time-averaged spectrum of the system. With 
this approach, a normal-mode description of the vibrations 
of the biosystem is preserved, but at the expense of the 
anharmonicity of the vibrational description. 
 
4.2. Perturbative approaches to anharmonicity  

Second-order perturbation theory of the 
vibrational Hamiltonian (VPT2) provides a convenient 
analytical formalism that can be used to obtain approximate 

anharmonic solutions to the vibrational problem. With this 
approach, higher-order terms are added to the second-order 
expansion of the PES given in equation (1) to obtain: 

 
 (5)  

 
The PES expansion is often limited to fourth-order 
derivatives to reduce the computational effort of the 
procedure, although there is no theoretical limit to this 
expansion scheme. In most cases, the minimum of the PES 
is shifted so that V(0) ≡ 0, and the analysis is performed for 
(�V)0 = 0. The vibrational Hamiltonian is then decomposed 
into a standard harmonic-oscillator Hamiltonian, H0, and a 
series of anharmonic contributions to the potential energy 
term, V3, V4, …: 

 
 (6) 

 
Taking into account the fact that H0 can be solved 
analytically and assuming that the anharmonic 
contributions are small, it is possible to use standard 
Rayleigh–Schrödinger perturbation theory to calculate the 
effects of Vn on the harmonic result (see also References 
[51, 52]). The vibrational-energy levels corrected to second 
order for a PES expanded in terms of fourth-order 
derivatives are given by the approximate formula[51]: 

 
  (7) 

 
where χij is a function of the cubic and quartic force 
constants and is approximately equal to[52]: 

 
 (8) 

 
It has been shown experimentally[53] that such second-
order perturbation expansion leads to an excellent 
agreement with the observed anharmonic transitions. 

 
Along with an expression for the vibrational-

energy levels, perturbation theory leads to anharmonic 
corrections for the harmonic vibrational wave function. A 
knowledge of the corrected wave function enables the 
calculation of vibrationally-averaged properties such as 
dipole moment, rotational constants[54, 55], and NMR 
shifts[54]. The relatively simple expression of the second-
order perturbation results has led to the implementation of 
this method in the Gaussian03 suite of ab initio programs. 
However, the high-order derivatives of the PES are often an 
obstacle to the use of this approach to anharmonicity 
corrections. Given that second derivatives of the PES (i.e. 
the Hessian matrix) can already present certain challenges 
for large molecules, the computation of third and fourth 
derivatives is a very time-consuming operation. At present 
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there are no packages that implement analytical high-order 
derivatives for ab initio electronic-structure theory, and 
most of the time the derivatives required by the 
perturbation-theory treatment are computed using 
numerical differences. Several schemes have been 
developed to minimise the impact of such calculations (see 
Reference [52] for a short survey). Moreover, the accuracy 
of the computed derivatives is sensitive to the size of the 
numerical step used in the numerical differentiation 
procedure, and several authors have suggested different 
recommendations[52]. 

 
One of the main drawbacks of the second-order 

perturbational approach is the occurrence of degenerate or 
near-degenerate vibrational states in the spectrum of the 
system studied, which can cause the perturbation expansion 
to diverge or become singular. This is due to the fact that 
the terms needed for the second-order correction depend on 
one over the energy difference between the vibrational 
states. Unfortunately, as the size of the system increases, 
the likelihood of accidental degeneracies (leading to Fermi-
type resonances) increases and particular care has to be 
taken to circumvent problems in the perturbation 
corrections, using, for example, degenerate perturbation 
theory[51]. Nevertheless, the applications of vibrational 
perturbation theory in this formalism remain limited to the 
smaller biological molecules, such as uracil[56] and 
alanine[57], with the exception of small peptides[58]. 

 
A very recent re-formulation of the 

perturbative approach to anharmonicity by Lin, Gilbert 
and Gill[52] offers a possible improvement compared to 
the large computational effort incurred for standard 
VPT2 calculations. Instead of calculating the energy 
corrections to the harmonic vibrational-energy levels 
using perturbation theory, they shift the origin of the 
harmonic oscillator wave function to account for 
anharmonicity. The justification of this approach is that 
the main difference between harmonic and anharmonic 
vibrational wave functions is that the anharmonic one is 
usually shifted. With their approach, the value of the 
wave-function shift is adjusted so that the energy 
difference between the ground and first excited 
vibrational states (the fundamental transition frequency) 
approximately matches the second-order perturbation 
result of equations (7) and (8). Lin et al. observe that, 
since they do not use second-order perturbation theory, 
their method does not suffer from the drawbacks of 
VPT2 with regard to accidental degeneracy. This 
transformation of the harmonic wave function along 
with a more modest computational requirement for high-
order derivatives of the PES allows an efficient 
estimation of the VPT2 results and has been 
implemented in the Q-Chem package[59]. The 
preliminary tests performed by Lin, Gilbert and Gill on 
small organic molecules show that this method 
constitutes an attractive alternative to the canonical 
second-order perturbation-theory treatment of 
anharmonicity. Moreover, due to the efficiency of their 
scheme, this method could be applied successfully to 
moderately sized biological systems.  
 

4.3. CC-VSCF towards solving the full-dimensional 
Schrödinger equation  

One way of overcoming the shortcomings of the 
perturbative approach to anharmonicity is to use a 
variational method to solve the vibrational Hamiltonian. 
However, the fully coupled Hamiltonian for systems larger 
than a few atoms is too complex to be solved directly and 
some approximations have to be used. The vibrational self-
consistent field (VSCF) method is a variational alternative 
to the perturbation-theory approach and is currently the 
leading method for the approximate computation of 
anharmonic frequencies of large systems. The idea of using 
a self-consistent-field approach to solve vibrational 
problems was first formulated in 1978 by Carney et al.[60] 
and Bowman[61]. The main concept behind the VSCF 
approach has its origins in the mean-field theory developed 
for electronic-structure calculations; namely replacing the 
explicit correlation present in a many-particle system with a 
series of single-particle problems coupled through an 
effective potential that is dependent on all the other degrees 
of freedom.  

 
With this method[61–65], the wave function of 

the system, Ψk, for each vibrational state k is assumed to be 
separable and is described by a product of single-mode 
wave functions, φ i

k , one for each normal coordinate Qi: 
 

  (9) 

 
Thus, the vibrational Hamiltonian can be rewritten as a 
collection of single-mode equations of the form: 

 
 (10) 

 
In order to achieve the separation of the vibrational 
Hamiltonian into single-mode equations, we have 
introduced an effective potential, V j,k

eff Q j( ), for each state 
k: 

 
 (11) 

 
The solutions of each of these one-dimensional equations 
(one for each mode j) can then be used as basis functions 
( φ j

k ) for the vibrational wave function of the system Ψk for 
each state, as described in (9). Since the effective potential 
depends implicitly on the wave function, the set of 
equations needs to be solved iteratively until self-
consistency is achieved. The total energy of the system is 
then given by the sum of the single-mode energies 
corrected for the double counting caused by the use of an 
effective potential: 

 
 (12)  
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The main computational difficulty in solving 
equation (10) comes from the evaluation of the multi-
dimensional integral, defined in equation (11), which is 
needed in order to evaluate the mean-field potential. To 
overcome this difficulty, Jung and Gerber[64] suggested 
using an n-body representation of the potential energy 
surface: 

 
     (13) 

 
Chaban et al. have shown that including in (13) only terms 
up to Vij

(2) Qi ,Q j( ), that is, using a pairwise approximation 
of the PES, is sufficient to give reasonable vibrational 
frequencies for large molecular systems[66]. This 
approximation simplifies calculations for large molecular 
systems, since the VSCF equations now involve at most 
two-dimensional integrals. These integrals can be 
computed efficiently by using a grid representation, which 
requires the values of the one-mode and two-mode 
representations of the PES and the value of the normal-
mode wave function at the grid points. 

 
For large biomolecules, the calculations needed to 

construct a global potential energy surface ab initio often 
become prohibitive. Therefore, classical force fields, such 
as AMBER, have been used by Roitberg et al. to 
successfully compute the many-dimensional anharmonic 
wave function of the bovine pancreatic trypsin inhibitor 
(BPTI) using VSCF[47]. However, further studies on 
glycine have shown that the classical force fields 
commonly used in biosimulations are not sufficiently 
accurate to provide a reliable potential energy surface for 
anharmonic corrections and that ab initio-derived PES 
should be used instead[67]. 

 
Unfortunately, the fitting of multi-dimensional 

functions to a set of ab initio points to obtain an analytical 
PES cannot always be guaranteed to converge for large 
systems. An alternative to the use of an analytical PES is 
the direct method that was developed by Chaban et al.[66] 
and implemented, for example, in the Gamess-us[68] 
electronic package. With this approach, the PES needed for 
the VSCF calculation is constructed progressively by 
performing a series of ab initio energy calculations for a set 
of regularly spaced grid points along the normal-mode 
coordinates. This approach has shown to be accurate[66], 
and can thus be used to benchmark the accuracy of a 
potential energy surface, obtained at a given level of ab 
initio theory, through the computation of the vibrational 
spectrum for a given molecule. However, the direct 
calculation of a PES for large molecular systems requires 
ab initio calculations at a very large number of grid points 
and can be computationally demanding for molecular 
systems with a large number of normal modes, such as 
biomolecules. In order to accelerate the computation of the 
PES, Benoit[65, 69] suggested reducing systematically the 
number of mode–mode couplings included in the PES, thus 
leading to faster VSCF calculations (Fast-VSCF method). 
The direct method does not require the computation of a 
global n-dimensional PES or any fitting to an analytical 

function, which makes it very suitable for large molecular 
systems. 

 
A simple VSCF scheme does not explicitly take 

into account mode–mode coupling, since each mode is 
treated independently in the effective field of the other 
modes. A simple way of correcting this lack of explicit 
correlation between modes in the VSCF approach is to 
apply a perturbation correction to the SCF solutions. This 
method, called CC-VSCF (for correlation-corrected 
VSCF), has been extensively described by Norris et al.[70] 
and, assuming that the effect of the non-separability of 
modes is small, uses the following perturbation potential: 

 
 (14) 

 
In this expression, the perturbation potential is formulated 
as the difference between the true potential energy of the 
system and the effective VSCF potential. The energy 
correction is then given by an expectation value of the 
perturbing potential, in a similar fashion to the usual 
Moller–Plesset perturbation theory: 

 
 (15)  

 
where ˜ E s

(0) and ˜ E t
(0) are the sum of the single-mode 

energies (ε j ) for the states s and t of the unperturbed 
VSCF solutions. Matsunaga et al.[71] developed a 
perturbation theory that can handle degenerate cases in a 
satisfactory manner, named DPT2-VSCF (for VSCF 
including second-order energy corrections obtained through 
degenerate perturbation theory). The main advantage of the 
perturbative correction scheme is its low computational 
cost, which makes it suitable for large molecular systems. 
However, this scheme, too, can lead to non-physical 
corrections, as reported by Chaban[66] and 
Christiansen[72].  
 
5. APPLICATIONS 
 

The various techniques presented earlier have 
several applications in the domain of biologically relevant 
molecules. In the following, I will focus on some particular 
applications that illustrate the capabilities of these methods. 

 
In the field of biosystems containing transition 

metals, Kozlowski et al.[73] have used the SQM technique 
to investigate the vibrational spectra of various porphyrins. 
Using a PES computed at the B3LYP/6-31G(d) level of 
theory, they show that this approach is able to reproduce 
the observed experimental fundamental frequencies 
accurately, with a mean absolute deviation smaller than 
5 cm−1. Moreover, their study was able to dispel doubts 
concerning the attribution of some observed frequencies of 
the free-base porphine and thus demonstrated that it had 
D2h symmetry. They also extended their study to the 
spectroscopy of metalloporphyrins, investigating the Zn-, 
Mg-[74], and Ni-porphyrins[75]. For the first two, they 
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report an excellent agreement with the experimental data 
and an average deviation in the range of 4–7 cm−1. Their 
SQM analysis provides further evidence of the planarity of 
these two prophyrins. Their investigation of the Ni-
porphyrin allowed the reassignment of several vibrational 
bands and shows that an out-of-plane distortion of the 
porphyrin cycle, while lowering the symmetry of the 
complex, has only a limited effect on the vibrational 
spectrum. 

 
Large-amplitude motions of protein systems are 

of great interest since they are related to the overall protein 
flexibility, conformational preferences of the peptide chain 
and protein–protein and protein–ligand interactions. In 
order to investigate the flexibility and conformational state 
of bacteriorhodopsin, Whitmire et al. used the normal 
modes obtained from a harmonic frequency calculation and 
compared the results to experimental far-infrared 
spectra[76]. They used the CHARMM classical force field 
and an iterative diagonalisation of the computed Hessian 
matrix to obtain the low-frequency part of the vibrational 
spectra of the wild-type and D96N mutant 
bacteriorhodopsin. They observed a good agreement 
between the harmonic predictions and the measured spectra 
but remarked that the different absorption patterns obtained 
for wild-type and D96N mutant rhodopsin are not 
reproduced by the simple harmonic analysis. They suggest 
that anharmonicity might account for the different FIR 
spectra of the two types of protein and show that the low-
frequency absorption profile indicated a greater flexibility 
of the wild-type compared to the mutant rhodopsin.  

 
Protein flexibility also plays a role in the 

mechanism of binding-site recognition by ligands. 
Sanejouand[77] performed a harmonic analysis of the low-
frequency modes of human CD4, a receptor for the human 
immunodeficiency virus (HIV). He showed the existence of 
a hinge-bending mechanism for the two N-terminal 
domains of CD4, which influences the extent to which it 
binds to Gp120, an envelope protein of HIV. Using the 
CHARMM force field to describe the potential energy 
surface of the protein, he observed that the low-frequency 
modes of CD4 describe a concerted motion of two sizeable 
domains about a hinge axis. The link between this bending 
mechanism and the binding activity is also consistent with 
the experimental evidence of Gp120 affinity obtained from 
mutant CD4 and monoclonal-antibody studies.  

 
The amide region (amide bands) of the vibrational 

spectra of proteins provides a wealth of information on 
their secondary structure. Accurate modelling of this group 
of vibrational frequencies remains relatively complex due 
to the usual size of biosystems, the number of vibrational 
resonances between the vibrating groups, and the presence 
of hydrogen-bonding interactions creating the secondary 
structure. The amide-I band originates mainly from 
vibrations of the carbonyl groups on the protein backbone, 
and thus a partial Hessian approach, such as the one used 
recently by Besley and Metcalf[37], can be used to reduce 
the computational effort. Their study on a set of model 
peptides shows that this technique leads to only a small 
deviation (10 – 20 cm−1) from the full Hessian calculation 

as long as the amide carbon, oxygen and nitrogen atoms are 
included. For agitoxin, a protein containing 38 residues, 
they observe a good qualitative agreement between their 
harmonic calculations[37, 78] and the amide signal 
observed experimentally.  

 
The anharmonicity of the various amide bands has 

been investigated in detail by Wang and Hochstrasser[58], 
using second-order vibrational perturbation theory (VPT2) 
and a B3LYP/6-31+G(d,p) PES. In their study of small 
peptides, they observe that the amide-A band (originating 
from NH-stretch vibrations) possesses a significant single-
mode anharmonicity, about 10 times that of the amide-I 
band, and that a realistic description of the experimental 
frequencies has to include anharmonic corrections. They 
also show that the anharmonic frequencies predicted by 
VPT2 are in very reasonable agreement with the 
experimental gas-phase observations and note that subtle 
vibrational shifts due to hydrogen bonding are also well 
reproduced by this method. They demonstrate, by 
systematically computing the anharmonic coupling 
between the different types of amide modes in each 
peptide, that the position of the amide-A band is fairly 
insensitive to mode–mode coupling, while that of the 
amide-I band is strongly affected by the presence of low-
frequency amide vibrations and peptide backbone motion. 
Kaledin and Bowman[79] have performed a full-
dimensional anharmonic calculation of the vibration of N-
methyl acetamide, a model compound for the amide-band 
vibration, using a correlated VSCF approach. They show 
that it is possible to obtain a reliable theoretical description 
of the amide-I, -II and -II bands by including mode–mode 
coupling for a PES computed at the MP2/aug-cc-pVTZ 
level of ab initio theory. Gregurick et al.[80] have also used 
a correlated VSCF approach, with a PES computed using 
the AMBER force field, to investigate the vibrational 
spectra of micro-solvated dipeptides. Their study shows 
that the predicted anharmonic frequencies are usually 
higher (blue-shifted) than those obtained by a harmonic 
analysis. The anharmonic terms in the PES tend to rigidify 
the system, and the frequency shifts are shown to be as high 
as 300 cm−1 for some modes. Moreover, Gregurick et al. 
managed to relate the vibrational frequencies to 
conformational changes in the peptide–water complex, 
highlighting the effects of hydrogen bonding on the amide-
band vibrations. In the second part of their study, they use a 
non-solvated tri-alanine peptide in an anti-parallel beta-
sheet conformation to test the accuracy of the force field 
used. They note that the anharmonic frequencies are in 
good agreement with the observed experimental spectra for 
most amide bands, often improving over the harmonic 
frequencies obtained from a purpose-built empirical force 
field. However, they observe discrepancies for some low-
intensity amide modes (I, III and V) and suggest that the 
AMBER force field should be partially revised to account 
for these defects.  

 
Roitberg et al. have performed the largest 

anharmonic calculations on a biological system to date 
using the VSCF method. In two landmark papers[47, 81] 
they compute the anharmonic vibrational wave function for 
a number of vibrational modes of BPTI, using various 
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approximations, in order to assess the influence of 
anharmonicity on protein properties. For the classical 
potential used (MOIL package[82]), they observe that 
single-mode anharmonicity has a stronger effect on the 
low-frequency modes, with some frequencies changing by 
a factor of four, and renders the modes stiffer. Moreover, 
mode–mode anharmonicity affects these frequencies even 
further: Roitberg et al. suggest that the mixed fourth-order 
derivatives of the PES, rather than the third-order 
derivatives, are the main contributors to these corrections. 
They also highlight that anharmonicity plays an important 
role in the calculation of the atomic mean square 
displacement, and thus of the Debye–Waller factor. They 
observe substantial deviations for low-frequency torsional 
motions, mainly due to the stiffening of the system caused 
by the anharmonicity corrections.  

 
One of the first analyses of anharmonicity in 

peptides was performed by Levy et al.[46] using classical 
molecular dynamics. They compute the mean square 
fluctuations of decaglycine in its alpha-helix conformation 
for several temperatures using the CHARMM force field. 
They observe that the fluctuations predicted at room 
temperature by a harmonic model are smaller than the data 
obtained from X-ray analyses by at least a factor of two. 
The results obtained from full molecular-dynamics 
simulations lead to a much better agreement with 
experiment, thus indicating that anharmonicity plays an 
important role in the dynamics of proteins. Recently, 
Grégoire et al.[83] have used Car–Parrinello molecular-
dynamics simulations with a BLYP/PW PES to compute 
the vibrational spectra of protonated peptides in the gas 
phase. They highlight that this type of approach enables the 
simultaneous exploration of the various peptide 
conformations accessible by the system at room 
temperature. The method can therefore account for the 
presence of several different contributions to the observed 
vibrational spectrum that arise from a number of low-lying 
minima. In the case of protonated peptides, where proton 
migration can occur rapidly and has a strong influence on 
the overall molecular structure, they show that a molecular-
dynamics approach leads to a good agreement between 
predicted and observed vibrational bands, but that the 
transition intensities can be overestimated. They note that 
accounting for both anharmonic effects and entropic 
contributions to the structural equilibrium are crucial to an 
accurate simulation of these flexible biological systems.  
 
6. PERSPECTIVES  
 

The use of atomistic simulations to predict and 
understand the vibrational dynamics of biological systems 
is still an area in expansion. The insight gained from 
accurate theoretical modelling leads to a deeper 
understanding of the structural and dynamical interplay in 
many important areas of biochemistry and biophysics. The 
techniques presented in this review demonstrate that it is 
possible nowadays to simulate vibrational spectra of 
sizeable systems of biological interest with an accuracy 
close to 10 cm−1 for fundamental bands. To obtain such 
agreement, the simple harmonic model has to be 
complemented with a more accurate description of 

vibrational dynamics accounting for single-mode 
anharmonicity and mode–mode coupling. However, such 
refinement of the vibrational treatment comes at a price: the 
complexity of the anharmonic models renders them very 
demanding on computational resources. Nevertheless, with 
the advances in computer technology and the constant 
efforts to develop more efficient methodologies, the use of 
atomistic simulations to obtain accurate vibrational spectra 
is set to become a valuable routine tool in biosciences. 
Moreover, for the theoretical community, the direct link 
between potential energy surfaces and experimental data 
through vibrational spectra offers a unique possibility of 
assessing the quality of the theoretical interaction models 
used for systems of biological interest. 
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